
Automatic Assessment of the Design Quality of Python
Programs with Personalized Feedback

J. Walker Orr
George Fox University

jorr@georgefox.edu

Nathaniel Russell
George Fox University

nrussell18@georgefox.edu

ABSTRACT
The assessment of program functionality can generally be
accomplished with straight-forward unit tests. However, as-
sessing the design quality of a program is a much more dif-
ficult and nuanced problem. Design quality is an important
consideration since it affects the readability and maintain-
ability of programs. Assessing design quality and giving
personalized feedback is very time consuming task for in-
structors and teaching assistants. This limits the scale of
giving personalized feedback to small class settings. Fur-
ther, design quality is nuanced and is difficult to concisely
express as a set of rules. For these reasons, we propose a
neural network model to both automatically assess the de-
sign of a program and provide personalized feedback to guide
students on how to make corrections. The model’s effective-
ness is evaluated on a corpus of student programs written
in Python. The model has an accuracy rate from 83.67% to
94.27%, depending on the dataset, when predicting design
scores as compared to historical instructor assessment. Fi-
nally, we present a study where students tried to improve
the design of their programs based on the personalized feed-
back produced by the model. Students who participated in
the study improved their program design scores by 19.58%.

Keywords
Assessment, neural networks, intelligent tutoring

1. INTRODUCTION
Recently there has a been a lot of work in the development
of tools for education in programming and computer science.
Specifically there are many systems for intelligent tutoring
which are designed to help students learn how to solve a
programming challenge. The tutoring involved is primarily
focused in suggesting functional improvements, that is, how
to finish the program so that it works correctly.

Intelligent tutors such as [4] uses reinforcement learning to
predict a useful hint in the form of an edit to a student’s

program that will get them one step closer to the goal of
a functioning program. It uses histories of edits made by
students, starting with a blank slate and ultimately termi-
nating with a functional program to train the model. The
system is based on Continuous Hint Factory [9] which uses
a regression function to predict a vector that represents the
best hint then translates that vector into a human-readable
edit. Similarly [11] used a neural network to embed pro-
grams and predict the program output. Using that model of
the program output, an algorithm was developed to provide
feedback to the student on how to correct their program.
Also, [16] use a recurrent neural network to predict student
success at a task given a history of student submissions of
their program for evaluations.

All these systems model student programs from Hour of
Code [2]. Hour of Code is a massively open online course
platform that teaches people how to code with a visual pro-
gramming language. The language is simple and does not
contain control constructs such as loops.

Moreover, the combination of language and problem setting
are simple enough that there is a single or very few func-
tional solutions for each problem [4]. This level of simplic-
ity precludes the consideration of program design. However
for general purpose programming languages such as Python,
there are many ways of creating functionally equivalent pro-
grams. It is important for the sake of maintainability, mod-
ularity, clarity, and re-usability that students learn how to
design programs well.

When it comes to the quality of design, there are varying
standards. Further, some standards are more objective or
easier to precisely identify that others. For example, the use
of global variables are both widely recognized as poor design
and are easy to identify. For some programming languages,
“linters” exist to apply rules to check for common design
flaws. For Python, Pylint [12] is a code analysis tool to
detect common violations of good software design. It detects
design problems such as the use of global variables, functions
that are too long or take too many arguments, and functions
that use too many variables. Pylint is design to enforce the
official standards of the Python programming community
codified in PEP 8 [15].

There are aspects of good design that are difficult to iden-
tify. For example, simple logic is a good design idea, but is
quite nebulous. The complexity of a program’s logic is con-

textual, it entirely depends on the problem the program is
solving. Also, modularity is universally judged as a quality
of good design, however it is not always clear to what extent
a program should be made modular. How many functions
or classes are too many? Again, it depends on the context
of the problem for which the program is designed.

In a professional setting, code reviews are often practiced
to promote quality design that goes beyond the straight-
forward rules of “linters.” Code reviews are a manual pro-
cess which require a lot of human effort. A recently de-
veloped system call DeepCodeReviewer [5] automates the
code review process with a deep learning model. By using
proprietary data on historical code reviews taken from a Mi-
crosoft software version control system, DeepCodeReviewer
was trained to successfully annotate segments of C# code
with useful comments on the code’s quality.

However, to our knowledge, there is no system to perform
in-depth code analysis for the purposes of evaluating and
assessing design for general purpose languages in an edu-
cational context. The process of assessing the design of a
program is time consuming for instructors and teaching as-
sistants and it is an important component of complete intel-
ligent tutoring system. Such a system needs to be adjusted
or calibrated for the context of particular problems or assign-
ments since there are important aspects of software design
are context dependent. Moreover the system needs to match
the particular standards of an instructor. Hence we propose
a system that models design quality with a neural network
trained on previously assessed programs.

1.1 Our Approach and Contribution
We propose a design quality assessment system based on a
feed-forward neural network that utilizes an abstract syntax
tree (AST) to represent programs. The neural network is
a regression model that is trained on assessed student pro-
grams to predict a score between zero and one. Each feature
the model uses is designed to be meaningful to human in-
terpretation and is based on statistics collected from the
program’s AST. We intentionally do not use deep learning
as it would make the representation of the program difficult
to understand. Personalized feedback is generated based
on each feature of an individual program. By swapping a
feature’s value for an individual program with the average
feature value of good programs, it is possible to determine
which changes need to be made to the program to improve
is design. The primary contributions of this work are the
following:

• The first to explicitly predict the design quality of
programs in an educational setting to the best of our
knowledge.

• High efficacy with an accuracy from 83.67% to 94.27%
with only small amounts of training data required.

• The first intelligent tutoring system for design quality
for Python.

• Personalized feedback without the explicit training or
annotation.

...

Input
Layer

Hidden
Layer

Output
Layer

...

Figure 1: The model of program design quality, a feed-
forward neural network. The“Input Layer”is the feature vec-
tor created from the AST. The “Hidden Layer” corresponds
to calculation of x′ specified in Equation 1. Finally, the “Out-
put Layer” produces a single value, the design score as found
in Equation 2.

2. METHOD
The task is to predict a design quality score for a student
program written in Python. The score y is a real number
between zero and one. The program is represented by a
feature vector ~x produced by the output of a series of feature
functions computed from the program’s AST.

For an AST T , a series of feature functions fi((T) output
is concatenated in to a feature vector ~x that represents key
aspects of the program’s design. The model g(~x; Θ) is a
feed-forward neural network with a single hidden layer. It
is a regression model that predicts the score y based on the
feature vector ~x and parameters Θ.

2.1 Features
Despite recent advances in deep learning, we chose to repre-
sent the student program with feature functions computed
on its AST. Deep learning is highly effective at learning use-
ful feature representations of everything from images to time
series to natural language texts. However, deep learning also
requires large amounts of data and in this setting the quan-
tity of manual annotated student programs is limited.

Additionally, AST are a natural and effective means of rep-
resenting and understanding programs and can be created
with free, available tools. An AST is an exact representation
of the source code of program based on the programming
language’s grammatical structure. Producing an AST rep-
resentation of a programming language is an essential first
step in compilers and interpreters. The AST of a program
contains all the content of its source but also is augmented
with the syntactic relationships between every element. A
parser and tokenizer to produce an AST for the Python pro-
gramming language is provided by its own standard library.
This makes the AST the natural representation to use, since
it is free, convenient, exact, interpretable, and does not re-
quired any additional data. In contrast, deep learning would
require a large amount of data to effectively reproduce the
same representation.

Prior to representation as an AST, a program must first be
broken into a series of tokens via the process of lexicaliza-

FunctionDef

Assignment

Store
total

Constant
0.0

For-loop

Assign
=

Store
value

Load
values AugAssign

Return

Store
total

Load
value

Add
+

BinaryOp

Division
/

Load
total

Call
len

Load
values

Arguments
values

def avg(values):
 total = 0.0

 for value in values:
 total += value

 return total / len(values)

Figure 2: An abstract syntax tree for a segment of Python code that computes the average of the values in a list. The AST has
been condensed for the sake of brevity and the restrictions of space. The related code segment is shown in blue.

tion. Lexicalization is the process of reading a program,
character-by-character and dividing into work-like tokens.
These tokens are also assigned a type such as a function call
or variable reference. The grammatical rules of the language
are applied to the lexicalized program to create the AST. In
an AST, the leaf nodes of the tree are the program’s tokens
while the interior nodes correspond to syntactic elements
and constructions. For example, an interior node could rep-
resent the body of a function or the assignment of a value
to a variable. An example of an AST is found in Figure 2.

Given that an AST is a complete representation of a pro-
gram, it is a natural basis for assessing the quality of a pro-
gram’s design. Deep learning may be able to automatically
learning the same key syntactic relationships with enough
data, however this information is simply available via AST.
Further, features computed from the AST will be human in-
terpretable unlike a representation produced by deep learn-
ing.

The features we created are all based on statistics collected
from a program’s AST. Some consist of simply counting the
number of nodes of a given type, for example, the number
of user defined functions. Other feature functions are based
of subsections of the AST, such as the number of nodes per
line or per function. Finally, some features are ratios or
percentages such as the average percent of lines in a number
in a function that are empty. All of the features are relatively
simple and fast to compute, yet generally capture the design
and quality of a program. Each of the feature functions
fi(T) we defined can be found in Appendix A.

2.2 Model
The model is a feed-forward neural network [13] with a single
hidden layer and single neuron in the output layer. The
model’s structure is illustrated in Figure 1. The values of
the input layer are the feature vector ~x. Each neuron in the
hidden layer x′j defined with the following equation:

x′j = ReLU

(d∑
i=1

wi,jxi

)
(1)

where d is the dimension of ~x and wi,j ∈ Θ are the param-

eters, “weights” of the neuron. We use the ReLU [8] as the
activation function for the hidden layer neurons. The final
prediction of the design score is made by the output layer’s
single neuron:

y = σ

(d′∑
j=1

wjx
′
j

)
(2)

where d′ is the number of hidden layer neurons and wj ∈ Θ
are weights of this neuron. The function sigmoid is used
because its domain spans from (−∞,∞) but its range is
[0, 1] which ultimately guarantees the model always outputs
a valid score. The model is trained with mean squared error
as the loss function:

MSE =
1

n

n∑
k=1

(y∗k − yk)2 (3)

where y∗k is the ground-truth design score for the kth instance
i.e. program and n is the number of instances in the training
data. The model is trained with the ADAM algorithm [7]
and each parameter in the model was regularized according
to their L2 norm [6]. For all our experiments, a hidden
layer of size 32 was used. The model was trained for 250
epochs and the model from the best round according to a
development set was selected for our experiments.

2.3 Ensemble
Due to the fact that fitting neural networks to data is a lo-
cal optimization problem, the effect of initial values of the
parameters Θ of the model remain after training. The pro-
cess of training a neural network will produce a different
model given the same data. This variation in the results of
a trained model is particularly pronounced when the train-
ing data set is relatively small. To address this variation
and mitigate its impact an ensemble of models can trained,
each with different initial parameter values. Each model is
independently trained and a single prediction is made by a
simple of the average of individual predictions i.e.

y =
1

m

m∑
l=1

yl (4)

where m is the number of models and yl is the prediction
of the lth model. For our experiments, an ensemble of 10
models was used.

2.4 Personalized Feedback
The goal of intelligent tutors is to provide personalized feed-
back and suggestions on how to improve a program. The
most straight-forward means of providing feedback would
be to simply predict which possible improvements apply to
a given program. However, training a model to directly pre-
dict relevant feedback would require a dataset of program
with corresponding feedback and such a dataset can be hard
to find or is expense to construct.

In order to avoid the need for a dataset with explicit feed-
back annotation, we use our model, trained on predicting
design score, to evaluate how changes in program features
would lead to a higher assessed score. Using the training
data, we compute an average feature vector ~x of all the
“good” programs i.e. those with a design score greater than
0.75. To generate feedback for a program, its feature vector
~x is compared to the average ~x. For each feature, a new
vector ~x′ is created by replacing the feature value xi with
value with the average’s value xi. This process is setting up
a hypothesis, what if the program was closer to the average
“good” program with regards to a particular feature? To

answer this, the trained model g(~x; ~θ) is used to predict a

design score for the new vector i.e. y′i = g(~x′; ~θ). By compar-
ing the original score of the program y with the new score y′i,
the hypothesis can be tested. If the new score y′i is greater
than the original predicted score y, then the alteration of
xi to be closer to xi is an improvement. Feedback based
on this alteration is recommended to the student as person-
alized feedback. Since each feature in ~x is understandable
to a human, feedback is given in the form of the suggestion
to increase or decrease particular features. The suggestion
for alteration is based on the comparison of xi versus xi, if
xi > xi, the feedback of decrease xi is given. In the other
case, where xi < xi the feedback is to increase xi. Based
on the feature and the feedback of increase or decrease, a
user-friendly sentence is selected from a table of predefined
responses. For example, if xi is the number of user defined
functions and xi = 3, x = 5, and y′i > y then the feedback of
“increase the number of user defined functions” is created.

3. EXPERIMENTS
The system was evaluated in two different experimental set-
tings. The first evaluation is direct test of the model’s ac-
curacy on known design scores. For this, several different
datasets and settings were compared against several base-
lines. The second evaluation is a small study of how stu-
dent’s responded to the system’s feedback. Students were
given feedback on the quality of their programs based on
the model. They were given the chance to correct their
programs after receiving feedback and have it manually re-
assessed.

3.1 Dataset
The dataset was collected over three years from an intro-
duction to computer science course which teaches Python 3.
It consists of four separate programming assignments which
involve a wide range of programming skills. The simplest

is “Travel,” an assignment that involves the distance a ve-
hicle travelled after going a constant speed for a specified
duration. There are 118 student programs for “Travel.” The
next assignment, “Budget” is a budgeting program that lets
a user specify a budget and expenses and determines if they
are over or under their budget. 168 student programs were
collected for “Budget”. The third assignment in the dataset
consists of creating a program to play “Rock-Paper-Scissors”
against the computer. For this assignment, there are 111
student programs. The last assignment is programming the
classic casino game “Craps” which involves rolling multiple
dice and placing different types of bets and wagers. This
assignment has 120 collected student programs.

All the assignments require the student to write the pro-
gram from scratch in Python 3. The programs are to have
a command-line, text-based interface and user validation.
Students are required to use if-statements, loops, user de-
fined functions. The “Craps” program also requires the stu-
dent to do exception handling, and file I/O. A requirement
of the program was to maintain a record of their winnings
across sessions of playing the game, hence the results were
required to be stored to a file. Also, the standards of design
quality go up as the course progresses and since “Craps”
is the last assignment, it has the highest standards. Each
student program has an associated design score that was
normalized to value between zero and one.

3.2 Baseline Methods
The model is compared against a variety of baseline regres-
sion methods. The simplest is linear regression, which sim-
ply learns a weight per each feature. Next is a regression
decision tree which is trained with the CART algorithm [1].
It has the advantage over linear regression in that it can
learn non-linear relationships. Non-linearity means a model
can learn “sweet-spots” rather than simply having a “more is
better” understanding of some features. For example, hav-
ing some modularity in the form of user defined functions
is good, however, too many is cumbersome. The “correct”
number of user defined functions likely should fall into a rel-
atively small range. Model selection on the maximum depth
of the tree with a development set was used to determine
that 10 was the best setting.

However, both of these models have the issue that they are
not constrained to produce a score between zero and one,
their prediction can be any real number. Hence another
baseline method was used, created to be an intermediary
step between linear regression and the neural network model.
It is a linear model with a sigmoid transformation which
guarantees the output be between zero and one. This model
is effectively the final layer of the neural network model, i.e.
the neural network without the hidden layer. The model is
specified by the equation:

y = σ

(d∑
i=1

wi,jxi

)
(5)

This model is also trained with ADAM [7]. All the baseline
models and the neural network are trained with MSE as the
loss function.

Method Travel Budget RPS Craps Combined
MSE Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE Accuracy

Linear Regression 0.009 93.09% 0.032 87.43% 0.038 83.2% 0.043 84.06% 0.027 87.03%
Decision Tree 0.018 90.10% 0.031 87.26% 0.078 77.33% 0.072 79.41% 0.076 81.42%
Sig. Linear Regression 0.022 89.60% 0.046 85.13% 0.086 77.91% 0.063 81.43% 0.070 80.64%
Neural Network 0.007 93.48% 0.024 88.48% 0.041 83.9% 0.08 79.57% 0.033 85.61%
Ensemble 0.005 94.27% 0.022 90.14% 0.022 87.66% 0.053 83.67% 0.031 86.99%

Table 1: Design Score Prediction Results

3.3 Results
The model was compared versus each baseline in five differ-
ent settings: the “Travel”, “Budget”, “Rock-Paper-Scissors”,
and “Craps” programs, and a combined dataset which in-
cludes all the programs. The results of the experiments can
be found in Table 1. Each model is evaluated according to
two different metrics: MSE and average accuracy. Average

accuracy is defined as 1
n

n∑
k=1

(
1− |yk − y∗k|

)
.

Overall, the decision tree and the sigmoid-transformed were
clearly the two worst models. This was surprising since deci-
sion trees are generally thought to be strictly more powerful
than linear models. However, decision trees look for highly
discriminative features to partition the data into more con-
sistent groups. The under-performance of the decision tree
possibly indicates that none of the features were especially
indicative of a good or bad design on their own. Instead,
the quality of a program is better described by a collection
of subtle features, which gives credence to the belief that
design quality is nuanced.

The reason sigmoid-transformed linear model under-performed
linear regression was likely due to it being trained with
ADAM. ADAM does not guarantee convergence to a global
optimum like the analytical solution to linear regression.
Apparently the restriction on predictions to be within the
specified range of zero to one was not important.

Linear regression did surprisingly well, beating both the neu-
ral network and network ensemble in the “Craps” and com-
bined datasets, though barely. In those cases, the differ-
ence between the ensemble and linear regression was less
than a percent. This is likely due to the stability of lin-
ear regression’s predictions. Though linear regression does
not have the power and flexibility of neural networks this
can also be a benefit by limiting how wrong their predic-
tions are. Neural networks and even ensembles can make
overconfident predictions on outliers or other unusual cases.
The “Craps” dataset contained the most complex programs
and it is likely a handful of predictions significantly brought
down the average.

The network ensemble outperformed the single neural net-
work in every case, which is to be expected. The margin of
improvement of the ensemble versus the single neural net-
work in accuracy on the four individual program datasets
ranged from 1% to 4%. The network ensemble did the
best overall by being the best in most cases or coming in a
close second in all the other cases. The importance of using
an ensemble is evident on the “Craps” dataset where the in-
dividual neural network under-performed significantly. On

the other datasets, the neural network outperformed linear
regression by a small margin, but on “Craps” the neural net-
work model under-performed the linear regression model by
5%. Again, this is most likely due the instability and vari-
ability of neural network predictions i.e. small differences
in features can lead to a large difference in the prediction.
In the “Craps” dataset, the improvement of the ensemble
over the single neural network model illustrates the relative
stability of the ensemble’s predictions. In every case, the
ensemble is superior to the single neural network and had
the best overall performance by producing the most accu-
rate results on three of the datasets and effectively tying for
the best on the other two.

One noticeable pattern was that all the models performed
better on the “Travel” and “Budget” datasets than on the
“RPS”, “Craps”, and combined datasets. Universally, the
most difficult dataset was “Craps” which likely lowers the
accuracy on the combined dataset. Due to the shifting stan-
dards and expectations of student assignments, a model per
assignment appears to worthwhile. This is a bit counter-
intuitive since there are many common standards and ex-
pectations across assignments.

Overall, the network ensemble produced reliable, accurate
results when trained per dataset. The accuracy of the en-
semble is arguably close to being useful in practical applica-
tion. Further, comparing the scores of an instructor versus
another instructor or even against themselves, the rate of
agreement must be less than 100% and with an accuracy of
the network ensemble ranging from 83.67% to 94.27%, the
model’s accuracy is possibly close to a realistic ceiling.

3.4 Feedback Study
In order the evaluate the effectiveness of the personalized
feedback, we conducted a small study on the effect of the
feedback on the design score of student programs. For the
“Rock-Paper-Scissors” program the network ensemble was
used to generate personalized feedback for the student pro-
grams instead of the usual instructor feedback. The network
ensemble was the same as used in the design score experi-
ments, it was trained with prior years worth of student pro-
grams. Having received the personalized feedback, students
opted into correcting their program for extra credit on their
assignment. The feedback was in form of a series of com-
ments, where each comment was “increase” or “decrease” the
name of a feature as described in Section 2.4.

The class is an introduction to computer science course with
multiple sections and two different instructors. Students
from both instructors participated in the study. Out of 73
students enrolled across the sections of the course, 15 stu-

dents chose to opt-in.

The revised programs were assessed again manually for de-
sign quality and the scores were compared against the origi-
nals. The design score of the programs started at an average
of 68.33% and after the feedback and correction the average
rose to 87.92%, a 19.58% absolute improvement. Using a
paired t-test, the improvement was judged to be significant
with a p-value of 0.001.

The results of the study suggest the feedback was gener-
ally useful in guiding students to improve the design qual-
ity of their programs. The improvement was noticeable to
the instructors anecdotally as well. For example, the usage
of global variables and “magic numbers” decreased signifi-
cantly. Though the study does have some caveats including
its small sample size and opt-in participation. It could be
that those students willing to opt-in are those most willing
or able improve with a second chance.

4. CONCLUSIONS & FUTURE WORK
Overall, we proposed a neural network model ensemble for
predict the design quality score of a student program and
experimentally demonstrated its effectiveness. Further, our
system provided personalized feedback based on the differ-
ence between a program’s feature values and the average
features’ value of “good” programs. A small study provides
evidence that the feedback was of practical use to students.
Students were able to improve their programs significantly
based on the feedback they received.

There is also evidence that training models per assignment
is most effective. However, the model needs to be evaluated
on more programming assignments. Further, there is a pos-
sibility of utilizing transfer learning [10] to help the model
learn what is in common across the assignments.

The feedback given was shown to be effective, but more nu-
anced feedback could be useful. Specifically, feedback tar-
geted to individual lines or segments of code would possi-
bly help students improve their program’s more effectively.
However, this may require additional supervision i.e. anno-
tation for explicit training. Active learning [14] or multi-
instance learning [3] may be alternatives to gathering addi-
tional annotation.

5. REFERENCES
[1] L. Breiman, J. Friedman, C. J. Stone, and R. A.

Olshen. Classification and regression trees. CRC press,
1984.

[2] Code.org. Code.org: Learn computer science.
https://code.org/research.

[3] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez.
Solving the multiple instance problem with
axis-parallel rectangles. Artificial intelligence,
89(1-2):31–71, 1997.

[4] A. Efremov, A. Ghosh, and A. Singla. Zero-shot
learning of hint policy via reinforcement learning and
program synthesis. International Educational Data
Mining Society, 2020.

[5] A. Gupta and N. Sundaresan. Intelligent code reviews
using deep learning. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’18) Deep Learning
Day, 2018.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[7] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In the 3rd International Conference on
Learning Representations (ICLR), 2014.

[8] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In
Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[9] B. Paassen, B. Hammer, T. W. Price, T. Barnes,
S. Gross, and N. Pinkwart. The continuous hint
factory-providing hints in vast and sparsely populated
edit distance spaces. Journal of Educational Data
Mining, 2018.

[10] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

[11] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[12] Pylint.org. Pylint - code analysis for python.
https://pylint.org.

[13] F. Rosenblatt. Principles of neurodynamics.
perceptrons and the theory of brain mechanisms.
Technical report, DTIC Document, 1961.

[14] B. Settles. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department
of Computer Sciences, 2009.

[15] G. Van Rossum, B. Warsaw, and N. Coghlan. Pep 8.
https://www.python.org/dev/peps/pep-0008/.

[16] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming
exercises using deep learning. International
Educational Data Mining Society, 2017.

APPENDIX
A. FEATURE FUNCTIONS
• The number of functions

• The number of assignments

• AST nodes per function

• Lines of code per function

• Total lines of code

• Number of literals

• The proportion of white-space characters to the total
number of characters

• Number of empty lines

• Deepest level of indentation

• Number of “if” statements

• Number of comments

• Number of AST nodes per lines of code

• Number of try-except statements

• AST nodes per try-except statement

• AST nodes per “if” statement

• Number of lists

• Number of tuples

• Average line number of literals

• Average line number of function definition

• Average line number of “if” statement

• Ratio of AST nodes inside functions versus total num-
ber of AST nodes

• Number of function calls

• Number of “pass” statements

• Number of “break” statements

• Number of “continue” statements

• Number of global variables

• Number of zero and one integer literals

• Average line number of “import” statement

• Number of numeric literals

• Number of comparisons

• Number of “return” statements

• Maximum number of “return” statements per function

• Maximum number of literals per “if” statement

