
Student Practice Sessions Modeled as ICAP Activity Silos

Adam M. Gaweda, Collin F. Lynch
North Carolina State University

Raleigh, NC, USA
agaweda,cflynch@ncsu.edu

ABSTRACT
There are a number of novel exercise types that students can
utilize while learning Computer Science, each with its own level
of complexity and interaction as outlined by the ICAP Frame-
work [10]. Some are Interactive, like solving coding problems;
Constructive, like explaining code; Active, like retyping source
code; and Passive, like reviewing slides. To date, there has been
little research on how students vary their study and engagement
habits by exercise type and when they do so. In this paper, we
present our findings on student activity sequences from an online
professional development course. We isolated student activities
into sessions and then produced activity transition visualizations
to compare the behavior of students who complete the course
to those who do not. We then used multiple factor analyses to
examine how students transition from one type of activity to the
next. From this analysis we identified platform silos in student’s
work. We further expand this concept to the presence of activity
silos grouping by type. We find that this siloing behavior is
consistent in both completers and non-completers but is weaker
for the latter group. Finally, we discuss our findings and how
instructors and researchers may use this information to ensure
that students show persistence through practice.

Keywords
novel exercises, ICAP framework, study sessions, activity se-
quences, platform silos, activity silos, student modeling

1. INTRODUCTION
CS Education have introduced a number of novel exercise types
to better scaffold students’ experiences. These include retyping
source code [14], arranging scrambled code fragments (Parsons
Puzzles) [21], debugging provided code [8], predicting output [26],
fill in the blanks [4], self-explanation [4], and small scale coding
exercises [2, 12]. Each of these exercise types can also be mapped
onto the ICAP framework [10]. This framework defines four
categories of instructional activities based upon students’ level of
engagement: Interactive, Constructive, Active, and Passive. Pas-
sive learning includes reading static course materials or watching
lecture videos. Active learning is described as rehearsing or copy-
ing solution steps. Constructive learning includes self-explanation

of content or creation of novel externalized outputs like summaries.
Finally, Interactive learning involves directly engaging with a peer,
agent, or instructor to explore information and receive feedback
which can be expanded upon.

While these exercise types have made their way into classrooms
there is little evidence of how these types of engagement interact
with one-another. Traditional intervention studies have focused on
the overall impact of one or more exercise types [20, 19, 14, 8], or
on the automated selection/recommendation of future excercises
based upon a student model [27], but not on how students work
with or across them in the absence of guidance. Nor has this recom-
mendation work been extended to nontraditional learning contexts.
Absent an understanding of how students orchestrate multiple in-
teraction modes we face challenges in scaffolding effective learning
opportunities and in evaluating the impact of novel learning envi-
ronments. Providing students with ineffective, or overly complex
learning opportunities risks trapping them in a fail/skip practice
cycle that would inhibit any functional learning gains [17].

In this paper we report our investigation of how students di-
rect their practice of CS concepts when presented with a set of
options. Our study was conducted in the context of an online
professional development course for Python programming. This
course is part of a research study funded by the Department of
Labor to create novel learning pathways for existing technical
professionals to move into AI and Data-Science areas. We ex-
tracted students’ practice/study sessions and analyzed the activity
transitions within each session. We then analyzed these activity
sequences to answer the following research questions (RQs):

RQ1 Can we replicate the existence of platform silos introduced
in [1] with a new dataset?

RQ2 Are there common activity transitions between students?
RQ3 How do activity sequences connect with the ICAP Frame-

work?
RQ4 How do the practice sessions of completers of the course

differ from non-completers?

To answer these questions, we first produced and analyzed
a set of activity transition diagrams for students in the course
comparing those who completed the course to those who did not.
Through this analysis, we confirmed the presence of platform silos
which we extend this notion to include activity silos, where stu-
dents primarily focus on a single mode of engagement (consistent
with ICAP) during a given practice session. When students did
transition between modes, it was only to move up the ICAP chain
and never to ‘downgrade’ to a lower level of engagement. We
support our findings through two different factor analyses, which
help explain the 42-62% of variance between the sessions. From



our results, we found ICAP categories isolated into individual
sessions, as well as LMS content consumption and quiz taking.

2. BACKGROUND
2.1 ICAP Framework
The ICAP Framework seeks to classify the modes of student
engagement while engaging in learning activities [10]. These
categories, Interactive, Constructive, Active and Passive respec-
tivel. Passive engagement includes activities such as reading a
text or observing a video. Active engagement includes rehearsing
steps or copying solutions. Constructive engagement includes
self-explanation or comparing and contrasting materials. Finally,
Interactive engagement includes responding and interacting with
an agent, system, or another person. Tthe framework is hierar-
chical, suggesting I > C > A > P, or that activities with higher
levels of engagement promote the greatest levels of learning.

Chi and Wylie present a literature review of several empirical
studies supporting their ICAP hypothesis [10]. The first study
consisted of all four modes of engagement in materials science
and showed learning improved significantly at a rate of 8-10%
per mode. They then present two studies which used active,
passive, and constructive modes in evolutionary biology and plate
tectonics. Finally, Chi and Wylie present comparisons of two
modes across note taking, concept mapping, and self-explanation.
In each of these studies, the results again showed that higher
modes of engagement had higher learning gains.

Chi and Wylie’s work, as well as our own personal communica-
tions with Chi [9], note that identifying the mode of a particular
activity can be a non-trivial task. For example, a toy example
task could be presenting steps toward making a peanut butter and
jelly sandwich given randomly shuffled segments of instructions.
This task could be constructed as an active exercise if the student
already knows the recipe and the task is simply picking the appro-
priate sequence from the list of steps. However, if the student had
not learned the appropriate order, then the task of figuring out
the right sequence would be construed as a constructive exercise.
Computer Science has a similar task, known as Parsons Puzzles,
that mirrors this toy example, discussed in more detail in the
following section.

2.2 Novel Exercise Types
In this section, we describe eight different exercise type studied in
Computer Science education, provide some research background
on the exercise type, and justifications for which ICAP mode we
will classify them as for of our study.

2.2.1 Typing Exercises
Typing Exercises (TE) require students to retype source code
that has been presented to them [14]. Typing Exercises can be
used as active learning activities under the ICAP Framework
as they require students to retype verbatim the code presented
to them. Previously, we presented images of source code and
showed that self-selected students that completed optional typing
exercises earned higher course grades and submitted less code
with build failures. Leinonen et. al. also presented optional typing
exercises to students before programming tasks [19], but were not
able to find the same results as ours. However their study only
lasted two weeks and many of their selected participants did not
attempt the exercises at all.

2.2.2 Fill in the Blank
Fill in the Blank (FitB) exercises remove a small portion of code
from a snippet and asks students to ‘fill in’ the blank. Students

need to have an understanding of the snippet as a whole to
deduce what needs to be included at a particular blank location.
Reviewing incomplete worked examples reduces ineffective self-
explanations and enhances the transfer of learned materials [4,
5]. Based on the results from Atkinson et. al., we consider
FitB-style exercises to require lower levels of engagement than
self-explanation, and thus classify them as an active ICAP mode.

2.2.3 Parsons Puzzles
Parsons Puzzles (PP) present snippets of code that have been
separated into segments and then shuffled in order [21]. Students
are then tasked with placing the segments back into the correct
order. While Parsons Puzzles are helpful for learning how to
structure code, performance on Parsons Puzzles has not been
shown to correlate with students’ ability to read or trace code
[11, 20] and ‘distractor’ variants are not beneficial to young learn-
ers [13, 16]. These findings further support our research goals,
as not every exercise type may be beneficial for learning all the
technical skills necessary for Computer Science.

Chi and Wylie’s definition of constructive modes of engagement
include “learners generate or produce additional externalized out-
puts... beyond what is provided”. As mentioned in the previous
section, Parsons Puzzles are similar to our toy peanut butter and
jelly exercise. While Parsons Puzzles could be construed as active,
students may not fully comprehend the appropriate order of code
syntax and must figure out the right sequence as part of the exer-
cise. In our communications with Chi about Parsons Puzzles, Chi
states that determining the particular ICAP mode for an activity
can be non-trivial [9]. ‘If a student already [knows] the recipe, then
re-ordering it is just picking out the sequencing, guided by the se-
quence information [they] already know’ then it is active. However,
‘if the student [has] not learned the order from some other source,
and you are asking her to figure out the right sequence’, it is a con-
structive exercise. Since novices may not have proficiency at the
time of the exercise, we elect to use the upper bound ICAP mode
and consider Parsons Puzzles as a constructive learning activity.

2.2.4 Output Prediction
Output Prediction (OP ), also known as variable tracing, exercises
ask students to analyze code and then state the expected outputs
of code execution or the expected value of a variable as the code
progresses. Often, variable tracing is done during conditional and
loop instruction to demonstrate how the values of the variables
change after each iteration. Like Parsons Puzzles, OP-style ex-
ercises require students to process code snippets and externalize
their expected outputs. Thus, we consider output prediction as
another constructive learning activity.

2.2.5 Self-Explanation
Self-explanation (SE) exercises present students with source code
and ask the student to explain how the code operates, describe
the overall efficiency of the code, or create a documentation string
to appear as a comment for the program or function. These
are open-ended exercises that are subjective in nature and are
considered to be constructive [10]. However, Chi and Wylie do
note that students’ may treat the self-explanation activity as
active if “the student’s self-explanation is verbatim to what was
read”. However, novices may struggle with reading and evaluating
programming code in a linear fashion, focusing more on what
each line of code did, rather than how each line interacted with
each other, or in general produce poor explanations [25, 5]. While
constructive SE activities may produce higher learning gains than
lower-level modes, they may also not be the most appropriate
activity for students who are struggling, Thus, similar to our



decisions for Parsons Puzzles, we use the upper bound to classify
self-explanation as a constructive learning activity.

2.2.6 Find and Fix the Bug
Resolving errors, or debugging, is one of the first hurdles students
encounter when learning to program [3]. Once they find that
an error has occurred, it will be necessary for them to resolve
it before addressing any remaining subgoals for their solution.
For the purposes of our study, we separated debugging into two
separate activities - Find the Bug (FnB) and Fix the Bug (FxB).
Find the Bug exercises present students with code that contains a
common misconception for novices. Instead of resolving the error,
students are asked to highlight the area of code where this error
exists. Though the ICAP framework considers highlighting text
as an active learning activity, Chi and Wylie define constructive
behaviors as requiring some level of “inference”, or adding in
additional detail or qualification. Since students must assess if
a line of code is ‘correct’ or not, they are producing qualifications
and therefore, we elect to label FnB exercises as constructive.

Fix the Bug exercises follow the natural progression of debug-
ging tasks by requiring students to resolve broken code[8]. FxB
activities could be considered constructive or interactive depend-
ing on the context. Similar to FnB exercises, Chi and Wylie
include ‘repairing’ as a constructive behavior. However, FxB-style
exercises can also be interactive because students often rely on the
code interpreter’s feedback during the debugging process. Fixing
one error may produce new errors with new feedback, or the
repair made by the student could be incorrect. Thus, we again
choose use the upper bound to label FxB exercises as interactive.

2.2.7 Coding Exercises
The final exercise type we used in our study is the de facto
standard of introductory CS courses - the Coding Exercise (CE).
While Computer Science is more than programming, coding ex-
ercises are often used by instructors as graded course material for
students to demonstrate their understanding of the current course
topic. There has been work on the use of ‘many-small programs’
and ‘simple syntax exercises’, which simply require students to
complete small-scale coding exercises to become familiar with the a
particular implementation before utilizing it as part of larger-scale
problems [2, 12]. In both cases, completing these smaller-scale
programming exercises improved student performance and yielded
happier students. Students often rely on feedback from the inter-
preter as they construct their solutions and more than likely need
to debug their own work during this process. Thus, we consider
Coding Exercises as an interactive learning activity.

2.3 Student Modeling and Activity Mining
Seshadri et. al. analyzed how student study sessions operated
across multiple platforms for three separate courses [1]. Their
results found that given multiple education platforms, students
will often operate within platform silos, or only utilize one educa-
tional platform during an individual study session. Of the student
sessions, more than 90% of them included only one platform. In a
follow-up study, they compared the activities of higher performing
students to the lower performing group and showed that both
groups were most likely to stick within platform silos [15]. Their
work serves as the motivation for our RQ1. Our hypothesis is
that the presence of these ‘platform silos’ will continue to hold
across other educational platforms not studied in their research.

3. STUDY
3.1 Design
We studied problem solving in the context of an online professional
development course in Python programming. This is a preparatory
course for a series in AI that is aimed at non-traditional students
making a career transition. The course used the Moodle Learning
Management System and TYPOS, a CS exercise platform [14], and
is organized into 10 modules Each module includes a set of static
reading material, lecture slides, prerecorded videos, optional prac-
tice exercises, and a module assessment. There were 24 optional
exercises per module, 3 exercises for each of the 8 types previously
described. Students were free to work on the practice exercises or
assessments as much as they liked. The only requirement for pro-
gressing to the next module was to earn a passing grade (80% or
higher) on the prior module’s assessment. In order to complete the
course, students needed to earn passing grades on all assessments.

We had 69 students consent to the study. Of those students, 37
successfully completed the course. Student interactions on both
platforms were logged. We omitted some Moodle interactions
such as like “file downloading” and “viewing the course”which did
not pertain to the explicit learning actions we were foucused on.

The resulting dataset contained a total of 29,190 interactions
from all the students. We then used a similar strategy as [1]
to extract user sessions from these interactions based upon an
exploratory analysis of the gaps between interactions. The time
deltas between course interactions were measured. If a delta
between interactions exceeded a predefined cutoff threshold, that
session was considered over, and a new session was created. This
was repeated for all interactions a student had for the course.
While Seshadri et. al. used a 40 minute cutoff to establish the end
and start of a new session, we chose a 60 minutes as it was our most
frequently observed delta between interactions. We extracted 1,313
sessions in total. Students that completed the course accounted
for 71%, or 20,748, of the course interactions, with 1,041 sessions
total, at an average of 28.1 (±17.9) sessions per completer.

3.2 Activity Session Transition Probabilities
The route that students take through online materials can be
modeled as discrete Markov processes, in which each state rep-
resents an activity within the session. For example, a student
may transition from reviewing lecture slides to viewing lecture
videos on Moodle, or MS→MV . Jeffries et. al. [17] used a
similar process to analyze success and help seeking behaviors with
students in an introductory CS course.

Figure 1 visualizes the transition probabilities for completers:
transitions within TYPOS appear as dashed blue lines, transitions
within Moodle are solid red lines, and transitions between TYPOS
and Moodle are solid black lines. For visibility, only transitions
involving the start/end of a session or those with a frequency
above 5% are presented. Module assessment (MA) accounted
for 39% of starting session behavior, TYPOS practice accounted
for 36%, and lecture slides and videos (Content Consumption)
accounted for 26%. This figure shows students’ practice was
largely siloed by platform with each session taking place within a
single mode of interaction. With the exception of the MS→TE
transition, students either interacted with TYPOS or Moodle,
but rarely together. Since MA showed the highest starting ses-
sion probability, one assumption is that students enrolled in the
course with prior coding experience may have reviewed the course
material to become familiar with Python syntax before going on
to complete the module assessment.



Figure 1: Completer activity transition probabilities during sessions.

One interesting observation from Figure 1 is that TYPOS
practice sessions involved only one or a small subset of the ex-
ercise types available to the students. For example, the TE, PP ,
and FitB exercises were typically completed alone. Among two
exercise pairs, SE→CE, OP→FnB, and FnB→FxB showed
higher probabilities than ending the session.

We can further classify the activities by their respective ICAP
modes. For example, the SE→CE transition can also be viewed
as a Constructive→ Interactive transition, MS→ TE can be
viewed as Passive→ Active, and so on. From this perspective,
transitions between activities rarely ‘downgraded’ to a lower mode.
With the exception ofMS→MA andMV →MA, mode changes
primarily shifted by one level of engagement.

3.3 Activity Session Factor Analysis
The probabilities shown in Figure 1 raise new questions about
students’ practice behaviors. Not only were we able to confirm
the existence of platform silos from our RQ1, but based on the
observed transition probabilities, we found that students may also
operate within what we term an activity silo, focusing primarily
on one ICAP mode per session. In this section we report on two
factor analyses which we use to identify the latent variables for
each practice session in order to strengthen our claim.

Factor Analysis is a dimension reduction method to describe
the variability of observed variables into, potentially, lower latent
variables, or factors. To prepare our dataset for factor analysis,
each activity was converted into a binary value, representing the
presence or absence of the activity in the session. For example, if
a session only involves passive content consumption, the resulting
vector for the session would be [1,1,0,0,0,0,0,0,0,0,0], where
the 1s represent the presence of lecture slides and videos and 0
represents the absence of all other activities.

In order to evaluate the appropriateness of our data for fac-
tor analysis, we use the Bartlett’s and Kaiser-Meyer-Olkin tests.
Bartlett’s test compares our correlation matrix against an iden-
tify matrix to test whether our samples are from populations
with equal variance. Our samples were statistically significant
(χ2=3360.05,p=0.0) and thus we can continue with our factor
analysis. Kaiser-Meyer-Olkin checks the adequacy for our vari-
ables to determine the suitability of factor analysis. Our KMO
score was 0.83, which again shows our dataset is adequate.

The next step for our analysis was to determine the appropriate

number of factors. Table 1 shows the eigenvalues for each factor
and their cumulative variance. Based on these results, we utilized
two separate factor analyses. The first analysis uses 3-factors to
correspond to the 3 eigenvalues greater than 1, as suggested by
Kaiser [18]. The second analysis increases to 5-factors based on
the variance extraction rule, which specifies a 0.7 threshold for
eigenvalues [6, 24, 23].

Table 1: Eigenvalues for Factor Analysis of Completers
Factor Eigenvalue Cumulative Variance
1 3.860695 30.51%
2 1.390921 37.21%
3 1.170659 41.79%
4 0.916401 52.26%
5 0.810977 62.27%
6 0.665925 60.91%
7 0.649612 69.59%
8 0.486275 70.05%
9 0.446064 55.23%
10 0.391094 55.42%
11 0.211376 55.42%

Our next task was to identify load factor thresholds for our
latent variables. While there is no universal standard for loading
thresholds, the goal is to only observe variables that share a strong
association with each other and is a non-trivial process [22]. For
our paper, we will focus our attention to variables above a 0.50
(or 25% of the variable’s variance) threshold, highlighting them
in our tables as green. Since the difference between a 0.50 and
0.49 loading is minimal, we will also highlight values greater than
0.4 (or 16% variance) in yellow for additional reference.

Table 2 shows the factor load values for our 3-factor analysis.
F1 has high loadings for OP , FnB, FxB, SE, and CE. If
we consider the ICAP modes for this factor, this indicates a
transition of Constructive → Interactive TYPOS Practice. F2
has high loadings for FitB and PP , or Active→ Constructive
TYPOS Practice. Finally, F3 has high load for MS, or Passive
Moodle Interaction. From Table 2, we once again can confirm the
presence of platform silos, however we expand our factor analysis
in order to see the presence of activity silos. Moreover, 3-factors
only accounts for 41.79% of the cumulative variance and so using
the 0.7 eigenvalue threshold will allow us to account for 62.27%.

And finally, Table 3 shows the factor load values for our 5-
factor analysis. Similar to Table 2, we see a separation between



Table 2: Loadings for 3 Factor Analysis for Completers. Values
greater than 0.4 are in yellow and greater than 0.5 are in green.

Activity F1 F2 F3
MS 0.0306 -0.0294 0.5073
MV -0.1006 -0.0999 0.3891
MA -0.0269 -0.2862 0.2177
TE 0.0193 0.4336 -0.1345
FitB 0.4703 0.5471 -0.0286
PP 0.3300 0.6726 0.0392
OP 0.6257 0.3885 0.0216
FnB 0.8215 0.2149 0.0307
FxB 0.8399 0.1546 0.0059
SE 0.6802 0.1020 -0.0933
CE 0.5019 0.0135 -0.1306

TYPOS activity and Moodle activity. Further, the activities for
each factor are confined to a single ICAP mode, or within one
mode. F1 contains mostly Constructive activities (as well as
FxB), F2 contains Active→ Constructive activities, F3 contains
Passive activities, and F4 and F5 contain Interactive activities. In
addition, F3 and F4 show a separation between Passive Moodle
content consumption and Interactive assessment taking. Thus,
from the results of our 5-factor analysis, we confirm the presence
of activity silos within our students.

Table 3: Loadings for 5 Factor Analysis for Completers. Values
greater than 0.4 are in yellow and greater than 0.5 are in green.

Activity F1 F2 F3 F4 F5
MS 0.0224 -0.0065 0.2411 0.1061 -0.0150
MV -0.0836 -0.1009 0.9838 -0.0982 -0.0264
MA -0.0438 -0.1664 0.1175 0.9759 -0.0124
TE 0.0364 0.3448 -0.0843 -0.2002 -0.0106
FitB 0.4344 0.5629 -0.0451 -0.0445 0.0772
PP 0.2740 0.7467 0.0004 -0.0193 0.0369
OP 0.5520 0.4568 -0.0008 0.0282 0.1792
FnB 0.8419 0.2321 0.0035 -0.0110 0.0829
FxB 0.8759 0.1568 0.0058 -0.0255 0.0980
SE 0.5963 0.1562 -0.0318 -0.0450 0.2602
CE 0.3227 0.0549 -0.0631 -0.0088 0.8891

3.4 Comparing Completers to Non-Completers
Having shown the basic activity structures and identified relevant
factors we then chose to explore was the difference between com-
pleter and non-completer students. We used the same methods for
the non-completer group for comparison. There were 32 students
that failed to complete our course. Non-completers made 8,442
course interactions across 341 sessions, with an average 10.7 (±7.8)
sessions per non-completer.

We first produced the same transition probabilities diagram
for non-completer activity sessions, seen in Figure 2. Similar to
completers, module assessment accounted for 31% of starting
session behavior, TYPOS practice accounted for 49%, and lecture
slides and videos (Content Consumption) accounted for 22%. Non-
completers primarily operated within a single platform, though
there was more interactions between Moodle and TYPOS. For ex-
ample, 12% ofMV ’s transitions migrated to TYPOS exercises and
5% of SE transitions migrated toMA. While completer students
separated SE→CE and OP→FnB→FxB transitions, these
two sequences were combined for non-completers. However, this
could potentially be due to the size differences. Both populations
had similar population sizes, but non-completers did not complete
each module assessment and would not produce as many sessions.

We then carried out the same factor analyses for non-completers.
The results of a Bartlett’s test showed statistically significant

differences (χ2=997.8,p>0.0001) and our KMO score was also
adequate for analysis (0.77). Similar to Table 1, we found support
for 3- and 5-factor analysis, seen in Table 4. We note that a
6-factor analysis is also possible, but to mirror the factor analysis
for completers, we elected not to pursue it.

Table 4: Eigenvalues for Factor Analysis of Non-completers
Factor Eigenvalue Cumulative Variance
1 3.480694 26.26%
2 1.503161 34.57%
3 1.286916 41.39%
4 0.888718 47.44%
5 0.821608 54.51%
6 0.719444 62.12%
7 0.657629 66.31%
8 0.520019 63.79%
9 0.499220 57.46%
10 0.375677 57.69%
11 0.246915 57.69%

Table 5 shows our 3-factor analysis for non-completers. The
same activities having high loadings as F1 and F2 as the 3-factor
analysis for completers (Table 2) and also show similar platform
silos. Likewise, the ICAP mode considerations are similar for
each factor. F1 shows Constructive→ Interactive behaviors, F2
shows Active→ Constructive behaviors, and F3 shows Passive
Moodle interaction.

Table 5: Loadings for 3 Factor Analysis for Non-completers.
Activity F1 F2 F3
MS 0.0362 0.0014 0.4167
MV -0.0334 0.0106 0.6616
MA -0.0136 -0.2524 0.2999
TE 0.0756 0.4637 -0.0719
FitB 0.3176 0.6024 -0.0202
PP 0.1082 0.7404 0.0221
OP 0.5310 0.3499 0.1105
FnB 0.5573 0.4837 -0.0910
FxB 0.6636 0.3369 -0.1218
SE 0.8012 0.0568 0.0573
CE 0.5900 0.0201 0.0056

Table 6 shows our 5-factor analysis for non-completers. Non-
completers maintained the Constructive→ Interactive connection
for F1 and F2 also maintains the Active→ Constructive connection.
The remaining factors do differ, F3 separated the FnB→FxB
exercises from F1 and F4 focuses primarily on TE. The ab-
sence of MA was expected since course progression requires
passing module assessments. From our analysis, we conclude that
non-completers still operated within activity silos.

Table 6: Loadings for 5 Factor Analysis for Non-completers.
Activity F1 F2 F3 F4 F5
MS 0.0271 0.0234 0.0080 -0.0129 0.4040
MV -0.0191 0.0204 -0.0417 0.0373 0.7123
MA 0.0049 -0.1705 -0.0558 -0.1637 0.2922
TE 0.0541 0.2612 0.0605 0.9570 -0.0716
FitB 0.2259 0.6333 0.1698 0.1275 -0.0557
PP 0.0224 0.6734 0.1463 0.1925 -0.0155
OP 0.4707 0.4584 0.1711 0.0080 0.0735
FnB 0.2516 0.4546 0.6255 0.0378 -0.0543
FxB 0.3618 0.2049 0.8444 0.0752 -0.0706
SE 0.8072 0.0883 0.2525 0.0740 0.0496
CE 0.6201 0.1006 0.1092 -0.0054 -0.0206



Figure 2: Non-completer activity transition probabilities during sessions.

4. DISCUSSION
The results from our probability transition diagrams confirm the
presence of both platform silos and activity silos in student work.
They also serve to highlight areas where educators and researchers
can tailor more appropriate learning paths for students and in par-
ticular those students that may be struggling with course material.

Our study allowed students to self-select which activities they
wanted to focus their attentions on. While this style of course
design could be adopted, it does still present limitations. However,
students that primarily focus on lower-level ICAP mode activities
may be reluctant to move into high-level modes. Instructors or sys-
tems that can identify this stagnate practice behavior could encour-
age students to move into high-level ICAP modes. There is grow-
ing interest in the concept of nudge theory to “alter behavior with-
out incentives or banning alternatives”[7] to encourage progression.

Similarly, we presented students with a number of different
activities, at different complexities, for their learning experience.
Based on our results, students were more than willing to complete
each type of exercise. Some students even asked for more activ-
ities in our post-course survey. While increasing the workload for
students and learning material creators, many of the activities
we used are not overly complex and required a minimal amount
of time to create, or from the students’ perspectives complete.
Activities like typing exercises or Parsons puzzles can be created
from existing course materials and offer little incentive for students
to cheat. They simply allow students an opportunity to practice
the concepts they learned rather passively given to them, refining
their understanding, before needing to apply it to problem solving
activities like coding exercises.

5. LIMITATIONS
We acknowledge some limitations with our study. First, our course
ran during the COVID-19 pandemic, which has altered many
individuals’ habits. Our population also contained non-traditional
students who were balancing their studies with working from home
and supporting other family members. Thus, non-completion may
have been driven by external constraints that are not reflected
in our dataset, and the observed habits may change somewhat
during non-COVID times.

Second, the exercise types were presented in a consistent man-
ner for each module. Thus they were implicitly sequenced with
lower-level ICAP modes appearing on the top. As we mentioned in
our introduction, discerning the appropriate order for 11 different
activities is a non-trivial matter and measuring the appropriate
order of exercise types was not a part of our study. Thus, we
presented exercises in an order that progressively increased the
level of engagement. This may have influenced next practice
selections by students.

Finally, we acknowledge that the ICAP modes associated with
each exercise type are somewhat subjective and open for discussion.
Moreover the exact evaluation of exercises like Parsons Puzzles
or self-explanation may require additional research and context.
For the purposes of this study, when faced with uncertainty we
classified exercises according to a higher level mode of interaction.

6. CONCLUSIONS
In this work, we extracted the practice and study session behaviors
from non-traditional students learning Python. Among completers
and non-completers of the course, they primarily focused on a sin-
gle platform. The activities within these platforms were mapped
to the ICAP framework. Further, we used factor analyses to
identify the presence of activity silos within practice sessions.
Completers and non-completers shared similar behaviors during
these practice sessions, primarily focusing on one or two modes
of engagement and rarely ‘downgraded’ to lower level modes.

We can utilize these activity sequences to help shape our overall
course designs for ensuring student learning. Lower-level activities
can provide students with the foundational knowledge necessary
as a part of the technical skills for the content, while higher-level
activities can refine and encourage additional learning gains. As
the research in this area expands, we hope the information pre-
sented in this study encourages educators and researchers alike
to provide practice in both levels and can serve as a guide for
recommendations on how to best build long-term proficiencies.

Acknowledgements
This work was supported in part by the National Science Founda-
tion under Grant DRL 1721160. Kristy Boyer, Eric Wiebe, and
Collin F. Lynch (co-PIs).



7. REFERENCES
[1] Sheshadri Adithya, Niki Gitinabard, Collin F Lynch, Tiffany

Barnes, and Sarah Heckman. Predicting student performance
based on online study habits: A study of blended courses.
International Educational Data Mining Society, 2018.

[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly
Downey, and Kris Miller. An analysis of using many small pro-
grams in cs1. In Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education, pages 585–591, 2019.

[3] A. Altadmri and N. Brown. 37 million compilations:
Investigating novice programming mistakes in large-scale
student data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, SIGCSE
’15, pages 522–527, New York, NY, USA, 2015. ACM.

[4] Robert K Atkinson, Sharon J Derry, Alexander
Renkl, and Donald Wortham. Learning from examples:
Instructional principles from the worked examples research.
Review of educational research, 70(2):181–214, 2000.

[5] Robert K Atkinson and Alexander Renkl. Interactive
example-based learning environments: Using interactive
elements to encourage effective processing of worked examples.
Educational Psychology Review, 19(3):375–386, 2007.

[6] Deborah L Bandalos and Sara J
Finney. Exploratory and confirmatory. The reviewer’s
guide to quantitative methods in the social sciences, 93, 2010.

[7] Chris Brown. Digital nudges for encouraging
developer actions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 202–205. IEEE, 2019.

[8] Nick Cheng and Brian Harrington. The Code Mangler:
Evaluating coding ability without writing any code. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, pages 123–128, 2017.

[9] Michelene TH Chi. Private Communication, August 2020.
[10] Michelene TH Chi and Ruth Wylie. The ICAP

framework: Linking cognitive engagement to active learning
outcomes. Educational psychologist, 49(4):219–243, 2014.

[11] Paul Denny, Andrew Luxton-Reilly, and Beth
Simon. Evaluating a new exam question: Parsons problems.
In Proceedings of the fourth international workshop on
computing education research, pages 113–124. ACM, 2008.

[12] John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swan-
son, Shelsey Sullivan, and Chad Mano. Syntax exercises in
CS1. In Proceedings of the 2020 ACM Conference on Interna-
tional Computing Education Research, pages 216–226, 2020.

[13] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick.
Solving parsons problems versus fixing and writing code. In
Proceedings of the 17th Koli Calling International Conference
on Computing Education Research, pages 20–29, 2017.

[14] Adam M Gaweda, Collin F Lynch, Nathan Seamon,
Gabriel Silva de Oliveira, and Alay Deliwa. Typing exercises
as interactive worked examples for deliberate practice in CS
courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference, pages 105–113, 2020.

[15] Niki Gitinabard, Tiffany Barnes, Sarah
Heckman, and Collin F. Lynch. What will you do next?
A sequence analysis on the student transitions between
online platforms in blended courses. In Proceedings of the
12th International Conference on Educational Data Mining,
EDM 2019, Montréal, Canada, July 2-5, 2019, 2019.

[16] Kyle James Harms, Jason Chen, and
Caitlin L Kelleher. Distractors in parsons problems decrease
learning efficiency for young novice programmers. In
Proceedings of the 2016 ACM Conference on International
Computing Education Research, pages 241–250, 2016.

[17] Bryn Jeffries, Timothy Baldwin, Marion Zalk,
and Ben Taylor. Online tutoring to support programming
exercises. In Proceedings of the Twenty-Second Australasian
Computing Education Conference, pages 56–65, 2020.

[18] Henry F Kaiser. The application
of electronic computers to factor analysis. Educational
and psychological measurement, 20(1):141–151, 1960.

[19] Antti Leinonen, Henrik Nygren, Nea Pirttinen,
Arto Hellas, and Juho Leinonen. Exploring the applicability
of simple syntax writing practice for learning programming.
In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, pages 84–90. ACM, 2019.

[20] Mike Lopez, Jacqueline Whalley, Phil Robbins,
and Raymond Lister. Relationships between reading,
tracing and writing skills in introductory programming.
In Proceedings of the fourth international workshop on
computing education research, pages 101–112. ACM, 2008.

[21] Dale Parsons and Patricia Haden.
Parson’s programming puzzles: A fun and effective learning
tool for first programming courses. In Proceedings of
the 8th Australasian Conference on Computing Education -
Volume 52, ACE ’06, pages 157–163, Darlinghurst, Australia,
Australia, 2006. Australian Computer Society, Inc.

[22] Robert A Peterson. A meta-analysis
of variance accounted for and factor loadings in exploratory
factor analysis. Marketing letters, 11(3):261–275, 2000.

[23] Keenan A Pituch and James P Stevens.
Applied multivariate statistics for the social sciences:
Analyses with SAS and IBM’s SPSS. Routledge, 2015.

[24] John Ruscio and Brendan Roche. Determining
the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial
structure. Psychological assessment, 24(2):282, 2012.

[25] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz.
Characteristics of the mental representations of novice
and expert programmers: an empirical study. International
Journal of Man-Machine Studies, 39(5):793–812, 1993.

[26] Greg Wilson. Teaching
Tech Together: How to Make Your Lessons Work and Build
a Teaching Community around Them. CRC Press, 2019.

[27] Guojing Zhou, Jianxun Wang, Collin F
Lynch, and Min Chi. Towards closing the loop: Bridging
machine-induced pedagogical policies to learning theories.
International Educational Data Mining Society, 2017.


