
SimGrade: Using Code Similarity Measures for More
Accurate Human Grading

Sonja Johnson-Yu, Nicholas Bowman, Mehran Sahami, and Chris Piech
Stanford University

{sonja, nbowman, sahami, piech}@cs.stanford.edu

ABSTRACT
While the use of programming problems on exams is a com-
mon form of summative assessment in CS courses, grad-
ing such exam problems can be a difficult and inconsis-
tent process. Through an analysis of historical grading pat-
terns we show that inaccurate and inconsistent grading of
free-response programming problems is widespread in CS1
courses. These inconsistencies necessitate the development
of methods to ensure more fairer and more accurate grad-
ing. In subsequent analysis of this historical exam data we
demonstrate that graders are able to more accurately assign
a score to a student submission when they have previously
seen another submission similar to it. As a result, we hy-
pothesize that we can improve exam grading accuracy by
ensuring that each submission that a grader sees is similar
to at least one submission they have previously seen. We
propose several algorithms for (1) assigning student submis-
sions to graders, and (2) ordering submissions to maximize
the probability that a grader has previously seen a similar
solution, leveraging distributed representations of student
code in order to measure similarity between submissions.
Finally, we demonstrate in simulation that these algorithms
achieve higher grading accuracy than the current standard
random assignment process used for grading.

Keywords
similarity, code embeddings, embeddings, assessment, grad-
ing, human, simgrade, grade

1. INTRODUCTION
Free-response coding questions are a common component
of many exams and assessments in programming courses.
These questions are popular because they give students the
opportunity to show their understanding of course mate-
rial and demonstrate their coding and problem-solving skills
[16]. However, the flexible nature of these problems intro-
duces unique challenges when it comes to grading student
responses, which are compounded in situations where the

scale of the course necessitates a team of graders working
together (“group grading”). The difficulty of consistent ap-
plication of grading criteria by a group of graders stems from
the incredible diversity of student submissions that are gen-
erated for free-response coding questions. In particular, it
has been previously shown that the space of different student
solutions to free-response programming problems follows a
long-tailed Zipf distribution [18]. For this reason, it is chal-
lenging to develop automated systems for grading and pro-
viding feedback and thus human grading remains the gold
standard for grading such free-response problems. However,
even a team of human graders with extensive experience can
struggle to consistently and accurately apply a single, uni-
fied criteria when grading. This is problematic as it can
result in negative impacts on students in the form of incor-
rectly assigned grades and inaccurate feedback. Our goal in
this paper to explore the frontier of techniques improving
the process and outcomes of the exam grading experience.

Our main insight in developing improved approaches for
grading is that it is easier for graders to grade in a consis-
tent manner if they are able to grade similar submissions one
after another. First, we examine historical data to provide
concrete evidence of a relationship between grader accuracy
and the similarity of previously graded submissions to the
current submissions a grader is grading. Then, we propose
algorithms that group and order similar submissions in dif-
ferent ways to minimize grader error. Finally, we show that
these algorithms perform better than current baseline meth-
ods for grading. This work’s primary contributions are:

1. Reporting of grader errors in a CS1 course

2. Using historical data to demonstrate the potential ben-
efits of similarity-based grading

3. Three algorithms for grading using code similarity

1.1 Related Work
Autograding One commonly used approach to scale grading
is the use of autograders [6]. While useful for comparing
program output for correctness or matching short snippets
of code, autograders are more problematic for free-response
questions in exam settings. In such contexts, the subtlety of
understanding that human graders provide is often essential
to providing appropriate feedback to students and properly
assessing the (partial) correctness of their solutions. While
promising, fully autonomous AI solutions are not ready for



grading CS1 midterms [14, 11, 18, 12] especially for contexts
with only hundreds of available student submissions [17].

Grading by Similarity The idea of grouping and organizing
student submissions in order to improve grading outcomes
has been previously proposed for a variety of problem types.
Merceron and Yacef [9] use vectors that encode students’
mistakes in order to group together students who make sim-
ilar mistakes when working on formal proofs in propositional
logic. Gradescope, designed by Singh et al. [15] offers func-
tionality for grading similar solutions, which is currently
most effective on multiple-choice-type questions. This ap-
proach has also been applied to short answer questions, as
explored by Basu et al. [2], as well as math problems, as
demonstrated by Mathematical Language Processing [8]. In
this paper, we identify ”similar” student responses on free-
response programming questions to improve grading quality.

Code Similarity In order to define similarity metrics for stu-
dent code submissions, we apply techniques for generat-
ing numerical embeddings for student programs. Henkel
et al.what [5] created abstracted symbolic traces, a higher-
level, light-syntax summary of the programs, and embed-
ded them using the GloVe algorithm [13]. Alon et al. [1]
pioneered code2vec, an attention-based embedding model
specifically used to represent code. Recently, further ad-
vances have been made to improve code embeddings by
training contextual AI models on large datasets from Github
[7]. For this application, we favor simpler unsupervised em-
bedding strategies that do not require human-generated la-
bels by adapting the popular NLP technique Word2vec [10],
in which “word” representations are derived from surround-
ing context.

1.2 Dataset
Our analysis focuses on the student submissions and grader
logs from four exams for an introductory programming (CS1)
course taught in Python. The breakdown of summary statis-
tics across the four exams is presented in Table 1. As a note,
a “submission” is defined as one student’s written answer to
one free-response problem – thus, the total number of sub-
missions for a given exam is roughly the number of students
times the number of coding problems on the exam. In to-
tal, we analyze 11,171 student submissions across 1,490 stu-
dents. Additionally, we have grading logs for every student
submission, which consists of information about the grader,
the criteria items applied, the final score, and the amount of
time that the grader spent on the submission. 199 graders
contributed to grading these four exams. As discussed be-
low, the same student submission is sometimes graded by
more than one grader for validation purposes. Thus, our
dataset contains 14,597 individual grading log entries.

Our grading data comes from a grading software system
that randomly distributes student submissions to graders.
Among the standard student submissions for grading, this
software also inserts “validation” submissions that have al-
ready been graded by senior teaching assistants. Every grader
assigned to a specific problem will grade all “validation” sub-
missions for that problem. The presence of these special
submissions creates opportunities for assessing grader per-
formance, both relative to their peers and relative to “ex-
pert” performance.

Exam # # Students # Submissions # Graders
1 533 3,731 53
2 259 1,813 52
3 247 2,470 51
4 451 3,157 43

Total 1,490 11,171 199

Table 1: Exam Grading Dataset Summary Statistics

2. NATURAL GRADING ERROR
While anecdotal experience of grading inconsistency is a
common trend in our experience as educators, our first fo-
cus is to quantify the inconsistencies present in historical
grading sessions in a rigorous manner. In particular, our
analysis focuses on the aforementioned “validation” submis-
sions that were specially handled by the grading software
and assigned to every grader working on a specific problem.
As a result, we had a subset of the grading logs for which
we knew both the true grade (as defined by an expert) and
the “validation” grade assigned by each grader. Plotting
these values against one another is shown in Figure 1, which
reveals troubling inconsistencies in the grades assigned by
graders. With an RMSE of 7.5 (i.e., average error of 7.5
percentage points per problem), we see that grading error is
significant, nearly on the order of what would translate to
a full letter grade. Linear regression on this plot yields an
R-squared coefficient of 0.947 indicating that while the error
may be high, the direction of errors is generally unbiased.
In other words, there is not systematic over/under-grading.
Rather, the grading errors tend to be randomly distributed
around the true grade. Thus, the rest of this paper focuses
on methods for decreasing this demonstrated inconsistency
(absolute error) in human grading.

Figure 1: True grade assigned by expert vs. validation grade
assigned by human grader

3. METHODS
In this section, we will first outline methods for answering
key questions about the problem of improving human grad-
ing using similarity scores. Then, we will present three novel
algorithms for improving human grading.

3.1 Can code similarity be accurately captured?
We generate program embeddings for all student submis-
sions in our corpus. Word embeddings are an established



Figure 2: Submission assignment via three algorithms: Cluster, Snake, Petal

method of encoding semantics in human language [10, 13,
3, 3], and these same techniques applied to code accomplish
similar results. Algorithms for generating embeddings are
constantly evolving and improving; to avoid over-optimization
at the embedding generation stage, we chose to employ the
simple baseline Word2Vec algorithm. We then demonstrated
that our embeddings are semantically significant using zero-
shot rubric sampling [18]. For details, see the Appendix1.

3.2 Does similarity influence grader accuracy?
We hypothesize that graders score submissions more accu-
rately when they have recently seen a submission similar to
the current submission. To test this hypothesis, we ana-
lyze grading data for four exams. First, for each grader, we
generate a “percentage grading error,” which is an average
of their absolute percent deviation from the correct answer
on all validation submissions that they graded. Then, for
each of the validation submissions that a grader evaluated,
we sort their personal grading logs by time and look at the
window of three submissions leading up to each validation
submission they graded. To quantify similarity of the valida-
tion submission to recently graded submissions, we take the
maximum of the cosine similarity between the current vali-
dation submission and the three previous submissions. We
plot the maximum similarity between a validation submis-
sion and the previous submissions against a grader’s per-
centage grading error in order to identify the relationship
between a grader’s history and accuracy. Then we can infer
a formula that approximates the relationship between pre-
vious submission similarity and percentage grading error.

3.3 Algorithms to assist human grading
We compare four algorithms for assigning submissions to
graders: (1) Random, in which submissions are randomly
assigned to graders, with five “validation” submissions in-
terspersed for assessing grader bias. This is the status quo
and serves as the baseline. (2) Cluster, in which each grader
is assigned to a cluster of highly similar submissions. (3)
Snake, in which each grader is randomly assigned a set of
submissions and is shown the submissions greedily by near-
est neighbor. (4) Petal, in which the dataset is divided into
“petals” and all graders begin in the same place. Figure 2
provides a visualization of (2), (3), and (4). Detailed expla-
nations of the algorithms are in the Appendix1.

1https://compedu.stanford.edu/papers/appendices/
SimGradeAppendix.pdf

Figure 3: Relationship between grader accuracy and similar-
ity in 3-submission window prior to validation submission

3.4 Algorithm evaluation
To evaluate the performance of the different algorithms, we
simulate grading for a 444-person six-problem exam and ten
graders, using real student programs from an actual exam.
Details about the selection of validation submissions are in
the Appendix1. When running the simulation, we infer per-
centage grading error by examining the similarity of the pre-
vious three submissions to the current submission. While
we emphasize grader error as the most important metric
for assessing an algorithm, a secondary consideration is how
naturally validation submissions integrate with the rest of
a grader’s assigned submissions. Ideally, a validation sub-
mission is not “out-of-distribution” with respect to the other
submissions that a grader is assigned. Otherwise, a grader
will be able to tell when they are being evaluated for grad-
ing accuracy. To assess how “out-of-distribution” the vali-
dation submissions are, we examine how dissimilar the vali-
dation submissions are from the non-validation submissions
assigned to a grader. Specifically, for each validation submis-
sion, we measure the distance between the validation sub-
mission and the nearest non-validation submission assigned
to that grader. We average over the five validation submis-
sions in order to get the mean minimum distance from val-
idation to non-validation for a grader, which will be higher
if one of the validation submissions is out-of-distribution.

4. EXPERIMENTAL RESULTS
4.1 Similarity scores are meaningful
Embeddings are semantically significant because similarity
between embeddings corresponds to similarity between sub-

https://compedu.stanford.edu/papers/appendices/SimGradeAppendix.pdf
https://compedu.stanford.edu/papers/appendices/SimGradeAppendix.pdf


Figure 4: Left: Average per-submission grading error for each algorithm, Center: Distance of validation submissions from
normally assigned submissions, Right: Summary performance statistics, including comparison to random baseline.

mission feedback labels, as described in the Appendix1.

4.2 Similarity influences grading
Graders score assignments more accurately when they have
recently seen a submission similar to the current submission
they are grading. From our analysis of historical data, we
find that when there is a high similarity between the cur-
rent submission and at least one of the previous three sub-
missions, the percentage grading error is low. Conversely,
when the similarity between previous submissions is low, the
percentage grading error is high. We find a linear relation-
ship between the maximum similarity of the previous three
submissions and the percentage grading error as shown in
Fig. 3, with R2 = 0.605. Given that the grading process
involves the numerous uncertainties that come along with
human involvement, we believe this correlation coefficient
shows a statistically significant relationship between histori-
cal similarity and grader accuracy. While the linear relation-
ship between historical submission similarity and percentage
grading error is a simplifying assumption, it is the best as-
sumption we can make given evidence provided in Fig. 3.

4.3 Improved accuracy by algorithm
We compare six algorithms for assigning submissions to graders
and selecting an order in which a grader will view a submis-
sion in Figure 4. We apply the equation of the linear rela-
tionship shown in Figure 3 to the similarity of submissions as
ordered for evaluation by different algorithms in our exper-
iments. This equation allows us to predict grader accuracy
when using the orderings provided by different algorithms.
We find that implementing a path ordering on a clustered
assignment of graders to submissions yields the lowest mean
error of 2.7% (bold-ed in Fig. 4), while the other algorithms
all show an improvement over the baseline 10.2% grading
error. We utilize bootstrapping [4] over 100,000 trials in or-
der to get the p-values that indicate the significance of the
difference in means between the baseline algorithm and the
other algorithms (see table in Fig. 4).

4.4 Validation viability by algorithm
When comparing the cluster, snake, and petal algorithms,
we observe that the cluster-based algorithms are most likely
to have validation submissions that are“out-of-distribution,”
with a mean validation distance of 0.0277. All other algo-
rithms have substantially lower mean minimum distances.

5. DISCUSSION
Overall, we saw that all of our novel proposed algorithms
for assignment of submissions to graders provided improve-
ments over the random baseline in simulation. In general,
we saw that path-based algorithms (petal-path and cluster-
path) had lower grading error than their non-path counter-
parts because they are designed to optimize for maximum
similarity between consecutive submissions that a grader
grades. In particular, the cluster-path algorithm yielded the
lowest grader error in simulation due to its strong tendency
to assign very similar submissions to graders. On the other
hand, the snake algorithm provided the most optimal aver-
age distance to validation submissions, which may be impor-
tant for a smooth experience for a real-life grader. Finally,
we saw that the petal algorithm offered a balanced trade-off
between these two extremes – while not optimal in either
metric, it can be a good choice when both metrics (grading
error and validation submission distance) are equally impor-
tant for designing a grading experience. For a more in-depth
discussion of our observed results, see the Appendix1.

6. CONCLUSION
Through analysis of historical exams, we demonstrated that
there is inconsistency between true scores and grader-assigned
scores. In doing so, we introduce a new task and associated
measure, grading correctness. Moreover, we found experi-
mental support for our hypothesis that graders are able to
assign scores to exam problems more accurately when they
have previously seen similar submissions. In turn, we pro-
posed the use of code embeddings to capture semantic in-
formation about the structure and output of programs and
identify similarity between submissions. Using similarity
of code embeddings in conjunction with historical grading
data, we demonstrate in simulation that graders are indeed
able to score submissions more accurately when they have
previously seen another submission similar to it. We propose
and compare several algorithms for this task, showing that it
is possible to achieve a significant increase in grading accu-
racy over simple random assignment of submissions. Future
extensions of this work include (i) improvements on code
embeddings and (ii) deployment of the grading algorithms
in an operational system to allow more direct experimental
comparison of grading accuracy. The use of such algorithms
show promise for improving accuracy, and in turn fairness,
in evaluations of student performance.



7. REFERENCES
[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.

code2vec: Learning distributed representations of
code. CoRR, abs/1803.09473, 2018.

[2] S. Basu, C. Jacobs, and L. Vanderwende.
Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the ACL, October 2013.

[3] J. Devlin, M. Chang, K. Lee, and K. Toutanova.
BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR, abs/1810.04805,
2018.

[4] B. Efron. Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7(1):1–26, Jan.
1979.

[5] J. Henkel, S. Lahiri, B. Liblit, and T. W. Reps. Code
vectors: Understanding programs through embedded
abstracted symbolic traces. CoRR, abs/1803.06686,
2018.

[6] M. Joy, N. Griffiths, and R. Boyatt. The boss online
submission and assessment system. J. Educ. Resour.
Comput., 5(3):2–es, Sept. 2005.

[7] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi.
Learning and evaluating contextual embedding of
source code, 2019.

[8] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proceedings of the Second (2015) ACM
Conference on Learning @ Scale, L@S ’15, pages
167–176, New York, NY, USA, 2015. ACM.

[9] A. Merceron and K. Yucef. Clustering students to help
evaluate learning. Technology Enhanced Learning,
2004.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran
Associates, Inc., 2013.

[11] A. Nguyen, C. Piech, J. Huang, and L. Guibas.
Codewebs: scalable homework search for massive open
online programming courses. In Proceedings of the
23rd international conference on World wide web,
pages 491–502, 2014.

[12] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das,
A. Karkare, and A. Bhattacharya. Automatic grading
and feedback using program repair for introductory
programming courses. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 92–97, 2017.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[14] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code,
2015.

[15] A. Singh, S. Karayev, K. Gutowski, and P. Abbeel.
Gradescope: A fast, flexible, and fair system for

scalable assessment of handwritten work. In
Proceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, L@S ’17, pages 81–88, New York,
NY, USA, 2017. ACM.

[16] D. Thissen, H. Wainer, and X.-B. Wang. Are tests
comprising both multiple-choice and free-response
items necessarily less unidimensional than
multiple-choice tests?an analysis of two tests. Journal
of Educational Measurement, 31(2):113–123, 1994.

[17] K. Wang, B. Lin, B. Rettig, P. Pardi, and R. Singh.
Data-driven feedback generator for online programing
courses. In Proceedings of the Fourth (2017) ACM
Conference on Learning@ Scale, pages 257–260, 2017.

[18] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling
with deep learning inference, 2018.


