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ABSTRACT

The distributed practice effect suggests that students re-
tain learning content better when they pace their practice
over time. The key factors are practice dosage (intensity)
and timing (when to practice and how in between). In-
spired by the thriving development of image recognition,
this study adopts one of the successful techniques, multires-
olution analysis (MRA), to model distributed and spaced
practice (SP). We consider a sequence of practice sessions
as a signal of the student’s learning strategy. Then, we
apply the stationary wavelet transform (SWT) to extract
practice patterns spaced by three periods: small, medium,
large. The result reveals a positive correlation between the
small-spaced practice and the exam grade. The benchmark
against baseline feature models shows that the SP patterns
significantly improve the goodness-of-fit and complements
the baseline models. This work successfully demonstrates
1) the use of MRA in modeling sequential patterns by event
intensity and event timing; 2) the MRA approach can be
used as an alternative method to improve existing student
models of practice effort.
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1. INTRODUCTION

In the midst of blended and distance learning environments,
it is increasingly important for students to manage their
time efficiently. Numerous researchers have proposed and
developed various student models to capture how students
utilize their time during the learning process. The results
have shown that distributed practice is a simple but effective
time-management strategy for learning [5]. Essentially, dis-
tributed practice comprises the testing and spacing effects,
which suggest that the retention of information increases
when the learner practices retrieving it in multiple spaced-
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out practice sessions [3].

Optimal distributed practice requires a combination of both
the intensity and the timing of the practice events. In other
words, an expressive student model must capture the in-
tensity of practice sessions spaced by different periods. Al-
though the two features appear to be straightforward, it is
not easy to incorporate them in a sequential behavior model.
For example, typical sequence analysis or sequential pattern
mining would expect discrete input data and extract com-
mon patterns in the data according to the sequence sup-
port (the number of occurrences). Finding a meaningful
and interpretable threshold is usually an ad-hoc process and
particularly challenging [4]. A great threshold value may
increase the chance of losing detail, and a small value may
introduce more noises and miss the context. In the case of
distributed practice, when the practice sessions are far apart,
such a frequency-based approach will require more data to
ensure sufficient within- and between-sequences support for
a pattern of interest. To address this modeling challenge,
we are motivated to explore an alternative computational
method to capture the detail as well as the context, which
can capture both the intensity and the timing of events at
the same time.

We rationalize that a student’s practice sessions distributed
over a timeline resemble a signal to her/his learning process
where the strength of learning is quantified as the increasing
or decreasing values about the occurrences of the underlying
events. With this definition, we can utilize a signal process-
ing tool to extract the structural variation which approxi-
mates distributed practice patterns. In this work, we adopt
the stationary wavelet transform (SWT) algorithm for this
purpose. SWT is a widely-used signal processing tool in an
application such as image pattern recognition. The algo-
rithm decomposes an input signal into multiple components
and represents the original signal by information at different
resolutions. With the emphasis on the structure, we believe
that SWT will allow us to overcome the challenge where the
amount of sequential data may not be big enough to main-
tain the sequence support. Additionally, applying SWT as
a feature extraction method also allows us to examine struc-
tural nuances in behavior sequences.

2. RELATED WORK

2.1 Sequence Analysis in Educational Data
Mining



A behavior sequence is a chronicle of an activity. It describes
a collection of events, and the order of them is meaningful.
We can choose different features to characterize such a se-
quence, e.g., types of events, arrangements of events, time
gaps between events. The features directly affect what we
can find out from the analysis. Sequence analysis, in gen-
eral, can refer to any data model that involves a kind of
behavior sequences its characterization. Extensive research
in EDM has been using behavior sequence analysis to model
students’ development of knowledge or skills.

The most intuitive approach is sequential pattern mining,
which aims to discover repeated string patterns, alignments,
or the very next possible items [11]. For example, Gitin-
abard et al. characterize behavior sequences by students’
interactions with online tools [7]. They map the interaction
sequences to study habits and use sequence patterns to dif-
ferentiate the high-performing and low-performing students.
Dermy and Brun argue that the time interval is the key to
model students’ activities [4]. They characterize behavior se-
quences by time intervals between events and formalize the
temporal information in sequential pattern mining. Their
experiment suggests a strong correlation between the stu-
dents’ activities and the time information.

One research gap we notice is that most of the reviewed
works focus on the behavior sequences at a single time scale.
For example, for a given behavior sequence eq, ea, ..., e; where
e; is an event that occurs at time 7. A typical sequence analy-
sis focuses on the relationship of adjacent events e;_1, €;, €41
where j € 1,...;t. Since the step size is 1, sometimes such
a sequence is called 1-sequence. Following this setting, a
pattern must be a consecutive 1-sequences that meets pre-
defined criteria, e.g., the support. One limitation of 1-
sequences is that they cannot capture an inconsecutive event.
Such an inconsecutive event can provide a coarser view of
the behavior sequence, therefore the context. Indeed, we can
try to increase the step size to have 2-sequences, 3-sequences,
or k-sequences where k € Z. Nonetheless, the increment of
step size inevitably reduces the number of k-sequences we
can find in a dataset. This situation may exclude potential
sequences of interest due to the threshold of the support
or the shortage of data. To tackle this challenge, we inves-
tigate an alternative model that focuses on the structural
information of behavior sequences.

3. MULTIRESOLUTION SIGNAL ANALY-
SIS

In pattern recognition, the information of a given object
usually is determined by the variations of signal intensity.
For example, we can recognize a building as a building in
an image because the distinct contours and shapes are for-
mulated by their unique signal value sequences and different
from the other objects. Such signal features are essentially
sequences of values (sets of numbers) where a variation of
intensity could suggest a potential event of interest, e.g., a
change of shapes or colors. However, because the objects
to analyze may have different shapes and sizes, the feature
extraction must consider “how far away” an event is from its
neighborhood to recognize the objects’ structures at mul-
tiple resolutions. The field of computer vision and signal
processing have developed various methods to address this
challenge. One of which is the multiresolution analysis and
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Figure 1: The Decomposition of Multiresolution Analysis.
The process consists of two filters: the high-pass filter H and
the low-pass filter G. They iteratively extract the detail sig-
nal and the approximation signal at the resolution 27 from the
input signal f(z) until a maximum level L. We can associate
the interpretation of the detail signal to the underlying time
scale. For example, say the sampling rate of the input signal
is 1. The detail signal at level 1 (a coarser level) denotes the
information from the frequency band [1/2,1/4].

wavelet transforms, which fit in the scope of this research.

The multiresolution analysis (MRA) is a hierarchical frame-
work that describes how to decompose a signal from fine
to coarse levels [12]. The decomposition consists of a high-
pass filter (H) and a low-pass filter (G). They are a pair of
quadrature mirror filters and have the following relationship:
g(n) = (=1)'7"h(1 — n) [12]. The high-pass filter extracts
impulses, and meanwhile, the low-pass one retains the other
information. This process is also known as Discrete Wavelet
Transform (DWT). By convolution (*), the filtering process
iteratively produces series of detail signals (D,; f(x)) and
approximation signals (A f(z)) for the input signal f(z):

Do f = (f(u) % ¢has (—u))(2'n) (1)
Agi f = (F(u) * ¢2i (—u))(277n) 2)

where n € Z. The high-pass and low-pass filters rely on a
wavelet function (1) and a scaling function (¢) that trans-
late and scale the input signal at different resolutions, re-
spectively. We illustrate the whole filtering process in Fig-
ure 1 for reference. See [2] and [12] for more details about
the math properties of the wavelet function and the scaling
function.

3.1 Analyzing Distributed Practice via Signals
In this study, we focus on the practical implication of MRA
and illustrate how it can help identify students’ distributed
practice patterns. Students, especially those in an online
learning or a blended learning environment, usually have
greater flexibility in self-pacing their studies. In other words,
they can watch the lecture videos and practice quiz ques-
tions anytime at their convenience. This nature makes it
challenging to analyze their behaviors on the timeline.

For example, in scenario A, when a semester is two to three
months long, we may find out that the students’ practice
sessions are sparse and do not follow one unified schedule.
This makes the time of sessions less discriminating in find-
ing common behavioral patterns. Thus, the researcher may
choose to ignore the time feature. An alternative approach
(scenario B) is aggregating the practice sessions by a priori



assumption (e.g., students always study on a week-by-week
basis or right before a deadline). However, all the above ap-
proaches may inevitably lose some detail about how exactly
the students utilize their schedules, either missing discrim-
inating patterns over time (scenario A) or limited to those
strictly abiding by the class-paced schedule (scenario B).

To model students’ distributed practice behavior over time,
his/her behavior can be denoted as a sequence of the events,
f with T discrete time steps: f = {e1,e2,...,er} where ¢;
for 1 < ¢ < T can be any activity event of our interest.
A student distributes his/her practice sessions at different
rates or frequencies according to his/her preferences, path,
or pace. This representation is like a signal and enables the
feasibility to apply a signal processing algorithm.

Similar to the pattern recognition in computer vision, a stu-
dent’s practice sessions are like the shapes and colors that
may evolve according to the sequences of signals. The ses-
sions may have different sizes, i.e., time gaps between any
two sessions. In other words, we aim to extract distributed
spaced practice (SP) that are subsets of the input behavior
sequence: SP, C f where k£ € N and any two consecutive
event items {e;,e;} C SPx are spaced by k time steps. Fol-
lowing this idea, MRA is used to extract such a “feature”
from sequences of practice sessions, and thereby interpret
the output as distributed practice patterns. For a practice
signal at sampling rate = 1/day, the output signals can rep-
resent the information at coarser rates, e.g., 1 per 4 days
and 1 per 8 days.

3.2 Stationary Wavelet Transform

The output of DWT are signals that represent information
at different resolutions (or frequencies). The typical imple-
mentation of DWT keeps downsampling the input signal to
obtain the detail signal and the approximation signal at each
resolution [12]. Therefore, the transform is time-variant.
The detail signal at one level is a half shorter than the one at
the previous level. This property may cause a misalignment
in time/frequency, which will make the decomposition gener-
ate fewer feature values for analysis. In this study, we follow
an alternative implementation of MRA, Stationary Wavelet
Transform (SWT), which is time-invariant. SWT replaces
the downsampling by upsampling at each step [6]. Research
has shown that SWT can improve the approximation and
a preferred approach for applications like breakdown point
detection and denoising [1].

4. DATASETS

To evaluate the method, we use two semesters’ datasets from
the same undergraduate class offered in a four-year univer-
sity in the United States: Spring 2018 (SP18) and Fall 2018
(FA18). Both sessions lasted about 3-month. The class was
a typical lecture-style in-person class with weekly assign-
ments and monthly exams. The two sessions were prac-
tically identical, having exactly the same syllabus, same
instructor, same teaching assistants, except for minor ad-
justments to the exam questions. Note most students in
FA18 shared a similar background in engineering because the
class was a required class for first-year engineering students.
In SP18, there were more students from non-engineering
schools, which resulted in much more diverse student back-
ground.

An online practice platform was introduced to the students
at the beginning and available throughout the semester. On
the platform, students could take multiple-choice questions
to practice and review the class content. For any given prac-
tice question, the students had unlimited chances to retry;
for any attempt, the corrective feedback (correct answer)
would be provided upon submission. The questions served
like so-called “tasks” in the context of tutoring systems [16].
Each of the tasks aims to help the student master some
knowledge (or embedded knowledge components). However,
the practice activity is different from working with assign-
ments: there is no “hard deadline” by which the students
must complete the practice questions. The students can
practice on the platform as a kind of self-assessment [13].
In other words, the activity is “self-paced” [18] and aligned
with the actions of reviewing slides, taking quizzes, or other
practices that students can do for their benefit whenever
they want.

The students’ practice activities were logged as transactions
of events, including the timestamps, the questions, and the
correctness of the attempts. We processed and transformed
the data into sequences of daily practice intensity. Here, the
term “intensity” refers to the number of unique questions
solved by a student. Each day is assumed to be a complete
practice session. The sequence of daily intensity thereby
resembles a discrete-time signal sampled at a constant rate
equal to 1 sample per day. We excluded some students’ data
from the analysis due to low usage (those who only had only
one practice session throughout the semester). An overview
of the datasets is described in Table 1.

In this study, the exam letter grade is used as the students’
learning performance index. The exam letter grade ranges
from A (M > 90), B (80 < M < 90), to C/D/F (M < 80)
where M is the raw average of three exam scores.

5. REPRESENTING DISTRIBUTED PRAC-
TICE BY SWT SIGNALS

There are several parameters required for our model pipeline:
the wavelet for SWT, the padding scheme, the maximum
decomposition level, and the penalty of change point detec-
tion. The Haar wavelet is adopted in the SWT algorithm
implementation, due to the simplest form of wavelet [14]. It
creates a shape like a step function that produces 1, 0, and
-1, following the formula

1 ifo<z<g
-1 ifi<z<1 (3)
0 otherwise

P(x) =

This property makes it a good option for detecting edges
(e.g., sudden signal transitions or changes) [17] in discrete
signals like the datasets in this study. The implementation
of SWT used in this study requires the length of input to be
a multiple of 2% where L is the maximum number of levels to
decompose [9]. To meet this requirement, we preprocessed
all input sequences by adding a prefix of zeros. In our ex-
periment, we found that the SWT signals at L. > 3 did not
work. It was likely due to short input sequences. Therefore,



Dataset | # of Students | # of Included | Max Length of Sequence (Days) | # of Questions | M (SD) of Intensity
SP18 121 76 (63%) 93 96 0.26 (0.36)
FA18 200 67 (34%) 82 95 0.32 (0.49)

One Student Per Row

D1 band = [2d, 4d)

One Day Per Column

Table 1: Statistics of the Two Datasets

D2 band = [4d, 8d)

One Day Per Column

D3 band = [8d, 16d)

One Day Per Column

Figure 2: The SWT Signals in the SP18 Dataset. From left to right, the SWT signals D1, D2, D3 capture practice sessions in
the period bands [2d, 4d], [4d, 8d], and [8d, 16], small-, medium- and largely-spaced respectively. These signals capture practice
sessions spaced by different periods. From D1 (more detail) to D3 (more context), we can see the focus gradually spreads out
when the level increases. For readability, the plot excludes practice sequences not having any change points in the SWT signals.

we set L = 3 in our experiment. Once the SWT algorithm is
built, we applied the change point detection algorithm with
the penalty = 0.5 to search for sudden changes in the SWT
signals [8]. We decided on this penalty value by maximizing
the group difference (Section 5.2) and the goodness-of-fit of
regression (Section 6.2). The experiment program and data
are available at the link for future work®.

5.1 Characteristics of SWT Signals

The SWT algorithm decomposes the input signal by multi-
level filtering. Filtering at a level k extracts information at
the frequency band [1/2* f,1/25! f] where f is the sampling
rate of the input. In our datasets, because the sampling
rate is 1 sample per day (1 cycle per day), the three de-
composition levels (Dk where k = 1,2,3) filter the input in
the frequency bands [1/2,1/4], [1/4,1/8], and [1/8,1/16]. In
other words, the algorithm filters the input into the period
(the duration of time of one cycle) bands D1=[2(d)ays, 4d],
D2=[4d, 8d], and D3=[8d, 16d]. We map these three bands
to small-spaced, medium-spaced, and largely-spaced prac-
tice patterns, respectively. Following this interpretation, we
expect the SWT signals to identify students’ practice ses-
sions spaced by different periods. For example, D1 can iden-
tify sessions spaced by 2 to 4 days, which are small-spaced
practice.

To further illustrate this characteristic, Figure 2 demon-
strates what the algorithm found in the SP18 dataset. The
visualization shows the SWT signals at the three levels. We
can see that D1 highlights small-spaced practice sessions.
The D2 and D3 signals spread their focus and “blur” the se-
quences not fitting their period bands. Note, there may be
redundancy in the information captured by different compo-
nents. For example, an input sequence having meaningful
change points in D3 can also have ones in D1. Overall,
the information about practice sessions at different levels
provides an insight into how the students distribute their
practice over time. In our analysis of distributed practice

"https://github.com /rickchung/edm21-msa

patterns, we use the number of change points as the feature
to represent the information from the three SWT signals.

For readability, we use the lower bound of the frequency
band to denote the spaced practice patterns. We call the
practice patterns found in the D1, D2, D3 signals 2SP (2-day
spaced practice), 4SP, and 8SP patterns, respectively. For
reference, the input daily practice sessions are called 1SP. In
the SP18 dataset, the means (M) / standard deviation (SD)
from the three levels are 2SP = 1.83/2.68, 4SP = 1.79/2.63,
and 8SP = 1.75/2.63. In the FA18 dataset, the values are
2SP = 1.12/2.29, 4SP =1.27/2.14, and 8SP = 1.37/2.30.

5.2 Marginal Relationship of Spaced Patterns

with Exam Grades

We analyzed the relationships between the practice pat-
terns and student grades by the marginal distribution. The
Kruskal-Wallies H-test was applied to test if the groups had
the same population median (Figure 3). The method was
selected because the sample size was small, and therefore
the sample might not follow the normal distribution. The
results showed that there was only 2SP that appeared to
be significant for both datasets (SP18: H=8.89, p=0.01;
FA18: H=7.95, p=0.02). The visualization of the distri-
bution showed that in SP18 A students had a higher 2SP
(M = 3.12, SD = 3.11) than C (M = 1.50, SD = 2.32) and
B (M = 0.72, SD = 1.79); in FA18, the B students had a
higher value (M = 2.17, SD = 3.05) than A (M = 0.62, SD
= 1.50) and C (M = 0.41, SD = 1.14).

There are more spaced patterns discovered for B students
in FA18 but not A students, which suggests there could
be other factors in the correlation of their practice with
even higher exam grades. For example, engineering and
non-engineering students may have/need different practice
strategies adapted to their learning conditions. Despite this
slight difference across the two semesters, if we focus on the
difference between the higher-performing students (A/B)
and the C/D/F ones, the result consistently suggests a posi-
tive correlation between exam grades and small-spaced prac-
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Figure 3: Marginal Distribution of the SP patterns from the
Three Grade Groups. The Kruskal-Wallies H-test found that
only 2SP was significant in both datasets. The result consis-
tently showed that higher-performing students (A in SP18 or
B in FA18) had more small-spaced practice than the C/D/F
ones in SP18 and FA18.

tice.

5.3 Quantifying the Schedule of Distributed

Practice

We have seen how the SP patterns can help identify practice
spaced by different periods. However, this feature alone does
not depict the entire picture of distributed practice strate-
gies. Another key factor in the distributed practice effect is
the timing of practice. We develop an index to quantify the
skewness in practice schedules and investigate its correla-
tion to exam grades. One simple measure of the skewness is
the lag time. We can use the lag time between the occasion
of a practice session and a specific event of interest (e.g.,
exam dates, assignment deadlines) to model the schedule
skewness. Due to programming is inherently accumulative,
a later exam covers the content from all the previous ex-
ams, we cannot assert that a practice session only affects
the upcoming exam. Considering this case, we focus on the
time lag since the beginning of the semester. Specifically,
for an SWT signal at level i, D;, we can compute the lag of
days between the start of the semester and the occurrences
of change points. Then, we can transform a practice se-
quence into a sequence of lags {T1D1‘,T2D"',T3D"7 ...,TnDi}. To
know where on the timeline the student has more practice,
we compute the sample mean, ,u?i. The number, therefore,
represents how far the schedule is away from the beginning
of the semester. We further divide the number by the total
number of days (Ngqy) in the semester for interpretation.
The equation of the schedule skewness is defined as

D;

Hp
SS = 4
Ndays ( )

When a student has all his/her practice sessions early in the
semester, SS will be close to zero. If s/he has more practice
sessions over the middle of the semester, SS will be some
value over 0.5. We can apply the formula to the input signal
(1SS) and the SWT signals (2SS, 4SS, 8SS). The result will
indicate the schedule of different spaced-practice patterns.

6. MIXED PRACTICE EFFECTS IN MUL-
TIVARIATE ANALYSIS

A distributed practice strategy is multifaceted. The univari-
ate analysis is insufficient because it does not consider the
confounding variables. There are two cases remain unclear.

SP18
Practice Intensity Practice Timing
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Figure 4: The Standardized Values (Means) and the Inter-
actions of the Basic and Experiment Features. The plot
groups the features into intensity and timing according to
their functions. The y-axis shows the standardized values (by
(X — Mx)/SDx in each feature category X) for between-
features comparison. The vertical dashed lines separate the
basic and experiment features. The A students in SP18 have
the highest Totallntensity. On the contrary, the B students
in FA18 have the highest Totallntensity. Although the basic
features somehow correlate with the experiment features, we
can find more discriminating differences in the experiment
spaced-practice patterns.

First, the C/D/F students from SP18 do not have better
performance, even though they put efforts into practice just
like the better performing students do (A students). Second,
in FA18, the analysis does not explain the practice strategy
of the A students. They achieve a good grade but do not
show significantly more SP. These cases suggest that there
could be other factors in the distributed practice effects.

Following this idea, we try to use multivariate analysis that
includes experiment SWT features and commonly-used ba-
sic features. The basic set comprises the following. For
the practice intensity, we use the total number of questions
solved (Totallntensity) and the total number of daily prac-
tice sessions (1SP). For the practice schedule, we use the
standard deviation of the daily intensity (SDIntensity) and
the SS of daily practice sessions (1SS). For reference, we plot
the standardized values of the features in Figure 4. The fig-
ure shows that although the basic features correlate with the
experiment features, we can potentially find more discrim-
inating difference in the spaced practice patterns between
the grade groups.

6.1 Assessing the Marginal Effects by Multi-

nominal Logit Regression
To understand the relationship between multiple feature and
exam grades, we use the multinominal logistic regression and
investigate the marginal effects of the feature values. The
multinominal logistic regression (MLogit) is a generalized
version of the logistic regression for multiclass classification
problems [15]. We can use MLogit when the dependent vari-
able in a query is nominal (categorical) and has more than
two possible categories. The setup of MLogit is similar to
the logistic regression. We assume a linear relationship be-
tween the independent variables (predictors), X, and the
dependent variable (response), Y, and model the probabil-
ity of the Y € {y1, ..., yx} by the logistic function (sigmoid)



and k-1 sets of weights (wy, for the label yx):

B exp(wro + Y, WriXs)
1+ 32 exp(wjo + 32, wjiXi)
(5)

We can obtain the prediction by picking up the class with
the highest probability. The main advantage of MLogit over
other classification techniques is the interpretability. We can
explain the contribution of individual features to the output
probability (dz/dy) similar to the linear regression [15]. In
the analysis, we set Y as the grade groups (A, B, C/D/E)
and examine the marginal effects with respect to X when
the model fits different sets of predictors.

P(Y = yle = Xl,...7Xn)

6.2 Comparing Alternative Models

To understand the capability and limitation of the SWT
model of distributed practice, we use MLogit to fit various
baseline and experiment feature sets. Afterward, we bench-
mark the quality of these models by the goodness-of-fit. Due
to MLogit does not use the standard R?, we use the mea-
sure of the goodness-of-fit by McFadden’s pseudo R> [10].
McFadden’s pseudo R? uses the formula

In L(Mfu”)

R?=1- — 1t
In L(Minte'rcept)

(6)

where L is the estimated likelihood. A small ratio of the
two log-likelihoods (or a large McFadden’s pseudo R?) sug-
gests that the full model is better than the intercept model.
We can use this measure to benchmark one model against
another if they fit the same data.

We compared the experiment and alternative baseline mod-
els. The result showed that none of the baseline models
were competitive with even the simplest SWT model (using
only 2SP, 4SP, 8SP). The best baseline model (Mpaseaur)
used all the baseline variables and achieved R? = 0.04 in
SP18 and R? = 0.07 in FA18. The simplest SWT model
(MEzpDose) achieved R? = 0.07 in SP18 and R? = 0.09 in
FA18. The best experiment model (Mgzpai) used all the
SWT variables and achieved R? = 0.12 in both SP18 and
FA18. Using all the baseline and experiment variables, the
ensemble model (MEgnsembie) unsurprisingly outperformed
all the other models and achieved R? = 0.13 and R? = 0.23
in SP18 and FA18, respectively.

6.3 Marginal Effects in the Regression

Models

In SP18, MEzppose found 2SP was a significantly-positive
predictor for the A students (dz/dy = 0.07, p = 0.01).
MEgzpau also found that 2SP was a significant predictor
for the A students (dz/dy = 0.10, p = 0.00). Besides, it
found 4SS and 8SS were significant for the C/D/F students
(dz/dy = 2.55, p = 0.02; dz/dy = -2.58, p = 0.03). In FA18,
MEzpDose found 2SP was significantly-positive predictor for
the B students (dz/dy = 0.12, p = 0.00). Mgapau, however,
did not find any significant predictor.

Part of the result is similar to the analysis of marginal distri-
bution. In SP18, an increase of small-spaced practice adds
to the likelihood of A. In FA18, the same effect works for
B. It is worth noting an additional finding in Mgnsemble
from SP18. When we control the intensity and SS, the
model shows two extra significant predictors for the grade
C/D/F: 4SS and 8SS. The marginal effect suggests that an
increase/decrease in 45S/8SS adds to/reduces the likelihood
of C. Since an increase in SS means the schedule becomes
later in the semester, these two findings somewhat suggest
the same thing: students who practice early and space the
practice largely are less likely to obtain C/D/F.

It is also worth noting that the one in FA18 improves the
most from the best experiment model and reaches R? =
0.23. When predicting the A students, the model shows
1SS (dy/dxz = 1.01, p = 0.00) and the total intensity (dy/dz
=-0.02, p = 0.04) are significant predictors; when the model
predicts the C students, 1SS is the only significantly-negative
predictor (dy/dx = -0.90, p = 0.01). We do not find the
same effect in any of the baseline models. The result com-
plements a missing part of our analysis about the A and C
students’ practice strategies in FA18. It suggests that an
increase in 1SS adds to the likelihood of A. Conversely, the
same increase reduces the one of C/D/F. In other words,
more early or late practices in the semester may reduce or
improve the probability of C/D/F or A, respectively.

7. CONCLUSIONS

Students’ practice behavior is challenging to model because
they can practice anytime and do not necessarily follow a
unified schedule. This study aims to build such a feature
model that can help researchers describe the distributed
practice behavior. We adopted the method from multireso-
lution analysis to extract patterns of our distributed prac-
tices, focusing on two factors in the distributed practice ef-
fect: intensity and timing. In the experiment, we applied
the MRA model and extracted features that could repre-
sent practices spaced by different periods, including small
(2-4 days), medium (4-8 days), and large (8-16 days). These
three kinds of practice patterns were analyzed to explain
their correlation to the exam grades. We found that stu-
dents who practiced early and spaced the practice by the
small and large periods were more likely to get a higher grade
than C/D/F. Also, the students having more small-spaced
practices throughout the semester (i.e., practicing more per-
sistently) were more likely to get better exam grades. Addi-
tionally, the MRA model was benchmarked against baseline
models. The result showed that the MRA model not only
achieved a better goodness-of-fit than the baselines when
working alone, but it could complement a baseline model
and achieve better performance.
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