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ABSTRACT 

Undergraduate college students have substantial flexibility in 
choosing the order in which they take courses, since most courses 
either have no prerequisites or only a single prerequisite. However, 
the specific order that courses are taken can have an impact on 

student performance. This paper describes a general methodology 
for assessing the impact of course sequencing on student 
performance, as measured by course grades, and applies this 
methodology to eight years of undergraduate academic data from 
Fordham University. The results demonstrate that certain course 
orderings are associated with improved student grade performance. 
This study introduces a methodology, new metrics, and a publicly 
available data-processing tool that can be applied to any student 

course-grade data set to measure course sequencing effects. The 
results can be used to inform student decisions, modify course 
recommendations, and even modify course prerequisites. 
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1. INTRODUCTION 
Undergraduate university students have substantial flexibility in 
choosing what courses they take and when they take them. Course 
sequencing is usually enforced only by a modest set of course 
prerequisites. This study examines the impact of different course 
sequences on student learning outcomes, as measured by course 

grades. The data used in this study includes eight years of 
undergraduate student grade data from Fordham University. Prior 
studies on course sequencing have generally been quite limited. 
Similar research has focused more on course selection, the optimal 
set of courses for a student to take to maximize performance or time 
to graduation [4, 5], than on course sequencing. Studies that 
focused on course sequencing were limited to a single discipline, 
such as communications [7] and psychology [2]. Our study 

considers all undergraduate courses within the university, including 
sequences that span disciplines. Prior studies also only considered 
how early courses predict performance in later courses, whereas our 
study does not have this restriction and focuses instead on 
maximizing overall student performance. 

Our study considers the impact of sequencing on pairs of courses. 
This simplifies the analysis and reduces the risk of finding spurious 
correlations. The grade performance of students taking each pair of 

courses in the two possible sequential orderings is measured, with 
the goal of identifying the ordering that yields the best overall 
performance (concurrent registrations are excluded from the 
analysis). Comparing the grade performance for the two sequences 
required the development of new metrics, which we consider to be 
one of the contributions of this research. The methodology 
described in this study, along with the metrics that are introduced, 
are embodied in a publicly available software analysis tool [6]. 

Every possible course-pair sequence is considered as long as there 
are a sufficient number of students to provide reliable results. 
However, our analysis focuses primarily on course sequences 
within certain departments and groups of departments. This focus 
is due to our affiliation with a Computer Science department and 
the current focus on STEM (Science, Technology, Engineering, 
and Mathematics) education that is driven by national interests and 
the needs of industry. We also examine course pairs that include 

both humanities and STEM courses, because we are interested in 
the role that a liberal arts education has on STEM education. 

There are many factors that can impact instructor performance [8], 
such as class size, course workload, and time of day of a class [1]. 
These factors also will impact student performance and hence can 
interfere with our ability to draw clear conclusions about course 
sequencing effects. In the present study, we normalize the grade 
data at the course section level to account for different instructor 
grading schemes, but do not address the other confounding factors. 

Our expectation is that the large number of course sections 
associated with most courses will limit the impact of these factors.  

There are several uses for the course sequencing analysis described 
in this paper. The most obvious is that this information can be used 
to improve recommendations provided to students concerning 
beneficial course orderings. When these benefits are substantial 
enough, official course prerequisites can be modified. Beyond these 
direct applications of the work, the sequencing results can provide 

insight into the relationships between courses, and this can be used 
to inform academic policies. For example, if Course A is not 
generally considered relevant to Course B, but nonetheless leads to 
improved student performance in Course B, then one might want to 
recommend Course A to students who must take Course B. 

2. METHODOLOGY  
This section describes the data set used, the data preprocessing and 
transformation that is necessary to convert the data into a form 
suitable for analysis, and the evaluation metrics that measure the 
impact of course sequencing. 

2.1 Initial Student Course-Grade Data Set 
The initial data set describes the grade performance of each 
undergraduate student in all course sections with at least five 
students. Each of the 473,527 data set records, which collectively 
cover 24,969 distinct students, identify a student, a course 

 

 



(including the course section and semester), the instructor, and the 
student’s grade in the course. Although we aggregate the 
information to course level, section information is used to 
normalize student grades. Unfortunately, the initial data set cannot 
be made publicly available due to strict student privacy laws.  

2.2 Data Preprocessing and Transformation 
The analysis conducted in this study is based on pairs of courses. 
From the initial student course-grade data set, we compute and 

maintain information for each course sequence A→B and B→A, 
where A and B represent arbitrary courses. For each of these 
sequences, we maintain a list of all students taking the two courses 

in the corresponding order, and the grades they receive in each 
course. The particular section each student enrolls in is also tracked, 
so that grades can subsequently be normalized at the section level. 
The transformation of the data from the student course-grade level 
to the course-pair sequence level, and the generation of our 
evaluation metrics, are accomplished using our publicly available 
Python-based tool [6]. 

In this study, a course pair is analyzed if it meets two conditions. 
The first condition ensures that the percentage of students taking 
the sequence in each direction exceeds MinCSP, the Minimum 

Course Sequence Percentage. For this study, MinCSP is set to 30%, 
which ensures that both orderings are taken at least 30% of the time. 
This excludes abnormal situations where a particular course 
sequence is rarely taken, such as when a student takes an 
introductory class in their senior year or retakes a failed course 
outside of the normal order. The second condition ensures that at 
least a minimum number of students, MinCount, aggregated over 
all course sections, takes the courses in each order. MinCount is 

utilized to ensure that the sample size is sufficient to generate 
reliable results. For this study MinCount is set to 50 students. 

Table 1 specifies how many course pairs remain after these 
conditions are applied. The conditions are applied sequentially, 
with MinCSP applied before MinCount. The values in the rightmost 
column reflect the number of course pairs actually analyzed.  
Table 1 displays the number of course pairs for the entire data set, 
as well as for the five course subsets that are of particular interest 
to us. Our university has no engineering school, so the STEM 
courses are offered by the Biology, Chemistry, Computer Science, 

Mathematics, Natural Sciences, Physics, and Psychology 
departments. The Humanities courses include all courses from the 
African and African American Studies, Anthropology, Art History, 
English, Philosophy, Theology, and Visual Arts departments.  

Table 1. Number of course pairs for different course subsets 

Data Set 
Threshold 

None MinCSP=30% MinCount=50 

Full Data Set 81,327 21,461 1,939 

Computer Science 850 253 14 

Mathematics 392 92 23 

Mathematics and CS 1,724 490 51 

STEM 12,055 3,000 291 

STEM & Humanities 27,303 6,646 684 

2.3 Evaluation Metrics  
Several metrics are used to analyze the impact of course sequencing 
on student performance. These metrics are based on lower-level 
metrics, which are introduced first. Ultimately, we want to see how 
the mean grades for each course in a course pair are impacted by 
course order in order to determine the optimal ordering and net 

benefit in grade performance.  

The first step computes the mean grades for each course in a course 
pair for each of the two orderings. Because instructors vary widely 
in their leniency when assigning grades, all grades are normalized 
at the course section level using z-score normalization, as described 
by Equation 1. In this equation xi represents the grade of student i 

in the course section,  represents the mean section grade over xi, 

and  represents the standard deviation of the section grades. 

Zi = (xi - ) /           (1) 

For every course pair <A, B> we determine the average normalized 
grade for each course based on each ordering. Specifically, we 

compute 𝜇𝐴(𝐵 → 𝐴), 𝜇𝐴(𝐴 → 𝐵), 𝜇𝐵(𝐴 → 𝐵), and 𝜇𝐵(𝐵 → 𝐴), 
where the subscript of µ denotes the course for which the 

normalized mean is computed and A → B indicates that course A 

is taken before course B (and vice versa for B → A). As an example, 

for the course pair <Math I, English I>, µMath I (English I→Math I) 

represents the mean normalized grade in Math I for students who 
took Math I after English I. 

These normalized means are used to compute the difference in 
mean normalized grades (DNG). Two DNG values are computed 
for each course pair <A, B> since the difference in normalized mean 
grades is computed for each course. Equations 2 and 3 define these 

values, where 𝐷𝑁𝐺𝐴:𝐵 is the difference in mean normalized grade 
for Course A when Course A is taken after course B rather than 

before course B, and 𝐷𝑁𝐺𝐵:𝐴 is the difference in mean normalized 
grades for Course B when Course B is taken after course A rather 
than before course A. We compute the difference using the order 
noted in the equations, because we generally expect a course to 
perform better when it is taken second and anticipate that most 

DNG values will be positive.  

𝐷𝑁𝐺𝐴:𝐵 = 𝜇𝐴(𝐵 → 𝐴)  − 𝜇𝐴(𝐴 → 𝐵)      (2) 

𝐷𝑁𝐺𝐵:𝐴 = 𝜇𝐵(𝐴 → 𝐵) − 𝜇𝐵(𝐵 → 𝐴)      (3) 

The DNG equations measure the benefit of taking two courses in a 
particular order, but do not reflect the net benefit of one ordering 
over the other (if both DNG values are positive then the difference 
between the orderings will be reduced). We therefore compute the 

order benefit, OB, which is the net difference in DNG values of one 
ordering over the other. The OB is defined relative to a specific 
course ordering, as indicated in Equation 4.  The OB value will be 
calculated for both possible orderings, but we will only list the one 
that is positive, which indicates the optimal course ordering.   

𝑂𝐵𝐴→𝐵  = 𝐷𝑁𝐺𝐵:𝐴  − 𝐷𝑁𝐺𝐴:𝐵       (4) 

We work through an example using <Math I, English I>, assuming 
the following statistics:  

𝜇𝑀𝑎𝑡ℎ 𝐼(𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼 → 𝑀𝑎𝑡ℎ 𝐼) = 0.40 

𝜇𝑀𝑎𝑡ℎ 𝐼(𝑀𝑎𝑡ℎ 𝐼 → 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼) = -0.05 

𝜇𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼(𝑀𝑎𝑡ℎ 𝐼 → 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼) = 0.40 

𝜇𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼(𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝐼 → 𝑀𝑎𝑡ℎ 𝐼) = -0.10 

Assuming Math I takes on the role of Course A and English I 

Course B, using Equation 2, 𝐷𝑁𝐺𝐴:𝐵 = 0.40 – (-0.05) = 0.45, and 

using Equation 3, 𝐷𝑁𝐺𝐵:𝐴 = 0.40 – (-0.10) = 0.50. Applying 

Equation 4, we get 𝑂𝐵𝐴→𝐵 = 0.50 – 0.45 = 0.05. These results are 
summarized in the first row of Table 2. The assignment of the two 
courses to A and B is arbitrary, so we can reverse them, which 

corresponds to the course ordering in the second row of Table 2. 

Then, using Equation 2 and Equation 3, we get 𝐷𝑁𝐺𝐴:𝐵 = 0.50 and 

𝐷𝑁𝐺𝐵:𝐴= 0.45, which yields an OB value of 0.45 – 50 = -0.05. The 

values of 𝐷𝑁𝐺𝐴:𝐵 and 𝐷𝑁𝐺𝐵:𝐴 in Table 2 are flipped when we 



reverse the roles of A and B (compare rows 1 and 2). This is 
logically and mathematically required given the definition of the 
DNG metric, so the OB value of one ordering must equal the 
negative of the other. The results in Table 2 show that taking Math I 
and then English I yields an overall improvement in normalized 

grades of 0.05, whereas taking the courses in the reverse order 
yields a net deterioration of 0.05. 

Table 2. Example of a course pairing  

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OBA→B 

Math I English I 0.45 0.50 0.05 

English I Math I 0.50 0.45 -0.05 

3. RESULTS 
This section provides selected results from our analysis, with a 

focus on the difference in normalized grades for different course 
sequences. Order benefit is our primary metric, as it summarizes 
the net benefit of a particular course sequence over the alternative, 
but DNG is also informative since it specifies the amount of benefit 
in taking one course before the other. For example, it is possible for 
two competing sequences to have identical positive DNGs, leading 
to a zero order benefit. Top order benefit results are presented for 
course sequences restricted to: Computer Science, Math, Math and 

Computer Science, STEM, STEM and Humanities, and “All 
Courses” across all disciplines. We posit explanations for some of 
the results based on our knowledge of the domain.   

The top three order benefit values for computer science courses are 
displayed in Table 3. Note that while the sequence Computer 

Algorithms → Data Mining has the highest OB value, based on the 

𝐷𝑁𝐺𝐵:𝐴 values, taking Data Communications and Networks after 
Data Mining yields a slightly greater improvement than taking 
Data Mining after Computer Algorithms. The key difference is that 
taking each of those pairs of courses in the opposite order (i.e., 

𝐷𝑁𝐺𝐴:𝐵) yields very different results. The two negative 𝐷𝑁𝐺𝐴:𝐵 
values in Table 3 indicate that the corresponding courses yield 
worse results when they are taken second. Specifically, students in 
Computer Algorithms perform worse when they take it second. We 

generally would not expect this to occur. This result may stem from 
weaker students who delay taking Computer Algorithms. 

Table 3. Computer Science courses with largest order benefit 

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB 

Computer Alg. Data Mining -0.110 0.233 0.343 

Data Structures Computer Organization -0.073 0.103 0.176 

Data Mining Data Comm. & Netwks. 0.101 0.235 0.134 

A plausible explanation for the first entry in Table 3 is that Data 
Mining utilizes some knowledge of Computer Algorithms and 
hence taking Data Mining second is beneficial. While the same 
reasoning could be applied to the reverse ordering, the negative 
DNG indicates no benefit for that ordering, possibly because Data 
Mining does not teach the basics of computer algorithms. With 
respect to the entry in the second row of Table 3, the benefit of 
foundational mathematics and algorithmic knowledge provided by 
Data Structures is apparent in the somewhat more application-

oriented Computer Organization course. 

Table 3 shows negative 𝐷𝑁𝐺𝐴:𝐵 values are smaller in magnitude 

than positive 𝐷𝑁𝐺𝐵:𝐴 values — a finding replicated in subsequent 

tables. The presence of negative 𝐷𝑁𝐺𝐴:𝐵  values may be an artifact 
of our focus on course pairs with the highest overall order benefit, 

because order benefit is maximized when 𝐷𝑁𝐺𝐴:𝐵 is negative.  

Table 4 shows the results for three sequences of mathematics 
courses.  The third entry is the easiest to explain. Business Finite 
Math and Finite Math cover similar material, but the former covers 
more basic material. Students are not generally expected to take 
both courses, but if they do, they most likely will take the more 

basic one first. Discrete Math provides a background in formal 
proofs, which appears to benefit from advanced mathematical 
experience (Multivariable Calculus I) and to provide benefit to 
advanced study of calculus (Multivariable Calculus II). 

Table 4. Mathematics courses with largest order benefit 

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB 

Discrete Math Multivar. Calc II -0.056 0.252 0.308 

Multivar. Calc. I Discrete Math -0.041 0.249 0.290 

Business Finite Math  Finite Math -0.024 0.145 0.169 

Most computer science programs require several mathematics 
courses, but the specific impact of the math courses on computer 
science courses is not well understood. Table 5 explores the relation 
between the two departments, restricting the sequences to include 
one math course and computer science course. One of the more 
notable results is the entry in the first row. Both courses teach finite 
mathematics, but Structures of Computer Science is offered by the 
Computer Science department and is intended for non-majors, 

while Finite Math is offered by the Mathematics department. 
Structures of Computer Science also devotes several weeks to cover 
simple programming assignments, thereby further reducing the 
time spent on the mathematics content. For these reasons, it is 
reasonable to conclude that the sequence with the high OB value 
corresponds to taking the more basic course first. It is also 
noteworthy that Calculus I has a very positive impact on taking 
programming courses (Computer Science I and its lab) and 

Structures of Computer Science. Thus it appears that increased 
mathematical sophistication does have a positive impact on 
computer science and computer programming. This is especially 
interesting because the mathematical material in Calculus I has 
only a tangential relationship with computer science. Most 
computer science programs require calculus, and our empirical data 
justifies this requirement.  

Table 5. Math and CS courses with largest order benefit 

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB 

Structures of CS Finite Math -0.002 0.429 0.431 

Calculus I CS I -0.035 0.338 0.373 

Calculus I CS I Lab -0.012 0.252 0.264 

Calculus I Structures of CS -0.010 0.213 0.223 

Table 6 displays the remaining results for the three groupings of 
sequences: STEM courses, mixed STEM and humanities courses, 
and all courses without any restrictions. The first entry under the 
STEM category shows a benefit in taking Applied Calculus I after 
General Chemistry I. This ordering is typical for students on the 

Pre-Health track who wish to go to medical school, which may 
explain the high order benefit, since these students are generally 
motivated to achieve high grades. Furthermore, under the STEM 
category we find a benefit for Learning (Psychology) followed by 
Multicultural Psychology. The first psychology course in this 
sequence is a 2000 level course while the second is a 3000 level 
course, indicating yet again that there is a benefit from taking a 
more advanced course in the same discipline second. 



Looking at the STEM & Humanities courses, students who took 

Organic Chemistry I→ Intro. to Cultural Anthropology did 
significantly better in both classes, as demonstrated by the 

magnitudes of the DNG values (the negative 𝐷𝑁𝐺𝐴:𝐵 indicates 
Organic Chemistry I does worse when taken second and hence 
performs better when taken first). The same pattern is replicated 
with an even higher OB when considering the Organic 

Chemistry Lab. Pre-Health students tend to take Organic 
Chemistry very early in their college career and may dominate that 
particular course ordering. 

The first row under the “All Courses” category displays the 

sequence Spanish Language & Literature → Christian Hymns with 
a very high order benefit. Students performed best in each of the 
two courses when taking them in the specified sequence. This may 
be due to the fact that Spanish literature is heavily influenced by 
Christianity, and therefore provides important background for 
students who plan to take Christian Hymns. Explanations for the 

other entries may require consultation with faculty from the 
associated departments. 

Table 6. STEM, STEM/Humanities, All courses with large OB 

Course A Course B 𝐃𝐍𝐆𝐀:𝐁 𝐃𝐍𝐆𝐁:𝐀 OB 

STEM Courses     

General Chem. I Applied Calculus I -0.17 0.400 0.570 

Intro. Astronomy Abnormal Psych. -0.187 0.309 0.496 

Learning (Psych.) Multicultural Psych. -0.021 0.419 0.440 

Intro. Bio. I Structures of CS -0.152 0.283 0.435 

Structures of CS Finite Math -0.002 0.429 0.431 

Gen. Chem. Lab I Structures of CS -0.102 0.325 0.427 

Calculus I CS I -0.035 0.338 0.373 

Intro. Bio Lab I Structures of CS -0.069 0.297 0.366 

Physics II Lab Human Physiol. Lab -0.019 0.287 0.306 

STEM & Humanities Courses 

Org. Chem. Lab I Intro. Cultural Anthr. -0.520 0.606 1.126 

Organic Chem. I Intro. Cultural Anthr. -0.330 0.554 0.884 

Forensic Science Philosophical Ethics -0.310 0.474 0.784 

Texts & Contexts Discrete Math -0.234 0.372 0.606 

All Courses     

Spanish Lang. & Lit. Christian Hymns -0.436 0.714 1.150 

Medieval History Intro. Media Industry -0.178 0.550 0.728 

Composition II Intro. Archaeology -0.218 0.494 0.712 

Sociology Focus Faith & Crit. Reason -0.134 0.565 0.699 

Calculus II Intro Sociology -0.111 0.488 0.599 

American History Personality (Psych) -0.095 0.487 0.582 

4. CONCLUSION 
The research described in this study introduced a methodology and 
set of metrics for assessing the impact of course sequencing on 

student performance. The analysis of our results focuses on several 
disciplines, such as Computer Science and Mathematics, as well as 
higher level groupings, such as STEM courses. Many of the results 
demonstrate that there is a substantial benefit with a particular 
sequencing of courses, such as taking Finite Math after Structures 
of Computer Science or taking Computer Science I after Calculus I. 
Our methodology and metrics are implemented in our Python-
based software tool [6], which can be used by other researchers.  

The course sequencing results in this paper can be used to assist 
with course recommendations and can be used to inform, and even 
modify, course prerequisites. For example, our results show a larger 

than expected benefit of taking calculus before a programming 
course; additional analysis and data will be needed to see if this 
extends to a broader set of mathematics courses, but if it does, then 
new prerequisites perhaps should be added. The results in this study 
also provide insight into the inter-relationships between courses 

and disciplines.  

Many of our observed results can be explained based on our 
knowledge about college education and domain knowledge of 
specific disciplines. However, in some cases explanations are not 
readily available. Our search for explanations of why one sequence 
may outperform another can also benefit from additional domain 
knowledge, as our knowledge is mainly limited to computer 
science. Course syllabi could also prove to be useful. It would also 

be very interesting to apply our methodology to data from different 
universities, and we hope to do this in the future. It would be 
informative to see if the course sequencing patterns present in our 
university hold elsewhere. Although our university is relatively 
large, in many cases the number of students taking some pairs of 
courses was relatively small, and this informed our relatively low 
MinCount threshold of 50. With more data, we could increase this 
threshold, which would diminish the impact of factors like 

instructor effectiveness. 

Our methodology normalizes for some external factors, such as 
different instructor grading schemes, but does not account for all 
factors that can impact student performance. In particular, we 
suspect that some course sequencing results are due to certain 
populations of students (e.g., Pre-Health students) taking courses in 
one particular order over another. In future work we do plan to 
consider some of these factors and modify our evaluation to isolate 

their impact. In cases where that is not feasible, we will at least 
provide summary statistics to assess the influence of these factors. 
For example, since we suspect that academically stronger students 
sometimes take courses in a different sequence than weaker or less 
motivated students, we can compare the overall GPAs of students 
taking the courses in each course ordering and note when they 
exhibit a statistically significant difference. Alternatively, we can 
normalize for overall student GPA, something that we are currently 
doing in a study on instructor effectiveness.  

One final area that we plan to pursue is better evaluation of our 
results. One way to do this is to utilize statistical significance 
testing. Given the number of potential patterns we can find with the 
large number of pairs of courses, we may need to set our p-value 
quite low. We may be able to improve this situation by limiting our 
course interactions to courses within a single department or 
between related fields (e.g., Biology and Chemistry). We can also 
validate our results by partitioning the data into a training and test 

set and subsequently verifying if the patterns found in the training 
data hold for the test data. In this regard, the differences in student 
performance can be viewed as predictions, so the standard training 
and test set evaluation methodology applies.  

The data utilized in this study is itself a valuable resource. Our 
research group has analyzed this data in a variety of ways to provide 
additional insights. Two studies have used this data to group/cluster 
courses and analyze the interrelationships between courses. One of 

these studies uses course co-enrollments to form the clusters and to 
identify hub courses [9], while the other uses the correlation 
between students grades as a similarity metric to cluster the 
courses [3]. Both of these studies used their respective notions of 
similarity to form networks of courses, and then analyzed these 
with existing network analysis techniques. 
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