
LANA: Towards Personalized Deep Knowledge Tracing
Through Distinguishable Interactive Sequences ∗

Yuhao Zhou
Sichuan University, China
sooptq@gmail.com

Xihua Li
Tencent Inc. China

lixihua9@126.com

Yunbo Cao
Tencent Inc. China

yunbocao@tencent.com

Xuemin Zhao
Tencent Inc. China

xueminzhao@tencent.com

Qing Ye
Sichuan University, China
fuyeking@gmail.com

Jiancheng Lv
Sichuan University, China

lvjiancheng@scu.edu.cn

ABSTRACT
In educational applications, Knowledge Tracing (KT) has
been widely studied for decades as it is considered a funda-
mental task towards adaptive online learning. Among pro-
posed KT methods, Deep Knowledge Tracing (DKT) and
its variants are by far the most effective ones due to the
high flexibility of the neural network. However, DKT often
ignores the inherent differences between students (e.g. mem-
ory skills, reasoning skills, ...), averaging the performances
of all students, leading to the lack of personalization, and
therefore was considered insufficient for adaptive learning.
To alleviate this problem, in this paper, we proposed Leveled
Attentive KNowledge TrAcing (LANA), which firstly uses a
novel student-related features extractor (SRFE) and pivot
modules to distill and distinguish students’ unique inherent
properties from their respective interactive sequences. More-
over, inspired by Item Response Theory (IRT), the inter-
pretable Rasch model was used to cluster students by their
ability levels, and thereby utilizing leveled learning to assign
different encoders to different groups of students. With pivot
module reconstructed the decoder for individual students
and leveled learning specialized encoders for groups, person-
alized DKT was achieved. Extensive experiments conducted
on two real-world large-scale datasets demonstrated that our
proposed LANA improves the AUC score by at least 1.00%
(i.e. EdNet ↑ 1.46% and RAIEd2020 ↑ 1.00%), substantially
surpassing the other State-Of-The-Art KT methods.

Keywords
Education, Personalized Learning, Adaptive Learning, Knowl-
edge Tracing, Machine Learning, Deep Learning

∗A full version of this paper is available at https://github.
com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf

1. INTRODUCTION
Knowledge Tracing (KT) aims to accurately retrieve stu-
dents’ knowledge states at a certain time by his past sequen-
tial exercising interactions. To evaluate KT’s performance,
it is asked to predict the correctness of students’ future ex-
ercises with the retrieved knowledge states as Equation 1
represented.

P (rsit+1|I
si
1 , I

si
2 , I

si
3 , ..., I

si
t , {I

si
t+1−r

si
t+1}), I

si
t = (e

si,qj
t , cqj , rsit)

(1)
Where e

si,qj
t is referred as student si ∈ N+ answering ques-

tion qj ∈ N+ at discrete time step t ∈ N+, cqj represents
the contextual information of question qj (e.g. related con-
cepts, part, etc.) [23, 14, 10, 4], and rsit ∈ {0, 1} repre-
sents the correctness of student si’s answer to qj at time
t. Additionally, the student’s interaction sequence is de-
fined as Ssit0,t1 = {Isit |t0 < t < t1} and κ is defined as
κsit = {si, qj , cqj , rsit }, referring to all features that partici-
pated in one interaction Isit for latter explanation.

Traditionally, KT was regarded as a sequential behavior
mining task [8, 17], and therefore various methods estab-
lished models with the theory of bayesian probability (BKT [3])
and psycho-statistics (IRT [5]), providing excellent inter-
pretability and good performance. Nevertheless, recently
proposed Deep Knowledge Tracing (DKT) [16] and its vari-
ants [13, 4, 14, 1, 18] significantly outperform other KT
methods in metrics using Recurrent Neural Network (RNN)
and Long Short Term Memory (LSTM [6]). However, DKT
distinctly lacks personalization for students compared to
BKT and IRT [15, 25], which are capable of separately train-
ing unique models for each student, while DKT only trains
a unified model for all students due to massive training data
and abundant computing resources required by deep learn-
ing. Hence, DKT weakly reflects the large inherent property
(i.e. memory skills, reasoning skills, or even guessing skills)
gaps between students.

Assumption 1. For any interactive sequences satisfying∣∣∣∣Ssit0,t1 ∣∣∣∣ > Θ >> 1, ||κ|| > Ψ and t2 − t1 > E, Ssit0,t1 can be

distinguished from S
sj
t0,t1

and Ssit2,t3 respectively.

Is it possible to bring personalization back to DKT? To an-
swer this question, we observed that the proactive behavior

https://github.com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf
https://github.com/Soptq/LANA-pytorch/raw/main/LANA_EDM2021.pdf

sequence (i.e. interactive sequences) of each individual is
unique and changeable over time. Hence, we argue that the
minimal personalized unit in KT is “a student at a certain
time ti” instead of just “a student”, and student’s inherent
properties at time ti can be represented by his interactive
sequences around time ti (Assumption 1). In such a way,
these student-related features could tremendously help per-
sonalize the KT process since they could be used to identify
different students at different stages. Consequently, in our
proposed Leveled Attentive KNowledge TrAcing (LANA),
unique student-related features are distilled from students’
interactive sequence by a Student-Related Features Extrac-
tor (SRFE). Moreover, inspired by BKT and IRT that assign
completely different models to different students, LANA, as
a DKT model, successfully achieves the same goal in a dif-
ferent manner. Detailedly, instead of separately training
each student a model like BKT and IRT, LANA learns to
learn correlations between inputs and outputs on attention
of the extracted student-related features, and thus becomes
transformable for different students at different stages. More
specifically, the transformation was accomplished using pivot
module and leveled learning, where the former one is a model
component that seriously relies on the SRFE, and the lat-
ter one is a training mechanism that specializes encoders for
groups with interpretable Rasch model defined ability levels.
Formally, the LANA can be represented by:

Adaptive by Pivot Module︷ ︸︸ ︷
rsit ∼ (f(psit))(hsit) , psit ∼ k(hsit), hsit ∼ g(hsi<t, S

s1
0,t)︸ ︷︷ ︸

Adaptive by Leveled Learning

,

(2)
where hsit is referred as student si’s knowledge state at time t
respectively, f(·) (decoder), g(·) (encoder) and k(·) (SRFE)
are three main modules that LANA seeks to learn.

2. METHODOLOGY
2.1 Base Modifications
There are mainly two base modifications in the LANA model
(Figure 1) that were made to the basic transformer. Firstly,
in the LANA model, the positional information (e.g. posi-
tional encoding, positional embedding) was directly fed into
the attention module with a private linear projection, in-
stead of being added to the input embedding and shared
the same linear projection matrix with other features in
the input layer. Although experiments in [22] suggested
that blending input embedding with positional information
is effective, recently some work [19] debated that when the
model becomes deeper, it tends to “forget” the positional
information fed into the first layer. Moreover, some other
work [9] believed that adding positional information to the
input embedding and offering them to the attention module,
is essentially making them share the same linear projection
matrix, which is not reasonable since the effects of the input
embedding and the positional information are clearly dis-
tinctive. For exactly the same reason, in the LANA model,
multiple input embeddings (i.e. question ID embedding,
student ID embedding, etc.) are concatenated instead of
added, leading to the second base modification. Specifically,
assumes there are m input embeddings in total, each with
a dimension of Df . Then after concatenating, the input
embedding would have a total dimension of Dmf . Hence, a
Dmf → Df linear projection layer was used to map the con-

Figure 1: The overall model architecture of LANA.
There are mainly three differences compared to vanilla
transformer-based KT method [1, 18]: I. Modifications to
the basic transformer model. II. Introduced SRFE and III.
Introduced PMA Module and PC-FFN Module, which col-
lectively referred to as pivot module.

catenated input embedding of dimension Dmf to dimension
Df .

2.2 Student-Related Features Extractor (SRFE)
Student-Related Features Extractor (SRFE) summaries stu-
dents’ inherent properties from their interactive sequences
with Assumption 1 for the pivot module to personalize the
parameters of the decoder. Specifically, SRFE contains an
attention layer and several linear layers, where the atten-
tion layer was used to distill student-related features from
the provided information by the encoder, and the linear lay-
ers were leveraged to refine and reshape these features. It is
notable that in the LANA model there were primarily two
SRFEs: memory-SRFE and performance-SRFE, where the
former one was utilized to derive students’ memory-related
features for the PMA module (be introduced later) and the
latter one was dedicated to distill students’ performance-
related features (i.e. Logical thinking skill, Reasoning skill,
Integration skill, etc.) for PC-FFN module (introduced later
either). The reshaping process was drawn in Figure 3 for
better illustration, where bs, nheads, seq and dpiv are re-
ferred to as the model’s batch size, the number of atten-
tion heads [22], the length of the input sequence and the
dimension of performance-related features. The intuition
that memory-related features have a second dimension of
nhead comes from the theory that each attention head only
pays attention to one perspective of the features. Thus it is
reasonable that each student has different memory skills for
different attention heads (e.g. for different concepts).

2.3 Pivot Module

Figure 2: The workflow of leveled learning: interpretable
Rasch model was leveraged to analyze students’ overall abil-
ity levels, and then cluster students into multiple layers,
where each layer would respectively fine-tune the LANA
model by its own training data.

Figure 3: The data shape transformation of two SRFE:
Memory-SRFE and Performance-SRFE.

Provided an ordinary input x, a student-related features p
and a target output y, pivot module learns the process of
learning how to project x to y based on p, instead of simply
learning to project x to y (i.e. Pivot module learns to learn)
as Equation 3 shown.

y = (f(p))(x), (3)

where f(·) here is the function that pivot module learns to
learn. That is, the projection matrix of x is adapted to p
instead of being fixed. To accomplish this dynamic mapping,
the weight and bias of x need to be a projection from p.
Assumes p ∈ RDp , x ∈ RDx and y ∈ RDy , Equation 3 could
be formally presented in Equation 4:

y = W xx+ bx, (4)

where W x ∈ RDy×Dx and bx ∈ RDy . Since W x and bx is de-
rived from p, the detailed transformation could be revealed
in Equation 5, which was also depicted in Figure 4 for better
illustration.

W x = W p
1 p+ bp1, bx = W p

2 p+ bp2, (5)

where W p
1 ∈ R(Dy×Dx)×Dp , bp1 ∈ R(Dy×Dx), W p

2 ∈ RDy×Dp
and bp2 ∈ RDy .

By simplification, Equation 3 can be defined as Equation 6,
being named as PivotLinear(x, p).

y = (Wp)x+ b = PivotLinear(x, p), (6)

where W ∈ RDy×Dx×Dp and b ∈ RDy .

In the LANA model, there are primarily two modules that
pertain to the pivot module: Pivot Memory Attention (PMA)
Module and Pivot Classification Feed Forward Network (PC-
FFN) Module. In many methods [4, 14], Vanilla Mem-
ory Attention (VMA) Module was employed to consider the
“forgetting” behavior of students, which is pivotal in KT’s
context since students are very likely to have done similar
exercises to the one he is going to do, and if the student
could remember the answers to previous similar exercises,
the probability of him correctly answering the future related
exercises will be increased greatly. Inspired by the Ebbing-
haus Forgetting Curve [12] and much previous work [14, 4],
“forgetting”behavior of students are defined as exponentially
decaying weights of corresponding interactions in the time-
line. Detailedly, in the original attention module, the weight
of item j on item k, i.e. αj,k, is determined by the sigmoid

result of the similarity between item j and item k:

αj,k =
sim(j, k)∑
k
′ sim(j, k′)

, (7)

where sim(·) is a function to calculate the similarity between
item i and item j by dot production. In order to take “for-
getting” behavior into αj,k’s account (e.g. The further away
from j, the lower the weight αj,k would be), we replaced
Equation 7 with Equation 8:

αj,k,m =
e−(θ+m)·dis(j,k) · sim(j, k)∑

k
′ sim(j, k′)

, (8)

where m is the student’s memory-related features extracted
in memory-SRFE, θ is a private learnable constant that de-
scribes all students’ average memory skill in the PMA mod-
ule, and dis(·) calculates the time distance between item
j and item k (e.g. item j is done dis(j, k) minutes after
item k is done). The reason for representing the memory
skill with two learnable parameters is to reduce the diffi-
culty for model converging since m has a much longer back-
propagation path compared to θ. When θ is introduced to fit

Figure 4: An illustration of the data transformation in the
pivot module.

the average memory skill of all students, the distribution of
m becomes a Gaussian distribution, which makes the model
much easier to learn.

On the other hand, PC-FFN was utilized to make the final
prediction in reference to the performance-related features,
which essentially is a PivotLinear module with a dropout
and activation. The idea of this module comes from many
investigations that the early layers in a deep neural network
are often used as a feature extractor while the latter layers
are often used as a decision-maker to decide which feature
is useful to the output of the model. As a result, these in-
vestigations point out that many models are actually having
similar early layers, and it is the latter layers that make these
models distinctive in usage. Consequently, PC-FFN in the
LANA model was utilized as a personalized decision-maker
to adaptively make the final prediction based on students’
distinctive inherent properties:

PC−FFN(x, p) = x+PivotLinear(PivotLinear(x, p), p),
(9)

where p is the students’ performance-related features ex-
tracted in the performance-SRFE.

2.4 Leveled Learning
While the pivot module enables the decoder to be trans-
formable for different students, the encoder and the SRFE
of the LANA model that provides necessary information for
the pivot module remains the same for all students. This is
not problematic if the length of the input sequence is large
enough since Assumption 1 assures long sequences are al-
ways distinguishable, unless they both belong to the same
student at the same time period. However, DKT, espe-
cially transformer-based DKT, can only be inputted with
the latest n (commonly n = 100) interactions at once due to
the limited memory size and high computational complex-
ity. Consequently, it is possible for the encoder and SRFE
to output similar results for two different students, resulting
in a failure for the decoder to adapt. To alleviate this prob-
lem, it is natural to think of assigning different students with
different encoders and SRFEs that are highly specialized
(sensitive) to their assigned students’ patterns. However,
in practice, it is not feasible to train a unique encoder for
each individual student considering both the limited train-
ing time and the limited training data. As a result, a novel
leveled learning (Figure 2) method was proposed to address
this problem, which was initially inspired by the fine-tuning
mechanism in transfer learning [20], where we consider each
student a unique task, and we want to transfer a model that
fits well on all students to one student si efficiently.

Leveled learning holds the view that the earlier layers of a
model are similar for similar tasks. Thus, to save training
time and enlarge the training set, instead of training each
student a unique encoder and SRFE by his private train-
ing data, students with similar ability levels are considered
to be grouped together, sharing their private training data
and having the same encoder and SRFE. Therefore, LANA
firstly utilizes an interpretable Rasch model to analyze the
ability level asi for each student si, then groups students
into different independent layers li. Assuming the ability
distribution of all students and students at the level li are
Gaussian distribution N(µa, σ

2
a) and N(µi, σ

2
i) respectively,

we have the Equation 10:

µa =

∑
i µi

L
, σ2

a =
∑
i

σ2
i . (10)

In LANA, for simplicity, we consider all layers share the
same variance σ2 1, and the difference of mean µi between
consecutive layers is a constant τ . Hence, µi and σ2

i are
given by:

µi = µa −
L− 1

2
× τ + i× τ, σ2

i =
σ2
a

L
. (11)

where L = ||li|| is the number of layers. With both µi and σ2
i

retrieved for every layer li, given a student’s ability constant
asi , we can now calculate the probability of si been grouped
into different layers by Equation 12:

psii =
φi(a

si)∑
i
′ φi′ (a

s
i
′)
, φi(a

si) =
1

σi
√

2π
e
− (asi−µi)

2

2σ2
i (12)

where psii is referred as the probability of student si be-
ing grouped into layer li. As it can be seen from Equa-
tion 12, students that have high ability levels are not neces-
sarily grouped into layers with high expected ability levels
µi. Contrarily, these high ability students only have a higher
probability of been grouped into high ability layers in com-
parison with those low ability students, which obeys rules
in reality (e.g. high ability students may also come from
normal schools).

Then, the LANA model that has been pre-trained on all stu-
dents was duplicated L times, each cloned model mi would
be assigned to a layer li to be dedicatedly fine-tuned with
li’s private training data by weighted back-propagation:

lossi = pi × loss(predicti, target), (13)

where predicti is the prediction of the model mi.

While the training phase of leveled learning seems promising,
the inference phase of it suffers problems. The first prob-
lem is how to make the prediction using multiple specialized
models. In LANA, the prediction was made by top−k mod-
els fusion. Detailedly, when student si’s future responses
are needed to be predicted, LANA firstly computes pi, then
feed si’s interactive sequence to all models mi that satis-
fies pi ∈ top − k(p), where k needs to be manually set up
to control the predicting time. Then, the outputs of these
models would be multiplied by sigmoid(pi) to form the final
prediction. The workflow of leveled learning’s inference step
could be described in Equation 14:

ri =
∑
i
′

(mi(x)×
∑
h∈i′

ph∑
h
′ ph′

), i
′
∈ { i | pi ∈ top− k(p) },

(14)
where ri is the leveled learning’s final prediction and x is
the input of the model. This workflow seems similar to the
ensemble where multiple models are unitized to generate the
final answer. Nonetheless, weights of models in LANA are
probabilities that come from an interpretable Rasch model

1In practice, if the number of layers is small, their variances
then need to be manually measured and tuned based on the
targets. If the number of layers is large, then multiple layers
can be regarded as one layer and therefore sharing the same
variance for all layers should be fine.

so that it is clear which model is dominant to x. Moreover,
unlike in ensemble, where the role of each model is ambigu-
ous, in LANA, every model has its explainable effect (e.g. lL
is committed to high ability students, and therefore a stu-
dent with large pL indicates he must be similar to those high
ability students in lL), suggesting that leveled learning sig-
nificantly outperforms ensemble in interpretability. Detailed
comparison was shown in Table 1. On the other hand, the

Table 1:
Comparison Between Leveled Learning And

Ensemble

Leveled Learning Ensemble

Sub-set Select Psycho-statistics Random
Interpretability Good Bad
Predicting Time Controllable (top-k) Uncontrollable

second problem of the leveled learning is how to compute pi
for students that LANA has never met in training, namely
the “cold start” problem [24]. In vanilla KT context, we can
only initiate newly arrived students’ ability levels to the av-
erage ability level of all students. However, in practice, we
can estimate their ability levels more accurately by asking
them to do a couple of sample exercises or using ranking at
school.

3. EXPERIMENTS
3.1 Experimental Setup
In order to evaluate the effectiveness of the proposed LANA2,
we applied it to two real-world large-scale datasets in com-
parison with many other State-Of-The-Art (SOTA) KT meth-
ods. Specifically, EdNet [2] and RAIEd2020 [7] are em-
ployed in our experiments, where EdNet is currently the
largest publicly available benchmark dataset in education
domain, consisting of over 90,000,000 interactions and nearly
800,000 students. On the other hand, RAIEd2020 is a re-
cently published real-world dataset that has approximately
the same size as EdNet with nearly 100,000,000 interactions
and 400,000 students. Particularly, the average number of
exercising interactions per student in RAIEd2020 is double
to EdNet’s. Moreover, 6 KT methods that had previously
achieved SOTA performance have participated in the com-
parison: DKT [16], DKVMN [26], SAKT [13], SAINT [1],
SAINT+ [18], AKT [4]. In terms of the basic experimen-
tal environment, all experiments were conducted with Py-
torch3 1.6 on a Linux server that is equipped with an Nvidia
V100 GPU. For hyper-parameters setup, the learning rate
was set to 5e − 4 with AdamW [11] optimizer, the length
of the input sequence was set to 100, the batch size was
set to 256, and other detailed configurations were listed in
our source code. The input features κ in EdNet contains
Question ID, Question part, Students’ responses, Time in-
terval between two consecutive interactions and Elapsed time
of an interaction, whereas in RAIEd2020, a new feature is
additionally added to κ, which indicates Whether or not the
student check the correct answer to the previous question.
Finally, The Area Under the receiver operating character-
istic Curve (AUC) was leveraged in our experiments as the

2https://github.com/Soptq/LANA-pytorch
3https://pytorch.org/

Table 2:
The AUC Comparison Of Different Methods
Tested On EdNet And RAIEd2020 datasets

Dataset Model AUC

EdNet DKT 0.7638r

EdNet DKVMN 0.7668r

EdNet SAKT 0.7663r

EdNet SAINT 0.7816
EdNet SAINT+ 0.7913
EdNet SAINT+ & BM 0.7935
EdNet LANA 0.8059

RAIEd2020 SAKT 0.7832
RAIEd2020 AKT 0.7901
RAIEd2020 SAINT+ 0.7956
RAIEd2020 SAINT+ & BM 0.7991
RAIEd2020 LANA 0.8056

Table 3:
Investigation Of The Effectiveness Of Different

Improvements In LANA

Dataset BM
Pivot Module

LL AUC Boost
PMA PC-FFN

EdNet 0.7913 -
EdNet X 0.7935 ↑ 0.0022
EdNet X 0.7997 ↑ 0.0084
EdNet X 0.7923 ↑ 0.0010
EdNet X 0.7933 ↑ 0.0020
EdNet X X 0.8029 ↑ 0.0116
EdNet X X 0.8015 ↑ 0.0102
EdNet X X X 0.8038 ↑ 0.0125
EdNet X X X 0.8050 ↑ 0.0137
EdNet X X X X 0.8059 ↑ 0.0146

RAIEd2020 0.7956 -
RAIEd2020 X 0.7991 ↑ 0.0035
RAIEd2020 X 0.8020 ↑ 0.0064
RAIEd2020 X 0.7965 ↑ 0.0009
RAIEd2020 X 0.7977 ↑ 0.0021
RAIEd2020 X X 0.8031 ↑ 0.0075
RAIEd2020 X X 0.8027 ↑ 0.0071
RAIEd2020 X X X 0.8035 ↑ 0.0079
RAIEd2020 X X X 0.8051 ↑ 0.0095
RAIEd2020 X X X X 0.8056 ↑ 0.0100

performance metric, which has been widely used in many
other KT-related proposals.

For the ease of explanation, hereinafter Base Modification
(Section 2.1), Pivot Module (Section 2.3) and Leveled Learn-
ing (Section 2.4) would be abbreviated as BM, PM and LL
respectively.

3.2 Results And Analysis
The overall experimental results of different KT methods
on different datasets were illustrated in Table 2. Because
we had successfully reproduced the performance of SAINT
and SAINT+ that was previously reported in SAINT+’s pa-
per [18] (with considerable precision), AUCs of other models
are therefore directly cited from the paper (labeled with sub-
script r).

From the comparison table, it can be seen that in both Ed-

https://github.com/Soptq/LANA-pytorch
https://pytorch.org/

(a) (b)

(c) (d)

Figure 5: The visualization of intermediate features in
SAINT+ (a) and in LANA (b). Compared to (a), stu-
dents in (b) (different colors) are notably clustered (marked
arrows). The learning process of student #3 overtime in
SAINT+ (c) and in LANA (d). compared to (c), a clear
learning path appeared in (d).

Net and RAIEd2020 datasets, LANA (marked bold) outper-
forms the previous SOTA method (marked italic) by 1.46%
and 1.00% respectively, readily verifying the effectiveness
of our proposed improvements. Moreover, LANA also sur-
passes SAINT+ & BM by 1.24% and 0.65% respectively,
suggesting adaptability contributes most to LANA’s AUC
increment. Considering experimented datasets are by far the
two largest knowledge tracing datasets in the world, these
results undoubtedly provide strong evidence of the validity
of the proposed LANA method.

3.3 Ablation Studies
In this section, we investigated the effectiveness of each of
our proposed improvements: BM that customizes the basic
transformer architecture, PM that enables the decoder to
be adaptive to the students’ personal characteristics, and
LL that interpretably specializes encoders and SRFEs for
better predicting performance. The results of the ablation
study were shown in Table 3.

The table shows in EdNet, applying BM alone was already
capable of improving the predicting AUC by approximately
0.2% averagely, verifying the importance of both the action
of positional embedding and the personalized linear projec-
tion for each input feature in KT’s context. Meanwhile,
applying LL solely can benefit the model performance as
well, by generally 0.2% compared to 0.1% with the vanilla
ensemble. Considering without PM, LL would just per-
form fitting on students with different ability levels, the

performance gain from sole LL could be interpreted as re-
ductions in students’ inherent properties gaps. Moreover,
BM + PM drastically boosts the model performance by
nearly 1.25%, suggesting PM makes proper use of extracted
student-related features from SRFE to adaptively reparame-
terize the model’s decoder for different students at different
stages, and therefore contributes most to the final perfor-
mance gain. Finally, by combining all improvements to-
gether, BM + PM + LL (i.e. LANA) achieves a final AUC
of 0.8059, substantially outperforms previous SOTA by at
least 1.46%.

3.4 Features Visualization
For vividly illustrating the validity of student-related fea-
tures distilling in LANA, 20 students’ intermediate features
from PC-FFN module was sampled to generate Figure 5 by
t-SNE[21]. In figure 5 (a) and (b), each sample represents in-
termediate features of different students with different colors
in SAINT+ and LANA respectively. It can be seen that in
SAINT+, samples are almost randomly distributed, indicat-
ing the correlation between samples of the same student is
not more significant compared to samples of the others due
to the ignorance of students’ personalities. On the other
hand, in LANA, clusters (marked arrows) of samples have
notably appeared in comparison to (a). Thus, we concluded
that LANA is capable of successfully extracting student-
related features from their interactive sequences, summariz-
ing the similarities and differences, which eventually results
in more distinguishable features for the final classifier.

Furthermore, we individually visualized student #3’s (ran-
domly picked) samples along the time axis to investigate the
transitioning pattern of features in Figure 5 (c)(SAINT) and
(d)(LANA). In (c), there is no clear pattern in the change
of features over time, while in (d), a clear transitioning path
could be noticed. Since many other students are sharing the
same pattern in LANA, we argue that it represents the tra-
jectory of the student’s ability changes with more and more
exercising. Namely, it is the learning path of the student.
Consequently, we contended that it is potentially helpful
for other applications, such as learning stages transfer and
learning path recommendation.

4. CONCLUSION
In this paper, we proposed a novel Leveled Attentive KNowledge
TrAcing (LANA) method that was committed to bringing
adaptability back to DKT. Instead of directly learning the
model parameters of different students, LANA distills stu-
dents’ inherent properties from their respective interactive
sequences by a novel SRFE, and learns the function to repa-
rameterize the model with these extracted student-related
features. Consequently, innovative pivot module was pro-
posed to produce an adaptive decoder. Besides, a novel
leveled learning training mechanism was introduced to clus-
ter students by interpretable Rasch model defined ability
level, which not only specializes the encoder and therefore
enhances the significance of students’ latent features, but
also saves much training time. Extensive experiments on
the two largest public benchmark datasets in the education
domain strongly evaluate the feasibility and effectiveness of
the proposed LANA, features visualization also suggests ex-
tra impacts of LANA, be it learning stages transfer or learn-
ing path recommendation.

5. REFERENCES
[1] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha,

D. Shin, C. Bae, and J. Heo. Towards an appropriate
query, key, and value computation for knowledge
tracing. In Proceedings of the Seventh ACM
Conference on Learning@ Scale, pages 341–344, 2020.

[2] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee,
J. Baek, C. Bae, B. Kim, and J. Heo. Ednet: A
large-scale hierarchical dataset in education. In
International Conference on Artificial Intelligence in
Education, pages 69–73. Springer, 2020.

[3] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[4] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware
attentive knowledge tracing. In Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages
2330–2339, 2020.

[5] J. González-Brenes, Y. Huang, and P. Brusilovsky.
General features in knowledge tracing to model
multiple subskills, temporal item response theory, and
expert knowledge. In The 7th international conference
on educational data mining, pages 84–91. University of
Pittsburgh, 2014.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[7] R. Inc. Riiid aied challenge 2020.
https://www.kaggle.com/c/riiid-test-answer-
prediction/data, 2020. [Online; accessed
6-Oct-2020].

[8] A. Jalal and M. Mahmood. Students’ behavior mining
in e-learning environment using cognitive processes
with information technologies. Education and
Information Technologies, 24(5):2797–2821, 2019.

[9] G. Ke, D. He, and T.-Y. Liu. Rethinking the
positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595, 2020.

[10] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su,
and G. Hu. Ekt: Exercise-aware knowledge tracing for
student performance prediction. IEEE Transactions
on Knowledge and Data Engineering, 33(1):100–115,
2019.

[11] I. Loshchilov and F. Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[12] J. M. Murre and J. Dros. Replication and analysis of
ebbinghaus’ forgetting curve. PloS one,
10(7):e0120644, 2015.

[13] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. arXiv preprint arXiv:1907.06837,
2019.

[14] S. Pandey and J. Srivastava. Rkt: Relation-aware
self-attention for knowledge tracing. In Proceedings of
the 29th ACM International Conference on
Information & Knowledge Management, pages
1205–1214, 2020.

[15] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer, 2010.

[16] C. Piech, J. Spencer, J. Huang, S. Ganguli,
M. Sahami, L. Guibas, and J. Sohl-Dickstein. Deep
knowledge tracing. arXiv preprint arXiv:1506.05908,
2015.

[17] S. Shang, L. Chen, C. S. Jensen, J.-R. Wen, and
P. Kalnis. Searching trajectories by regions of interest.
IEEE Transactions on Knowledge and Data
Engineering, 29(7):1549–1562, 2017.

[18] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
Saint+: Integrating temporal features for ednet
correctness prediction. arXiv preprint
arXiv:2010.12042, 2020.

[19] V. L. Shiv and C. Quirk. Novel positional encodings to
enable tree-based transformers. In NeurIPS, pages
12058–12068, 2019.

[20] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and
C. Liu. A survey on deep transfer learning. In
International conference on artificial neural networks,
pages 270–279. Springer, 2018.

[21] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,
9(11), 2008.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[23] Z. Wang, X. Feng, J. Tang, G. Y. Huang, and Z. Liu.
Deep knowledge tracing with side information. In
International conference on artificial intelligence in
education, pages 303–308. Springer, 2019.

[24] K. H. Wilson, X. Xiong, M. Khajah, R. V. Lindsey,
S. Zhao, Y. Karklin, E. G. Van Inwegen, B. Han,
C. Ekanadham, J. E. Beck, et al. Estimating student
proficiency: Deep learning is not the panacea. In In
Neural Information Processing Systems, Workshop on
Machine Learning for Education, page 3, 2016.

[25] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International conference on artificial intelligence in
education, pages 171–180. Springer, 2013.

[26] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th international conference on
World Wide Web, pages 765–774, 2017.

