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ABSTRACT
This study computes the correlation of student grades be-
tween pairs of courses in a large university. Course net-
work graphs are then generated, where courses are repre-
sented as nodes and courses are connected if they have a
high degree of grade correlation. Graph mining and net-
work analysis tools visualize the course networks, identify
course clusters and course cliques, and compute informative
network statistics. Results are analyzed for pairs of courses
and courses grouped by academic department or program
of study. Strong course similarity groupings are observed
within scientific disciplines, between pre-health courses, and
within subfields of computer science. No prior study using
this notion of course similarity has been conducted.
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1. INTRODUCTION
This paper describes a method for grouping and analyzing
courses based on similar student performance, where simi-
larity is measured between pairs of courses using the Pearson
correlation of the grades assigned to students who take both
courses. A graph is then formed that represents courses as
nodes, and has edges between course-pairs when the stu-
dent grade correlation is above a specified threshold. The
resulting graph is then analyzed using a variety of graph
analysis techniques, to provide insights into the relationship
between individual courses and course groupings. Data pre-
processing steps are described to handle confounding factors,
such as differing instructor grading schemes. The method-
ology is encapsulated in a software tool that was developed
for this study and is publicly available [5]. This study uti-
lizes eight years of undergraduate student course grade data
from Fordham University. The results show that there are
strong connections between pre-health courses and courses
within subdisciplines of computer science, and that courses
that teach specific skills are much more highly connected to
other courses than introductory survey courses.

The knowledge gleaned from this research can be used to
influence curriculum design and academic policies. For ex-
ample, if a student performs poorly in the first course within
a set of highly correlated courses, then they are likely to en-
counter future difficulty; therefore, they could be asked to
repeat the course or be offered academic assistance. Re-
sults from this study have many possible applications, but
as is the case with descriptive data mining tasks, it may
take some time to discover some of them. However, we feel
that the course correlation networks that we generate and
the various metrics that we introduce are themselves key
contributions, which will lead to further research in educa-
tional data mining. This study is unique in that no other
analysis of university courses is based on a notion of simi-
larity that relies exclusively on student performance. One
study, which is superficially similar, measures course similar-
ity based on student course co-enrollments [7]. That study,
also conducted by our research group and based on the same
data set, uses this much more traditional notion of similarity
to perform similar analyses; namely course network graphs
are generated and then analyzes using existing network anal-
ysis methods and metrics.

2. DATASET DESCRIPTION
Eight years of student-course records were obtained from
three of Fordham university’s undergraduate colleges, where
each record describes the performance of a student in a
course section. This study restricts the data and analysis
to: pre-health courses required for medical school admission,
popular university core curriculum courses, and Computer
Science and Psychology courses (a detailed analysis would
not be possible if courses from all 83 majors were included).
Computer Science and Psychology courses were included due
to our affiliations with those departments, while core cur-
riculum courses were chosen because of their prominence in
our university and their diversity (students complete more
than twenty core courses covering philosophy, history, for-
eign languages, performing arts, mathematics, and science).
Pre-health courses are included because they cover many key
introductory STEM courses. This study will be expanded
to other disciplines in the future.

Table 1 summarizes the data and its distribution across the
course categories. The core courses contribute more than
half of the total course sections and are largely responsible
for the data covering 20, 797 students. Each record corre-
sponds to one student in one course section and includes the
following features: student ID, final grade, department name,
course number, course title, semester, and section number.



Table 1: Distribution across Course Categories

Course Category Records Sections Courses

Computer Science 14,137(13%) 705(15%) 53(39%)

Psychology 18,017(17%) 966(20%) 67(50%)

Core 62,005(58%) 2,706(56%) 8(6%)

Pre-Health 13,087(12%) 434(9%) 7(5%)

Total 107,246 4,811 135

The final grade uses a 4 point scale and most courses will
have many sections. Student privacy concerns prohibit us
from sharing the raw data, even though the student identifier
values have been anonymized; however, the course correla-
tion matrix central to our analysis is available [6].

3. DATA PROCESSING
An overview of the process for measuring similarity between
courses is provided in Section 3.1, and the individual steps
are described in successive subsections. The code that im-
plements these steps is publicly available [5].

3.1 Overview
The initial data set contains records that describe the per-
formance of each student in a each course section. A variety
of preprocessing steps are executed, as summarized in Fig. 1.
A course correlation matrix that measures the similarity of
each pair of courses using the Pearson correlation of student
grades is generated in Step 7. The course network graphs,
modularity clusters, and course cliques are then generated
from this correlation matrix, as described in Section 4.

Figure 1: Overview of data processing steps

3.2 Initial Data Cleaning (Steps 1 and 2)
The first step removes records that do not have numeri-
cal grades, such as courses taken pass/fail. Some instruc-
tors sometimes assign students very similar grades, which
makes it difficult to assess the similarity of courses based
on grades. For this reason, Step 2 removes course sections
where the standard deviation (σ) of student grades is below
a specified threshold. This requires aggregation of the stu-
dent course records to the section level, which yields 4, 811
sections. Fig. 2 provides the distribution of standard devia-
tion values across these sections, and also provides a curve
that shows the number of records and percentages of sec-
tions that are kept for each standard deviation threshold
value (for each value we discard the sections with a lower
threshold). Based on Fig. 2 we consider the values of 0.20,

0.30, and 0.40 to be reasonable candidates that maintain the
majority of course sections. We ultimately selected a thresh-
old of 0.30, which drops 6% of the sections and eliminates 6
courses (which are not left with any sections).

Figure 2: Distribution of grade standard deviation

3.3 Grade Normalization (Step 3)
Instructors may be easy or hard graders, and these differ-
ences will cause problems with grade correlation when a
course is taught by multiple instructors. This issue is reme-
died by applying z-score normalization to the grades in each
course section, which substracts the mean section grade from
each grade and then divides it by the standard deviation of
the section grades.

3.4 Generate Course-Pair Grades (Step 4-6)
Step 4 aggregates the data from the section level to the
course level, which may combine dozens of course sections,
spanning many years. Step 5 then forms pairs of courses,
keeping on the grade data from students common to both
courses. Course pairs are formed from every course that
remains after application of the σ = 0.3 threshold in step 2.
Step 6 then filters the course pairs that do not have at least
20 students in common, to ensure that the grade correlation
is meaningful. This results in the removal of 4, 585 (25%) of
the remaining course pairs.

3.5 Compute Paired Correlations (Step 7)
The final preprocessing step computes the Pearson correla-
tion [2] between the remaining course pairs, which gener-
ates the correlation matrix that is central to our analysis.
A small sample of the correlation matrix is provided in Ta-
ble 2. The complete correlation matrix is publicly available
[6]. Entries in the correlation matrix are not impacted by
order, so values above the diagonal are omitted. Null val-
ues occur when a course pair does not have enough common
students. In Table 2 we see that, as expected, there is a
high correlation (0.94) between Discrete Structures and the
associated lab. There is also a strong correlation (0.81) be-
tween Computational Neuroscience and General Physics I,
which may be due to the heavy use of mathematical model-
ing of physical systems in both classes. Bioinformatics and
General Physics I exhibit a low correlation (0.19), perhaps
reflecting a heavier practical programming focus in the bioin-
formatics course. It is surprising that Discrete Structures
and Computer Algorithms have a relatively low correlation
(0.37), since they both require similar mathematical reason-
ing skills. This suggests that the Discrete Structures may
not be preparing students sufficiently for future coursework.



Table 2: Representative Course-Pair Correlations

Disc
Struct

Disc
Lab

Web
Prog

Comp

Neuro

Comp

Alg Bioinf
Gen

Phys-I

Disc Struct 1
Disc Lab 0.94 1
Web Prog – – 1
Comp Neuro – – – 1
Comp Algs 0.37 0.33 0.41 – 1
Bioinfor – – 0.79 0.47 0.24 1
Gen Phys I – – – 0.81 – 0.19 1

4. RESULTS
This section describes the results derived from the course-
pair correlation matrix. Section 4.1 covers the correlation
results between individual course pairs, Section 4.2 covers
the cliques within the course correlation graph, and Sec-
tion 4.3 analyzes the course correlation network graphs.

4.1 Analysis of Course-Correlation Pairs
The distribution of Pearson course-pair correlations is dis-
played in Fig. 3. The leftmost bar is due to correlations be-
tween a course and itself. The top 25% of course-pair have a
correlation greater than 0.5. The course network correlation
graphs in Section 4.3 are generated using a threshold of 0.5.

Figure 3: Distribution of course-pair correlations

Table 3 lists course pairs with correlations > 0.75. The
top three entries cover matching lecture and lab courses,
which is unsurprising since they cover complementary ma-
terial. More than 80% of the entries are contained within an
academic department, although there are interesting inter-
departmental entries. The link between General Physics I
and Computational Neuroscience was previously discussed
and involves mathematical modeling. The link between Gen-
eral Chemistry Lab II and Computer Algorithms is not ob-
vious, but both involve designing and applying a precise se-
quence of instructions. Philosophy of Human Nature shows
an interesting connection with Infant and Child Develop-
ment, potentially establishing a link between Philosophy and
Psychology. The Philosophy class’s link to Scientific Com-
puting is more difficult to explain, although it may be related
to the interdisciplinary nature of Scientific Computing.

4.2 Clique Results
A k-clique is a set of k nodes that are each directly connected
to each other by an edge. Table 4 shows the number of
cliques of each size in the course correlation network graph
for correlation thresholds (ρ) of 0.55, 0.55 and 0.6. The table

Table 3: High Correlation (ρ) Course-Pairs

Course 1 Course 2 ρ
Discrete Struct II Discrete Struct II Lab 0.96
Comp Sci II Comp Sci II Lab 0.95
Comp Sci I Comp Sci I Lab 0.93
Gen Phys I Comp Neuro 0.81
Intro Bio I Intro Bio Lab I 0.79
Web Program Bioinformatics 0.79
Learning Health Psychology 0.78
Perception Lab Law and Psychology 0.78
Gen Chem Lab II Comp Algorithms 0.78
Phil of Human Nature Infant & Child Devel 0.78
Phil of Human Nature Scientific Computing 0.77
Psych & Human Vals Research Methds Lab 0.77
Law and Psych Clinical Child Psych 0.77
Biopsych Sens & Percep Lab 0.76
Intro Robotics DataComm & Networks 0.76

shows that increasing the correlation threshold even slightly
dramatically reduces the number of cliques, and hence we
use 0.5 to retain a clear picture of course network structure.
Each clique has many sub-cliques (e.g., each 7-clique has
7 6-cliques and 21 5-cliques), which we view as redundant,
and hence the table excludes all sub-cliques. Cliques may
span different course categories or fall entirely within one
category. Table 5 shows how the cliques from Table 4 are
distributed across the five course categories using ρ = 0.5.
Cliques that do not fall within one category are included in
the “Span” field.

Table 4: Number of Cliques as ρ Threshold Varies

Clique Size ρ ≥ 0.5 ρ ≥ 0.55 ρ ≥ 0.6
3-cliques 172 66 29
4-cliques 51 50 4
5-cliques 56 2 0
6-cliques 15 0 0
7-cliques 4 0 0
8-cliques 1 0 0

Table 5: Number of Cliques in Each Category

Clique Size CS Psych Core Pre-H Span
3-cliques 46 9 0 0 117
4-cliques 11 32 0 0 8
5-cliques 14 39 0 0 3
6-cliques 0 15 0 0 0
7-cliques 0 3 0 1 0
8-cliques 0 1 0 0 0

Psychology courses form most of the large cliques with size 6
and greater. Psychology courses are more grouped together
than Computer Science courses, which have many smaller-
sized cliques. The 7 pre-health courses form a single clique,
which suggests that performance in these courses is based
on similar abilities or knowledge. Core courses lack even
smaller 3 cliques. Despite their shared mission of core lib-
eral arts training, it appears the differences in subject matter
prevents similarity in course performance. No large cliques
span course categories, but when k = 3, spanning cliques
outnumber the other ones, which suggests that cliques only
become meaningful at larger sizes. The largest cliques as-
sociated with the Computer Science, Psychology, and Pre-
health courses are described in Table 6 of the appendix.
Most of those cliques cover related courses (e.g., a 5-clique
in Computer Science covers programming courses).



Figure 4: Network graph (all categories).

4.3 Course Correlation Network Graphs
The course correlation graphs generated with ρ = 0.5 were
supplied to the Gephi social network analysis software [1].
Gephi partitions highly connnected nodes into modularity
classes and assigns each a different color [3]. The size of
each node is determined by ranking the node’s “betweenness
centrality,” which is based on how often a node appears on
shortest paths between all nodes in the network [4].

Fig. 4 shows the Gephi network that includes all courses.
Nodes are labeled with a department abbreviation (“Eng”for
English and “CS” for Computer Science), and 4-digit course
number. Course numbers are not informative so our anal-
ysis refers to courses by title as needed. The figure shows
a clear partitioning of courses between Computer Science
(green, right) and Psychology (purple, left), with Pre-health
courses (dark grey and below Computer Science) clustered
together and forming a partial bridge between Computer
Science and Psychology. While individual edges are dif-
ficult to distinguish, the figure shows that courses within
a category are much better connected to each other than
to courses in other categories. First-year core curriculum
courses English 1102, Theology 1000, and Philosophy 1000
are very large, indicating their large betweenness-centrality.
These courses therefore often occur in the shortest paths
between other courses and act as bridges between parts of
the network. While these core courses do not have many
connections, they connect to a diverse set of courses. Phi-
losophy 1000 is connected to well-connected courses from
Economics, Psychology, and Computer Science, while. The-
ology 1000 is connected to classes in Psychology, Pre-health
(Biology), and Philosophy 1000. These core classes appear
to be an indirect indicator of performance for classes across
the university. Both classes introduce and carefully study
selected core concepts in their respective fields.

Network graphs focusing on Computer Science courses and
Psychology courses are provided in the appendix in Fig. 5
and Fig. 6, respectively. The modularity classes in Fig. 5
correspond to meaningful subdisciplines of Computer Sci-
ence: the light-blue modularity class covers Information Sci-

ence courses like Data Mining (4631); the magenta modu-
larity class covers programming courses such as CS1 and
Lab (1600, 1610), CS2 and Lab (2000, 2010), UNIX pro-
gramming (3130), and Scientific Computing (4750); and the
orange modularity class covers advanced courses like Algo-
rithms (4080), Theory of Computation (4090), and Oper-
ating Systems (3595). The modularity class groupings dif-
fer from the cliques in Table 6 of the appendix, although
both group the same programming courses together. Fur-
thermore, the five largest nodes in the Fig. 5 based on be-
tweeness centrality (4631 Data Mining, 4615 Data Commu-
nications, 3593 Computer Organization, 2200 Data Struc-
tures, and 3300 Web Programming) are well represented in
the Computer Science cliques in Table 6. For Computer
Science, high betweenness centrality reflects an abundance
of both one-step and few-step connections to other courses.
Within the department, it is known that a student with a
poor grade in one of these classes will often struggle in the
major. Most of these classes are designed to hone special-
ized skills within Computer Science. The key observation
from the Gephi graph of Psychology courses in Fig. 6 is
that the Research Methods Lab course is strongly connected
with other psychology courses, while the introductory survey
course is very poorly connected. This suggest that classes
focused on specialized skills are more predictive of perfor-
mance in advanced classes than a general survey class.

5. CONCLUSION
This descriptive data mining study defined an innovative
notion of course similarity based on student performance,
and then used this similarity metric to form course network
graphs. These network graphs were then used to analyze the
relationship between courses and course groupings. This
methodology was applied to eight years of undergraduate
student data at a large university.

The study established that there are many course pairs for
which student performance is highly correlated. When re-
quiring at least 20 common students, 25% of course pairs ex-
ceed the 0.5 correlation threshold used in this study, and 5%
of pairs exceed 0.7 correlation. Courses with the highest cor-
relations are often offered by the same department. In addi-
tion, multi-course clusters naturally occur, especially within
subdisciplines of an academic department, such as the pro-
gramming courses within Computer Science. Course clus-
ters were identified as cliques and modularity classes within
the course correlation networks. As an extreme example,
all pre-health courses formed a single clique. A small num-
ber of courses with high betweeness centrality were shown
to link a diverse set of topics—within one discipline or be-
tween disciplines, and those courses connecting discplines
were much more likely to introduce specific skills than to
provide a broad survey of an area.

This paper also introduced a methodology for generating
a course grade correlation matrix from student data, and
included several steps to address confounding factors such
as differing instructor grading policies. This methodology
is available to other education researchers through our soft-
ware and associated documentation [5]. Our work presented
a new way of looking at course relationships by a novel way
of measuring similarity. We plan to continue to investigate
this notion of course similarity and to apply it to a larger
set of courses.
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APPENDIX
Table 6 lists the large cliques associated with Computer
Science, Psychology, and Pre-health courses. Many of the
cliques have a common theme. Computer Science’s second
5-clique includes three internet-focused courses: Web Pro-
gramming, Client Server Computing, and Data Communica-
tions, while the third clique is dominated by programming
courses (Operating Systems is an exception but includes pro-
gramming projects). Psychology’s 7-clique links classes cov-
ering complementary and overlapping elements of cognition;
however, the 8-clique appears to span diverse topics. As
mentioned earlier, the pre-health clique covers core science
courses required by medical schools.

Table 6: Large Cliques in Different Categories

COMPUTER SCIENCE
5-Clique 5-Clique 5-Clique
Data Mining Data Mining Comp Sci II
Web Programming Web Programming Comp Sci II Lab
Data Struct. Data Comm. Data Struct.
Client-server Comp Client-server Comp Operating Systems
Comp. Org. Comp. Org. Scientific Comput.

PSYCHOLOGY
8-Clique

Child Develop. Biopsy. Research Methods
Learning Social Psych Lab Human Sexuality
Aging and Society Law and Psych

7-Clique
Child Develop. Personality Abnormal Psych
Intro Clin. Psych Found. of Psych Social Psych
Cognitive Psych

PRE-HEALTH
7-Clique

Intro Bio I Intro Bio II Intro Bio Lab I
Gen Chem I Gen Chem II Gen Chem Lab I
Gen Chem Lab II

The Gephi course correlation network graph for the Com-
puter Science is displayed in Fig. 5. The contents of Fig. 5
were describe in detail in Section 4.3 and highlighted how the
different modularity classes correspond to different subdis-
ciplines within computer science. The Gephi course corre-
lation network graph for Psychology, which was only briefly
described in Section 4.3, is displayed in Fig. 6. Meaningful
subcategories are much harder to identify, but it is notable
that Research Methods Lab (2010) is most strongly con-
nected with other psychology courses, indicating a valuable
skill shared across the category. This contrasts with the
required introductory survey class, Psychology 1200, which
has a much lower betweenness centrality. This indicates that
a class focused on specialized skills is more predictive of per-
formance in more advanced classes than a general overview
class. The psychology courses with largest betweenness cen-
trality are all represented in the cliques in Table 6. The
top four courses based on betweenness centrality are: 2010
Research Methods, 2900 Abnormal Psychology, 2800 Person-
ality, and 2700 Child Development – all courses with special-
ized foci. As in Computer Science, high betweenness cen-
trality in Psychology reflects an abundance of both one-step
and few-step connections to other courses.

Figure 5: Computer Science network graph.

Figure 6: Psychology network graph.


