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ABSTRACT

We propose an adaptation of the Glicko-2 rating system in
a K-12 math learning software setting, where variable time
intervals between solution attempts and the stratification
of student-item pairings by grade levels necessitate modifi-
cation of the original model. The discrete-time stochastic
process underlying the original system has been modified
into a continuous-time process to account for the irregular-
ity of intervals between solution attempts. Also, concep-
tual prerequisite relationships between items were used to
provide initial rating estimates that allow for rating values
to be meaningfully compared across grade levels. Fitting
the model using real student learning data results in rating
value distributions successfully exhibiting a gradation with
the increase of grade level. A potential area of application
in a personalized education setting is also briefly discussed.

Keywords

Item response theory, dynamic paired comparison model,
stratified data, educational assessment, stochastic variance
model

1. INTRODUCTION

We consider the problem of assigning appropriate curricu-
lum levels in a large-scale K-12 math learning software to
students who are substantially ahead or behind their peers.
Previous studies have suggested the importance of matching
learning content difficulty to a student’s ability for positive
student learning outcomes [3, 10, 16]. In light of this, stu-
dents who are much farther ahead (e.g., gifted students) or
behind their peers (e.g., students with learning disabilities)
can benefit much from receiving a more tailored educational
feedback, based on learner and skill models that can model
their differences more effectively.

With the recent advances in computing devices, various ap-
proaches have been sought to harness the power of comput-
ing to model learners more accurately in educational con-

texts, as comprehensively overviewed in [2]. In one particu-
lar line of approach [11, 13, 12, 15], dynamic paired compar-
ison models were used to quickly estimate student abilities
and item difficulties in a scalable manner. In these adapta-
tions, the players consist of students (“users”) and units of
learning task (e.g., problem items, assignments), and each
solution attempt is conceptualized as a match between a stu-
dent and a learning task, in which the winner earns 1 point
and the loser earns 0 points (with no draw). The primary
advantage of such models over traditional IRT methodolo-
gies is in their ability to compute ability estimates “on the
fly” [11] while retaining a similar mathematical structure to
IRT.

The problem occurs, however, when the dataset is strati-
fied—i.e. when student-problem pairings can be grouped
into distinct (or largely nonoverlapping) groups such that a
problem’s rating cannot be adequately adjusted by a student
outside the group to which it belongs. In a K-12 math learn-
ing software, because students are only exposed to prob-
lems appropriate for their grade level, grade levels serve as
strata. Consequently, we cannot adequately tell how a stu-
dent would perform outside of their regular grade level just
by looking at the student’s rating value. See Fig. 1 for an
illustration.

Ideally, we would not have this problem by gathering enough
learning data from a large number of students for 12+ years,
during which they would work through all curricula offered
by the product in sequence. However, in a commercial edu-
cational software context where a user is not bound to use
products from just one vendor, this is highly impractical.

Hence we raise a question: is there a way to enforce rating
values to reflect the relative positions of the strata, despite
the absence of sufficient overlaps in students/items among
them? One possible strategy is to initialize the ratings differ-
ently for each stratum according to their relative positions,
e.g., to initialize first-grade rating values to 100, second-
grade rating values to 200, etc., and then let the dynamic
paired comparison algorithm do the calibration within each
grade level. But then how could we justify that the initial
estimation done for all curricula is properly reflective of their
actual difficulties relative to one another?

Here, the key insight is that the partial ordering of mathe-
matical concepts due to prerequisite relationships provides
a basis for the division of concepts into grade-level curric-
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Figure 1: An illustration of the impact of data stratification on the rating interpretability. As a result of
stratification, the distributions of rating values can overlap unreasonably much with each other, and the
corresponding mean rating values may not align with the actual order of grade levels.

ula, which then in turn stratifies the learning data. In the
K-12 math learning software used in our study, each prob-
lem item is conceptualized as a particular instantiation of
a mathematical concept (“knowledge unit,” or just “unit”)
with specific values. These mathematical concepts have pre-
requisite relationships defined among them, the collection of
which can be represented as a directed graph. We attempt
to employ these relationships to obtain statistically inter-
pretable and contextually appropriate estimations.

Specifically, our contribution is twofold: 1) modification of a
dynamic paired comparison rating system model to account
for imbalance in rating update frequencies between students
and items, and 2) use of prerequisite relationships between
concepts for rating initialization to achieve rating compara-
bility between curriculum levels. We aim to yield, from a
stratified dataset, a set of ratings that can be meaningfully
compared across grade levels: where students and items in
a lower grade level would generally have lower ratings than
those in a higher grade level.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our particular adaption of a dynamic paired
comparison model, including the details for incorporating
the conceptual prerequisite information into rating initial-
ization. Section 3 describes the dataset used for evaluating
our model and presents our results. Section 4 discusses the
potential for applying our model to assign grade levels for
students far ahead or behind their peers, lists some of the
limitations of our work, and suggests a few possible direc-
tions for further research.

2. MODEL

The Glicko-2 rating system [7] falls under the family of dy-
namic paired comparison models, along with the Glicko rat-
ing system [6] (its predecessor) and the Elo rating system [4]
(of which the two Glicko systems are extensions). Improv-
ing upon its predecessor, the Glicko-2 rating system models
the change in variance of player strength as another stochas-
tic process, thereby accounting for the possibility of sudden
changes in strength. More specifically, the algorithm models
the change in player strength per unit time with a normal
distribution with variance equal to the square of the rating
volatility, whose logarithmic change per unit time is itself

normally distributed.

2.1 Continuous-time Glicko-2 Model

The original Glicko-2 system presented in [7] assumes the
underlying stochastic processes to be discrete-time, where
the overall measurement period is discretized into time in-
crements called “rating periods.” Within each rating period,
the matches are assumed to occur simultaneously. However,
because there is too much imbalance in the average number
of matches between users and items, [7]’s recommendation
of having 5-10 matches per rating period for every player is
not feasible to implement in our application context. [15]
has successfully worked around this limitation by constrain-
ing each rating period to contain only one match, but the
workaround did not account for an increase in rating un-
certainty due to the passage of time, which is a key feature
of the Glicko rating system family. Here, we take the ap-
proach of modifying the Glicko-2 model under a continuous-
time stochastic process framework, so that the model can
account for rating uncertainty increase due to the passage
of time without discretizing the measurement period.

Let 05(t) denote the ability estimate of user s at time ¢, and
let B;(t) denote the difficulty estimate of unit ¢ at time ¢.
Then as a result of using continuous-time stochastic process
framework, the model equations for latent trait parameters
become

05(t) ~ N(us(t), ¢2(1)). (1)
0. (t+AL) | 05(1), o2(t4+AL) ~ N(05(t), At oZ(t+At)) (2)

logol(t + At) | logoi(t), 7° ~ N(logaZ(t), 7°) (3)
for user ability estimates, and

Bi(t) ~ N(ui(t), ¢:(t)) (4)

for unit difficulty estimates. Here, as in [8], u denotes rat-
ing, ¢ denotes rating deviation (RD), and o denotes rating
volatility. Note that the difficulty of a mathematical con-
cept is expected to remain constant over time, so we do not
impose any stochastic volatility assumption on 8;(t).

As for the correctness probability (i.e., the probability of
user s correctly answering an instantiation of unit ¢ at time



t), the Glicko rating system family differs from the Elo rating
system in its incorporation of rating uncertainty to calculate
this quantity. We are generally interested in the correctness
probability before the user s actually attempts unit i. How-
ever, the time elapsed between the user’s last attempt and
the current attempt can vary throughout the user’s activity
history, which also varies the amount of inflation to apply
each time on the user’s rating uncertainty, ¢s. Hence we
apply equation (2) prior to calculating the correctness prob-
ability. Let ts and ¢; denote the last time user and unit latent
trait estimates, respectively, were updated. Let Y5 ;(t) be a
Bernoulli random variable denoting user response correct-
ness. Then the correctness probability is given by:

Pr(Yei(t) = 1) = E(us(t), pi(t), ¢3(t) +67(t)  (5)

—1
where E(p1, po, ¢?) = [1—!—67‘(’("’2)(“17“2)} is the ex-

pected score function that accounts for rating uncertainty
[7], and

Here, we use 02(ts) in place of 02(t) to estimate QSEA(t), al-
though their equivalence only holds in expectation.

After user s finishes solution attempt for unit ¢ with result
ys,i € {0, 1}, the update equations for latent trait estimates
are given as below, following [7]’s derivation of corresponding
equations under the continuous-time framework:

(1) = exp argmaxplalt)..) ©)

2 1 2 . : B
¢ (t) = min {¢S(O)’ [¢g(ts) + o2(t) * Ug(t)] } ®

%m—m%ﬁ®{1+gl]? (8)

P2(t:) | v2(t)
pa(t) = pa(ts) + 62(8) - g(63 (1)) - (yei(t) — Es(8))  (9)
pi(t) = pits) + 03 () - g(62(1) - (1 — yai(8)) — Ea(t)) (10)

In these equations, we have

o Eu(t) = B(us(t), mi(t), 92(t)),
o [ (t) = E(/“A(t)7 /LSA(t)> ¢§A(t))a
o V2(0) = [(620)* B ()1 - Bo(2)] , and

. 2(0)

o) B~ E:(1)]

Also, in equation (6), p(a(t)|ys,:) is the marginal posterior
density function for a(t) = log o2(t), approximated using the
product of the following two normal density functions (here,
©(2z;m, %) denotes the normal density function with mean
m and variance gz):

1. ¢(a(t);a(ts), ), which comes from equation (3), and

2. 0(01(t); ps(ts), d2(ts) + (t — t5)e®® + v2(t)), which is
the normal approximation of the marginal likelihood
distribution of 6, (t), whose mode is denoted with 6; (t).

The latter normal density function features the quantity
(0%(t) — ps(ts)), which is approximated in [6] using first-
order Taylor expansion.

Finally, note that to prevent a rating deviation from becom-
ing arbitrarily large, the quantity is constrained in equa-
tions (7) and (8) to never exceed the value for a brand new
user/unit, just like how it was done in [5].

2.2 Initial Parameter Estimation

To address the stratification issue mentioned in the intro-
duction, the user and unit ratings are differentially initial-
ized based on their respective curricula. Instead of setting
each curriculum’s initial rating value arbitrarily, we want
the values to reflect more closely our prior knowledge of the
distributions of concepts within each curriculum.

We find this prior knowledge in our proprietary conceptual
precedence graph, where units are represented as nodes (ver-
tices) in a directed graph. Each edge (u,v) in the graph is
interpreted as: “An instance of unit u is being used as a step
in solving an instance of unit v.” Hence unit u corresponds
to a prerequisite concept that a user must have mastered
before being able to successfully master unit v.

The key idea in our usage of the graph is that a question
item (corresponding to a specific knowledge unit) that in-
volves one or more steps to solve must in general be harder
than any of the steps themselves. Hence we assign each unit
with a non-negative integer value, which we call “depth,” in
such a way that for every edge, the tail node is assigned
with a lower depth value than the head node. This way, a
concept appearing in a higher grade level would in general
correspond to a higher depth value (since they would gener-
ally incorporate lower-level curriculum concepts as prereq-
uisites), making the depth values roughly signify how “in-
depth” the corresponding concepts are. See Fig. 2 for an
illustration.

We also seek to differentiate among units with no parents
(i.e., concepts with no prerequisites) by imposing that the
depth difference between a unit and its successor be as small
in magnitude as possible, while still ensuring that every unit
has a strictly greater depth value than any of its parents.

From a graph theory perspective, the problem of assigning
depth values can be formulated as a variant of layer assign-
ment problem on a directed acyclic graph G = (V(G), E(G))
with minimal dummy vertices, formally stated as the follow-
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Figure 2: Illustration of assigning depth values to
knowledge units in a simple conceptual precedence
graph. Knowledge units are represented as nodes
(gray ovals). On the right of each oval, a red circle
shows the corresponding depth values assigned.
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Figure 3: Three instances of simple cycles in the con-
ceptual precedence graph used in our study, which
all belong to one strongly connected component. We
found that cycles exist mostly due to the presence of
“gateway units” (shown in cyan ovals), whose main
role is to select which concept to apply from multiple
related concepts.

ing integer linear program (ILP):

min Z d(v) — d(u)

(u,0)€E(G) (1)
st d(w) —d(u) >1 V(u,v) € E(G)

d(v) € Z>o Yv € V(G)

(here, d(v) denotes the depth value assigned to node v). For
a general overview of the layer assignment problem and its
variations, readers are referred to Section 13.3 of [9].

Two challenges arise in initializing rating values through
solving the depth assignment problem. The first challenge is
that our conceptual precedence graph could contain cycles,
such as ones shown in Fig. 3. To address this challenge, we
assign the same depth value to all units in the same strongly
connected component (SCC), noting that any directed cy-
cle is strongly connected. Implementationally, this corre-
sponds to solving the ILP given in (11) on the conceptual
precedence graph’s condensation, which is a directed acyclic
graph formed by contracting each SCC into one node.

The second challenge in assigning depths to nodes on the
conceptual precedence graph is that the graph (and thus also
its condensation) may consist of multiple weakly connected
components (WCCs), which are subgraphs whose underly-
ing undirected graphs are connected. The above ILP assigns
depth values relative only to other SCCs in the same WCC,

so additional steps must be taken to equate the depth value
distributions for each curriculum across all WCCs. In par-
ticular, we label each SCC with the lowest-level curriculum
that features at least one of its constituent units. Next, we
take the smallest number of WCCs that together contain all
curriculum labels. We call this collection of WCCs reference
WCCs. Afterward, we offset the depth value for each SCC in
every non-reference WCC to be at least the minimum depth
value of all SCCs in the reference WCCs that are labeled
with the same curriculum.

Once the adjusted depth values for all SCCs (and thereby
all units) are thus computed, each curriculum’s depth value
is set to be the average depth value of all units in the cur-
riculum.

Below is the summary of procedure for assigning depth d(k)
for each curriculum k € X = {1,..., K}:

1. Let G = (V(G), E(G)) be our conceptual precedence
graph, which is a directed graph such that each node
v € V(G) is associated with a curriculum x(v) € X.

2. Condense G to yield a directed acyclic graph C =
(V(C), E(C)).

3. Let Wy,..., W, be WCCs of C, from largest to small-
est.

4. For each W; = (V(W;), E(W;)), solve the ILP given in
(11) to yield pre-adjustment depth values d;nit(.S) for
each SCC S.

5. Label each SCC S with a curriculum

Xmin (S) vglvl(rls)x(v)

6. Let A = {W1i,...,W,} be the reference WCCs (defined
above), such that r is minimized; i.e., choose no more
WCCs than necessary.

7. For each curriculum k£ € X, let
dmln(k‘) = mln{d(S) ‘ Xmin(S) =k Se U V(Wz)}
i=1

8. For each W; = W,41,...,W,, adjust depth value d(S)
for each SCC S € W; to be at least dmin(Xmin(S)).
However, do so in a way that the adjusted depth values
still satisfy the constraints of the ILP given in (11).

9. We now have the adjusted depth values for every SCC
S € V(C). For each SCC S, let d(v) = d(S) for all
vels.

10. For each k € X, let
d(k) = mean{d(v) | v € V(G), x(v) = k}.

We now give each user s or unit 7 associated with curriculum
k as follows:

where quantities pmin and « are hyperparameters to be op-
timized.



3. EVALUATION

We evaluate our model using a dataset consisting of stu-
dent practice records from January 2016 to December 2019
through our adaptive software used in math learning cen-
ters located throughout the United States. Students are
given problems to practice based on their current grade level
and the content areas where they struggle. The data con-
sists of 5,179,493 records of 10,194 users’ combined attempts
for problems associated with 7,513 knowledge units, ranging
from Grade 2 concepts to Algebra 2 concepts. When a stu-
dent gets a problem wrong in the first attempt, the student
gets to make a second attempt for the same problem after
being walked through the steps; in our analysis, however,
only the first attempt’s result was considered.

For the Glicko-2 model hyperparameters, we used the values
suggested in [8]: 350.0 for the initial RD (in Glicko-1 scale;
[8] shows how to convert between the two scales) and 0.06 for
the initial user volatility. In the case of 7, for which a range
of values is suggested, we used 0.5. The time elapsed from
one attempt to the next, used in rating uncertainty inflation,
is measured in days. Finally, through extensive simulations,
we chose a = 0.2303 and pmin ~ —2.8782, which, in Glicko-
1 scale (on which the values were originally set), are exactly
40.0 and 1000.0, respectively.

Each unit’s associated curriculum was based on the infor-
mation provided in our content management system. For
units appearing in multiple curricula, the earliest curricu-
lum in the sequence was used. For users, due to the lack
of availability of exact registration dates for all users at the
time of the study, each user’s curriculum was set as the cur-
riculum associated with the first unit attempted by the user.
The initial parameters for both users and units were then
set following the procedure described previously.

3.1 Predictive Performance

To assess the predictive performance of our adaptation of
the Glicko-2 rating system, we plotted the change in RMSE
values for every 1,000 records over time (for the rationale
behind the metric choice, see [14]). As the latent trait esti-
mates are calibrated based on student practice records, we
expect the RMSE across the entire system to decay over
time. We see that this is exactly the case in Fig. 4, where
the calibration curve for our model is also reported along
with the reliability and resolution values.

We also report a convergent pattern in unit rating values
and dynamically adjusting user rating values, analogous to
the results obtained in [15], in Fig. 5.

3.2 Gradation of Unit Rating Distributions

We also plot the distributions of the final unit rating values
for each curriculum. We expect that using a conceptual
precedence graph to initialize rating values would cause the
central tendencies of the rating distributions would show an
upward trend as the curriculum level increases. As shown
in Fig. 6, the final ratings computed without the graph-
based rating initialization fail to show an upward trend in
the mean rating values, whereas they do with the graph-
based rating initialization. Also noteworthy is the complete
disappearance of overlap in IQR between two curricula far
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Figure 4: Top: Cumulative RMSE values calculated
at every 1,000 records. For effective visualization,
only results from the first 500,000 records were plot-
ted. Bottom: Reliability diagram with sharpness
graph inserted in the lower right.
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apart from each other, such as Grade 2 and Algebra 2, upon
using a conceptual precedence graph to initialize ratings.

4. DISCUSSION

We have used conceptual prerequisite relationships to give
our model a better prior distribution— one that better re-
flects the stratified nature of student practice data. The
depth values used to calculate the initial rating values, how-
ever, are still quite coarse estimates; for example, the dif-
ference in difficulty between a unit and one of its prereg-
uisite units may not be even across the conceptual prece-
dence graph. Nevertheless, we see that the distribution of
the lowest-level curriculum (Grade 2 in our study) and that
of the highest-level one (Algebra 2 in our study) show a
substantially little overlap compared to when we used the
initialization method of the original Glicko-2 system, which
suggests that there was still a nontrivial improvement. Note
that the separation of unit rating distributions between two
adjacent curricula (for example, Grade 2 and Grade 3) are
not well separated. This is expected, as we would not ex-
pect a huge jump in terms of curriculum difficulty from one
school year to the next.

One interesting area of application of this framework is de-
termining the appropriate grade level for students whose
mathematical achievement levels are substantially ahead or
behind their grade levels. With estimates of item difficulties
that account for grade-level hierarchy, we can have a data-
based justification that would allow gifted students to be
placed at a higher-level curriculum that is neither too hard
nor too easy for them. Likewise, we could allow for students
lagging behind their peers to be placed at a lower-level cur-
riculum, where they could ensure that their foundational
understanding of lower-level mathematical concepts is firm
before moving onto the next grade level. For this applica-
tion, a separate round of validation with external measure-
ments, e.g., standardized test scores, must first take place.

A well-known limitation of using the Glicko rating system
family for educational applications is its inability to model
multiple-choice item correctness probabilities. This is be-
cause the correctness probability of such an item has an
infimum strictly greater than 0, making the corresponding
probability distribution improper. Hence a natural future
direction would be to address this limitation, e.g., by incor-
porating the particle-based method presented in [12].

Another potential threat to the validity of using the Glicko-
2 model for student ability measurement is in its unidi-
mensionality assumption. Part of the challenge of verifying
whether the student response data can be modeled with a
one-dimensional construct in a learning setting is that un-
like in IRT settings, a student’s ability is expected to change
throughout the data collection period. An interesting future
direction would be to investigate whether there is sufficient
evidence to suggest that students’ mathematical ability is
multidimensional, and if so, how a model like the Glicko-2
rating system can be extended to reflect the multidimen-
sionality; the degree to which the extension presented in [1]
can be applied also remains to be seen.

Also, when assigning each curriculum with a depth value,
the average depth values for all constituent units were cal-
culated. In practice, however, as learning software product
continues to expand, units can be added or removed, or their
edge connections may change. Our current choice of taking
an average makes the algorithm sensitive to changes in the
conceptual precedence graph’s internal connectivity struc-
ture. Median may be a more robust, and thus more practi-
cal, choice, though this may come at the risk of decreased
differentiability across consecutive curricula.

S. CONCLUSION

We have presented an adaptation of the Glicko-2 rating sys-
tem in a K-12 math learning software context. The stratified
nature of student-item pairings has made effective discrim-
ination of students and problems across grade levels chal-
lenging. We have shown evidence that by using the prereq-
uisite relationships between concepts to initialize rating val-
ues, we can allow for the gradation of rating distributions
from lower-level curriculum to the higher-level curriculum
while ensuring that the prediction error for student response
correctness still decreases over time. A potential area of ap-
plication is for determining the grade level appropriate for
students substantially ahead or behind their peers.
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