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ABSTRACT

Collaboration is identified as a required and necessary skill
for students to be successful in the fields of Science, Technol-
ogy, Engineering and Mathematics (STEM). However, due
to growing student population and limited teaching staff it is
difficult for teachers to provide constructive feedback and in-
still collaborative skills using instructional methods. Devel-
opment of simple and easily explainable machine-learning-
based automated systems can help address this problem.
Improving upon our previous work, in this paper we propose
using simple temporal-CNN deep-learning models to assess
student group collaboration that take in temporal represen-
tations of individual student roles as input. We check the ap-
plicability of dynamically changing feature representations
for student group collaboration assessment and how they
impact the overall performance. We also use Grad-CAM
visualizations to better understand and interpret the impor-
tant temporal indices that led to the deep-learning model’s
decision.
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1. INTRODUCTION

Collaboration is considered a crucial skill, that needs to be
inculcated in students early on for them to excel in STEM
fields [24, 6]. Traditional instruction-based methods [14, 7]
can often make it difficult for teachers to observe several stu-
dent groups and identify specific behavioral cues that con-

tribute or detract from the collaboration effort [20, 15, 25].
This has resulted in a surge in interest to develop machine-
learning-based automated systems to assess student group
collaboration [17, 11, 12, 8, 1, 9, 26, 23, 21, 4, 27, 22].

In our earlier work we developed a multi-level, multi-modal
conceptual model that serves as an assessment tool for indi-
vidual student behavior and group-level collaboration qual-
ity [2, 3]. Using the conceptual model as a reference, in a dif-
ferent paper we developed simple MLP deep-learning mod-
els that predict student group collaboration quality from
histogram representations of individual student roles [22].
Please refer to the following papers for more information
and for the illustration of the conceptual model [2, 3, 22].
Despite their simplicity and effectiveness, the MLP mod-
els and histogram representations lack explainability and in-
sight into the important student dynamics. To address this,
in this paper we focus on using simple temporal-CNN deep
learning models to check the scope of dynamically chang-
ing temporal representations for student group collaboration
assessment. We also use Grad-CAM visualizations to help
identify important temporal instances of the task performed
and how they contribute towards the model’s decision.

Paper Outline: Section 2 provides necessary background on
the different loss functions used, dataset description and the
temporal features extracted. Section 3 describes the exper-
iments and results. Section 4 concludes the paper.

2. BACKGROUND

2.1 Cross-Entropy Loss Functions

The categorical-cross-entropy loss is the most commonly used
loss function to train deep-learning models. For a classifica-
tion problem with C classes, let us denote the input variables
as x, ground-truth label vector as y and the predicted prob-
ability distribution as p. Given a training sample (x,y), the
categorical-cross-entropy (CE) loss is defined as



Table 1: Coding rubric for Level A and Level B2.

Level A Level B2
Group guide/Coordinator [GG]
Effective [E] Contributor (Active) [C]

Follower [F]

Conflict Resolver [CR]
Conflict Instigator/Disagreeable [CI]
Off-task/Disinterested [OT]
Lone Solver [LS]

Satisfactory [S]
Progressing [P]
Needs Improvement [NI]
Working Independently [WI]

Table 2: Inter-rater reliability (IRR) measurements.

Level | Average Agreement | Cohen’s Kappa
A 0.7046 0.4908
B2 0.6741 0.5459
c
CEx(p,y) = — ) _vilog(p:) 1)
=1

Here, p; denotes the predicted probability of the i-th class.
Note, both y and p are of length C', with ", y; =, pi =1

From Equation 1, it’s clear that for imbalanced datasets the
learnt weights of the model will be biased towards classes
with the most number of samples in the training set. Ad-
ditionally, if the label space exhibits an ordered structure,
the categorical-cross-entropy loss will only focus on the pre-
dicted probability of the ground-truth class while ignoring
how far off the incorrectly predicted sample actually is. These
limitations can be addressed to some extent by using the
ordinal-cross-entropy (OCE) loss function [22], defined in
Equation 2.

c
OCEx(p,y)=—-(1+w Zy, log(p:)

(2)

w = |argmax(y) — argmax(p)|

Here, (1 + w) represents the weighting variable, argmax re-
turns the index of the maximum valued element and |.| re-
turns the absolute value. When training the model, w = 0
for correctly classified training samples, with the ordinal-
cross-entropy loss behaving exactly like the categorical-cross-
entropy loss. However, for misclassified samples the ordinal-
cross-entropy loss will return a higher loss value. The in-
crease in loss is proportional to how far away a sample is
misclassified from its ground-truth class label.

2.2 Dataset Description

We collected audio and video recordings from 15 student
groups, across five middle schools. Out of the 15 groups,
13 groups had 4 students, 1 group had 3 students, and 1
group had 5 students. The student volunteers completed
a brief survey that collected their demographic information
and other details, e.g., languages spoken, ethnicity and com-
fort levels with science concepts. Each group was tasked
with completing 12 open-ended life science and physical sci-
ence tasks, which required them to construct models of dif-
ferent science phenomena as a team. They were given one
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Figure 1: Level B2 temporal representation for a group hav-
ing only 4 students and finishing the assigned task in 4 min-
utes. Colored cells illustrate the different Level B2 codes as
described in Table 1, and the gray cells represent empty or
unassigned codes.

hour to complete as many tasks possible, which resulted in
15 hours of audio and video recordings. They were provided
logistic and organization instructions but received no help
in group dynamics, group organization, or task completion.

Next, the data recordings were manually annotated by edu-
cation researchers at SRI International. For the rest of the
paper we will refer to them as coders/annotators. In our
hierarchical conceptual model [2, 3], we refer to the collabo-
ration quality annotations as Level A and individual student
role annotations as Level B2. The coding rubric for these
two levels is described in Table 1. Both levels were coded by
three annotators. They had access to both audio and video
recordings and used ELAN (an open-source annotation soft-
ware) to annotate. A total of 117 tasks were coded by each
annotator, with the duration of each task ranging from 5 to
24 minutes. Moderate-agreement was observed across the
coders as seen from the inter-rater reliability measurements
in Table 2.

Level A codes represent the target label categories for our
classification problem. To determine the ground-truth Level
A code, the majority vote (code) across the three annotators
was used as the ground-truth. For cases where a majority
was not possible, we used the Level A code ordering depicted
in Table 1 to determine the median as ground-truth of the
three codes. For example, if the three coders assigned Satis-
factory, Progressing, Needs Improvement for the same task
then Progressing would be used as the ground-truth label.
Note, we did not observe a majority Level A code for only
2 tasks. To train the machine learning models we only had
351 data samples (117 tasks x 3 coders).

2.3 Temporal Representation

In our dataset, the longest task was little less than 24 min-
utes, due to which the length for all tasks was also set to
24 minutes. Level B2 was coded using fixed-length 1 minute
segments, as illustrated in Figure 1. Due to its fixed-length
nature, we assigned an integer value to each B2 code, i.e.,
the seven B2 codes were assigned values from 1 to 7. The
value 0 was used to represent segments that were not as-
signed a code. For example, in Figure 1 we see a group of 4
students completing a task in just 4 minutes, represented by
the colored cells. The remaining 20 minutes and the 5" stu-
dent is assigned a value zero, represented by the gray cells.
Thus for each task, Level B2 temporal features will have a
shape 24 x 5, with 24 representing number of minutes and 5



representing number of students in the group.

Baseline Histogram Representation: We compare the perfor-
mance of the temporal representations against simple his-
togram representations [22]. The histogram representations
were created by pooling over all the codes observed over the
duration of the task and across all the students. Note, only
one histogram was generated per task, per group. Once the
histogram is generated we normalize it by dividing by the
total number of codes in the histogram. Normalizing the
histogram removes the temporal aspect of the task. For ex-
ample, if group-1 took 10 minutes to solve a task and group-
2 took 30 minutes to solve the same task, but both groups
were assigned the same Level A code despite group-1 fin-
ishing the task sooner. The raw histogram representations
of both these groups would look different due to the dif-
ference in number of segments coded. However, normalized
histograms would make them more comparable. Despite the
normalized histogram representation being simple and effec-
tive, it fails to offer any insight or explainability.

3. EXPERIMENTS

Network Architecture: For the temporal-CNN deep learning
model we used the temporal ResNet architecture described
in [28]. The ResNet architecture uses skip connections be-
tween each residual block to help avoid the vanishing gra-
dient problem. It has shown state-of-the-art performance
in several computer vision applications [10]. Following [28],
our ResNet model consists of three residual blocks stacked
over one another, followed by a global-average-pooling layer
and a softmax layer. The number of filters for each residual
block was set to 64, 128, 128 respectively. The number of
learnable parameters for the B2 temporal representations is
506949. We compare the performance of the ResNet model
to the MLP models described in our previous work. Inter-
ested readers should refer to [22] for more information about
the baseline MLP model that was used with the histogram
representation.

Training and Evaluation Protocol: All models were devel-
oped using Keras with TensorFlow backend [5]. We used the
Adam optimizer [13] and trained all models for 500 epochs.
The batch-size was set to one-tenth of the number of train-
ing samples during any given training-test split. We opti-
mized over the Patience and Minimum-Learning-Rate hy-
perparameters, that were set during the training process.
We focused on these as they significantly influenced the
model’s classification performance. The learning-rate was
reduced by a factor of 0.5 if the loss did not change after a
certain number of epochs, indicated by the Patience hyper-
parameter. We saved the best model that gave us the lowest
test-loss for each training-test split. We used a round-robin
leave-one-group-out cross validation protocol. This means
that for our dataset consisting of g student groups, for each
training-test split we used data from g — 1 groups for train-
ing and the left-out group was used as the test set. This
was repeated for all g groups and the average result was re-
ported. For our experiments g = 14 though we have tempo-
ral representations from 15 student groups. This is because
all samples corresponding to the Effective class were found
only in one group. Due to this reason and because of our
cross-validation protocol we do not see any test samples for
the Effective class.

Table 3: Weighted precision, weighted recall and weighted
Fl-score Mean+Std for the best MLP and ResNet models
under different settings.

‘Weighted ‘Weighted Weighted

Feature Classifier Precision Recall F1-Score

SVM 84.45+13.43 | 73.19216.65 | 76.92+15.39

MLP - Cross-Entropy Loss 83.724+16.50 | 86.42+10.44 | 84.40£13.85

MLP - Cross-Entropy Loss 83.93+17.89 | 85.20+14.37 | 84.164+16.23

+ Class-Balancing

MLP - Ordinal-Cross-Entropy Loss | 86.96+14.56 | 88.78::10.36 | 87.03+13.16

MLP - Ordinal-Cross-Entropy Loss | g5 70114 43 | 8820+9.66 | 86.604+12.54
+ Class-Balancing

SA75513.21 | 83.10511.02 | 82.72+12.74

ResNet - Cross-Entropy Loss
84.03+15.13 | 83.28+11.42 | 82.97+12.84

B2
Histogram

ResNet - Cross-Entropy Loss
B2 + Class-Balancing
Temporal | ResNet - Ordinal-Cross-Entropy Loss | 85.244+15.68 | 87.23+10.52 | 85.56+13.38

ResNet - Ordinal-Cross-Entropy Loss | g 3411575 | g7.88+11.22 | 85.68+13.58
+ Class-Balancing

3.1 Temporal vs Histogram Representations
Here, we compare the performance of the ResNet and MLP
models. Using the weighted F1-score performance, Table 3
summarizes the best performing ResNet and MLP models
for the different feature-classifier variations. The table also
provides the weighted precision and recall metrics. Bold val-
ues in the table represent the best classifier across the differ-
ent feature-classifier settings. The ordinal-cross-entropy loss
with or without class-balancing shows the highest weighted
Fl-score performance for both feature types. Here, class-
balancing refers to weighting each data sample by a weight
that is inversely proportional to the number of data samples
corresponding to that sample’s ground-truth label.

At first glance, the ResNet models perform slightly less than
the MLP models. This could easily lead us to believe that
simple histogram representations are enough to achieve a
higher classification performance than the corresponding tem-
poral representations. However, despite the performance dif-
ferences, the temporal features and ResNet models help bet-
ter explain and pin-point regions in the input feature space
that contribute the most towards the model’s decision. This
is important if one wants to understand which student roles
are most influential in the model’s prediction. We will go
over this aspect in more detail in the next section.

3.2 Grad-CAM Visualization

Grad-CAM uses class-specific gradient information, flowing
into the final convolutional layer to produce a coarse local-
ization map that highlights the important regions in the
input feature space [19]. It is primarily used as a post
hoc analysis tool and is not used in any way to train the
model. Figure 2 illustrates how Grad-CAM can be used for
our classification problem. We show two different samples
from the Satisfactory, Progressing and Needs Improvement
classes respectively. Each sample shows a group consist-
ing of 4 students that completed the task in 5 to 8 minutes.
Technically one can obtain C' Grad-CAM maps for a C-class
classification problem. Here, the samples shown correspond
to the class predicted by the ResNet model, which is also
the ground-truth class. It’s clear how the Grad-CAM high-
lights regions in the input feature space that contributed
towards the correct prediction. For instance, in the Needs
Improvement examples, the Grad-CAM map shows the high-
est weight on the fourth minute. At that time for the first
example, the codes for three of the students become Off-
task/Disinterested. Similarly, for the second example we
notice three of the students become Lone Solvers and the
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Figure 2: Grad-CAM visualization for two different temporal samples from different Level-A classes.

fourth student becomes a Follower. This is in stark contrast
to the minute before when two of the students were Follow-
ers and the other two were Contributors. We also notice less
importance being given to the Empty codes. These changes
in roles and the Grad-CAM weights across the task make
sense and help promote explainability in our deep learning
models.

4. CONCLUSION

In this paper we proposed using simple temporal represen-
tations of individual student roles together with temporal
ResNet deep-learning architectures for student group col-
laboration assessment. Our objective was to develop more
explainable systems that allow one to understand which in-
stances in the input feature space led to the deep-learning
model’s decision. We suggested use of Grad-CAM visualiza-
tion along the temporal dimension to assist in locating im-
portant time instances in the task performed. We compared
the performance of the proposed temporal representations
against simpler histogram representations from our previ-
ous work [22]. While histogram representations can help
achieve high classification performance, they do not offer
the same key insights that one can get using the temporal
representations.

Limitations and Future Work: The visualization tools and
findings discussed in this paper can help guide and shape
future work in this area. Having said that our approach

can be further extended and improved in several ways. For
example, we only discuss Grad-CAM maps along the tem-
poral dimensions. This only allows us to identify impor-
tant temporal instances of the task but does not focus on
the important student interactions. The current setup does
not tell us which subset of students are interacting and how
that could affect the overall group dynamic and collabora-
tion quality. To address this we intend on exploring other
custom deep-learning architectures and feature representa-
tion spaces. We also plan on using other tools like LIME [18]
and SHAP [16]. These packages compute the importance of
the different input features and help towards better model
explainability and interpretability. Also we only focused on
mapping deep learning models from individual student roles
to overall group collaboration. In the future we intend on ex-
ploring other branches in the conceptual model, described in
[2, 3]. We also plan on developing recommendation systems
that can assist and guide students to improve themselves
by suggesting what they need to take on. The same sys-
tem could also be tweaked specifically for teachers to give
them insight on how different student interactions could be
improved to facilitate better group collaboration.
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