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ABSTRACT

Engaged and disengaged behaviors have been studied across
a variety of educational contexts. However, tools to ana-
lyze engagement typically require custom-coding and cali-
bration for a system. This limits engagement detection to
systems where experts are available to study patterns and
build detectors. This work studies a new approach to clas-
sify engagement patterns without expert input, by using a
play persona methodology where labeled archetype data is
generated by novice testers acting out different engagement
patterns in a system. Domain-agnostic task features (e.g.,
response time to an activity, scores/correctness, task diffi-
culty) are extracted from standardized data logs for both
archetype and authentic user sessions. A semi-supervised
methodology was used to label engagement; bottom-up clus-
ters were combined with archetype data to build a classi-
fier. This approach was analyzed with a focus on cold-start
performance on small samples, using two metrics: consis-
tency with larger full-sample cluster assignments and sta-
bility of points staying in the same cluster once assigned.
These were compared against a baseline of clustering with-
out an incrementally trained classifier. Findings on a data
set from a branching multiple-choice scenario-based tutoring
system indicated that approximately 52 unlabeled samples
and 51 play-test labeled samples were sufficient to classify
holdout sessions at 85% consistency with a full set of 145 un-
supervised samples. Additionally, alignment to play persona
samples for the full set matched expert labels for clusters.
Use-cases and limitations of this approach are discussed.
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1. INTRODUCTION

Engagement represents a necessary (though not sufficient)
condition for learning. Engagement has been shown to im-
pact learning [4] and persistence [9]. Research has also found
that engagement is actionable and can be increased [25].
This is a particularly important topic for computer-based
learning: unlike in a classroom, where engagement can be
assessed and acted on by an instructor in real-time, patterns
of engagement are often not visible [10].

However, building engagement analytics for a new system
is time consuming. Custom metrics are typically developed
and then require substantial data to identify patterns (i.e.,
the cold-start problem). Worse, the extensive effort to de-
sign such analytics is buried in application-specific code.
While heuristics are available to infer disengagement, such as
response times under 3 seconds [6], applying these to differ-
ent systems requires benchmarking and calibrating detectors
for the content and system. Efforts to analyze engagement
often start almost from scratch. This is unfortunate, since
research on behavioral engagement has identified patterns
which appear to generalize across systems [3, 4, 6, 14, 15].

To address this gap, we are researching a service for analyz-
ing and classifying engagement that relies on a standards-
based learning record store [1]. This effort is called the Ser-
vice for Measurement and Adaptation to Real-Time Engage-
ment (SMART-E). Rather than being optimized to analyze
a specific system or data set, SMART-E targets three high-
level goals: 1) Cold-Start Calibration: ability to identify and
benchmark engagement behaviors, which does not require
large data sets or in-depth expert analysis; 2) Re-Usability:
reliance on standards and data available from most learning
environments; and 3) Actionability: generation of action-
able insights, which an instructor or adaptive system could
leverage or investigate further.

SMART-E is influenced by two techniques: 1) semi-supervised
learning, which trains with a small set of labeled data and



a larger set of unlabeled data and 2) play persona, behav-
ioral archetypes commonly used for testing and analysis of
video games [7, 32]. Our paper describes the process and
findings from applying this approach to a data set from a
scenario-based tutoring system for training counseling skills.
Contributions from this work include a) reviewing features
that generalized engagement analytics should consider, b)
developing a pipeline for analyzing engagement which does
not require expert labeling or application-specific feature en-
gineering, and c) demonstrating the effectiveness of a semi-
supervised approach with reasonable data requirements (e.g.,
about 50 samples each of labeled and unlabeled data) to ap-
proximate inferences that experts might make given similar
data. As such, this research represents a step toward a gen-
eralized framework for diagnosing learner engagement that
does not require an expert researcher analyzing data or ob-
serving subjects.

2. BACKGROUND AND THEORY

Across the learning science community, engagement is de-
fined and measured in vastly different ways, ranging from
split-second physiological responses (e.g., eye tracking, fa-
cial affect) to long-term trends lasting months or years (e.g.,
returning to a system, building social ties) [2, 13]. The re-
search in this paper targets behavioral engagement at the
task level (e.g., time spent working through a problem) and
session level (e.g., sustained effort to improve performance
and learning).

A key reason for this focus is data availability and data in-
terpretability. Most systems collect data logs at these levels
and, as described next, substantial research has also iden-
tified common behavioral patterns. Research on lower-level
affective cues (e.g., facial affect) has found certain action-
able events that generalize (e.g., gaze inattention [15]), but
other patterns are not trivial to generalize due to differences
between individuals or across contexts [28]. Moreover, facial
data is often unavailable due to the privacy issues involved
with recording learning. Larger time scales are not the focus
of this work because engagement levels over those time scales
would require longitudinal data and also are more likely to
be visible to instructors (e.g., absences).

2.1 Patterns of Behavioral Engagement

Behavioral engagement analysis from log files has shown re-
peated evidence of useful, actionable patterns, such as re-
sponse time, response time vs. accuracy/correctness inter-
actions, approach vs. avoidance behaviors relative to prob-
lem difficulty (e.g., skipping hard problems), and noisiness
of answer quality (e.g., carelessness) [5]. Response time, par-
ticularly very fast response time, is one of the most obvious
features linked to behaviors associated with disengagement
(e.g., guessing, skipping, straight-lining). For scored tasks,
the interaction between response time and correctness has
been extensively researched in the study of basic cognition
as well as authentic learning tasks [6]. The relationship be-
tween correctness and time is frequently a logistic relation-
ship (assuming that time does not directly impact scoring):
with very fast responses, correctness is approximately ran-
dom, increasing rapidly to better than chance for more ordi-
nary response time, and approaching an individual skill-level
asymptote as time increases. At very large times, answer

quality may once again decrease, either due to distraction
(e.g., multi-tasking) or difficulty selecting a final answer [27].

More complex interactions often require understanding the
relative problem difficulty. Research indicates that students
with poor learning outcomes tend to avoid or abuse hints
on problems that they find difficult [5]. Conversely, self-
regulated learners may be more likely to skip or “game”
through problems that that are easier relative to their skill
level but dedicate more time to harder problems [33]. While
not yet investigated, this might also imply that more self-
regulated learners may be less likely to demonstrate wheel-
spinning [18] since they are more actively monitoring the
usefulness of tasks.

Estimates of answer correctness versus expected correctness
have also been used, though these are likely most clear when
the learner is close to mastery. Of these, carelessness and
“slips” are the most well-established mechanisms [12]. More
generally, there may be value in investigating any situation
where correctness appears decoupled from traditional fac-
tors (e.g., little correlation between time and answer quality,
little correlation between expect mastery and later perfor-
mance). However, such decoupling could be due to poor
task design (e.g., item response issues [20]) or problems un-
related to engagement (e.g., attention or memory problems),
so additional context may be needed to interpret this.

2.2 Archetypes for Behavioral Engagement
When considering these different patterns of behavioral en-
gagement and disengagement, we posit that engagement has
at least two dimensions: a) passiveness vs. activeness and
b) avoidance vs. approach. For example, passive avoidance
represents disengagement commonly associated with bore-
dom such as distraction or skipping through material. By
comparison, other learners employ short-cut strategies to
cheat or cherry-pick tasks to minimize effort while still pro-
viding acceptable performance (active avoidance). A simi-
lar division exists for engaged learners, in that some study
almost exclusively on assigned content (passive approach)
while others monitor and self-regulate their effort to focus
their learning (active approach).

These latent engagement factors may be evident through
different observed patterns. For example, while distraction
and racing through material both represent disengagement,
their data patterns will look very different. In considering
these patterns, we developed the following candidates which
may be evident across a variety of systems:

e Diligent (Active Engagement): Spends somewhat more
time on tasks and shows correspondingly better per-
formance, and more likely to complete optional tasks.

e Self-Regulated (Active Engagement): Seeks out and
spends greater time on harder tasks, but may skip or
disengage on easier tasks. [22, 33].

e Cherry Picking (Active Disengagement): Seeks out
easier tasks or abuses features to make tasks easier
(e.g., hint abuse), and avoids harder tasks [3].

e Nominal Engagement (Passive Engagement): Com-
pletes tasks as recommended or assigned, with ordi-
nary time-on-task and performance.



e Expert/Recall (Passive Engagement): Regardless of
difficulty level, completes tasks very rapidly and with
high performance. Possibly an expert on the content,
but might also be shallow recall or lookup.

e Racing/Guessing (Passive Disengagement): Rapidly
answers (potentially multiple times) despite relatively
poor performance [26].

e Distracted/Slow (Passive Disengagement): Uncommonly

delayed or irregular answers, particularly when extra
time does not appear to improve performance [27].

As with prior research on engagement, we do not assume
that these archetypes are necessarily stable for a specific user
across all content, but that they represent modes of interac-
tion during learning. Additionally, these candidate patterns
are not exhaustive and the specific evidence for each pattern
may not be identical: while racing through material might
involve rapid guessing in one system, in another it might in-
volve skipping material entirely. Historically, this has meant
that detectors are tuned using expert-labeled observations
and/or expert feature engineering.

2.3 Play Persona as a Labeling Methodology
This work applies a new approach to generating engagement
labels for user sessions. While substantial research has been
conducted on engagement, existing methods for determining
engagement during computer-based learning are challeng-
ing to scale. Our research is intended to complement three
methods currently in-use: expert observers, sensor-based af-
fect detection, and self-report [13].

Expert observers can be trained on a specific coding manual
until they reach high levels of agreement. Using techniques
such as BROMP [29], a trained observer can monitor and
label engagement events for multiple students. The primary
barriers to collecting this data are the number of trained ob-
servers required and issues of privacy and technology (e.g.,
observing students in online courses). Automated affect de-
tection (e.g, automated facial affect detection) has also been
used to analyze engagement [28, 19]. While in principle fa-
cial affect scales to a large number of learners, engagement is
hard to interpret without also analyzing behavioral patterns
(e.g., screen recordings, log files). As with human observers,
privacy issues may prevent the necessary recording of data.
Moreover, for both human and automated labeling, while
learner states may be recorded, they do not include any in-
terpretation about what strategies a learner is using (e.g.,
focusing on hard vs. easy problems). Self-report offers a
different type of engagement label. Users can report their
overall engagement and may also be able to describe the
learning strategies that they are using [13]. However, self-
reported engagement can be affected by reporting bias (e.g.,
claiming to be more engaged) or subjectivity of engagement
ratings.

To address these limitations, we identified play persona as
a way to generate labeled engagement data. Play persona
are behavioral archetypes often used for testing and analy-
sis of video games, that reflect different goals and behavior
patterns [35, 32]. For example, in a strategy game there are

recognized archetypes such as the Builder (invest in long-
term expansion) versus Greedy-Optimizer (take quick wins)
[34]. Likewise, research on Massive Multiplayer Games (e.g.,
[36]) has identified behavior archetypes such as competitors
who focus on head-to-head tasks and explorers who focus on
exploring the world. Artificial game players can be crafted
to mimic these play persona for procedural play-testing [21].

We hypothesize that play persona methods can also be use-
ful to identify and label engagement patterns with the mod-
ification that human testers will act out these roles (e.g.,
diligent) which would be difficult to simulate artificially. If
this approach is useful, it has at least three advantages over
existing methods. First, it ensures rapid data collection of
labels, since rather than having unbalanced labels (i.e., 80%
of real users might be in one bin), testers can be directed
to act out a variety of roles. Second, play-test labels should
be interpretable since the intent of the learner is known, as
opposed to purely bottom-up patterns or self-reported la-
bels, which require experts to infer underlying strategies.
Finally, despite some constraints (e.g., difficulty in faking
more or less knowledge), dedicated testers may be able to
play out multiple archetypes and do so repeatedly, reducing
the need to recruit new testers.

3. RESEARCH QUESTIONS

This work investigates techniques to leverage play-testing
data for detecting engagement patterns. However, this ap-
proach will only be feasible if testers reasonably approximate
the behavior of real users. It also relies on the assump-
tion that while systems may differ, the main engagement
archetypes will be fairly predictable (e.g., some users will
be highly invested in learning every piece of content, others
will be trying to get through as fast as possible). In this
work, we examine the feasibility of play-testing to help clas-
sify engagement patterns, and in particular investigate the
following questions:

Q1 (Distinctiveness): Are the data patterns for a set
of play-tester archetypes distinct (different testers act
similarly, given similar instructions)?

e Q2 (Alignment): Will play-test archetypes align with
unsupervised clusters producing labeled clusters simi-
lar to how experts would label them?

e Q3 (Semi-Supervised Comparison): Will a semi-supervised

approach that builds a classifier from play-test and
aligned data label individual learners more consistently
than relying only on bottom-up clusters?

e Q4 (Basic Features): Will average response time and
scores, in simple systems, be sufficient for reasonable
engagement labels?

e Q5 (Expanding Features): Will increasing the number
of features to include task difficulty and feature inter-
actions lead to greater consistency in fewer samples?

These questions investigate the strengths and limitations of
the approach. Specifically, Q1 and Q2 focus on the reliability
of play-test labels to label unsupervised data, as compared
to human ratings. Q3 examines if building a semi-supervised
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Figure 1: SMART-E Analytics Pipeline Phases

classifier is useful as opposed to simply using archetypes to
label bottom-up clusters. Q4 and Q5 query the effectiveness
of feature sets identified in the literature for classifying en-
gagement, starting with a very minimal set (response time
and scores) and then analyzing an expanded set of features
for their impact on cold-start performance.

4. METHODS

To examine these questions, an analytics pipeline was devel-
oped and then applied to a data set from a scenario-based
intelligent tutoring system. This section will briefly describe
the pipeline, then the learning system that produced the
data set, and finally the techniques used to investigate each
research question.

4.1 Engagement Analytics Pipeline

While this paper focuses on a specific data set, the tech-
niques applied here are designed to be generalizable and re-
usable as part of the SMART-E pipeline, shown in Fig. 1.

This pipeline starts by standardizing the data available, record-

ing data from an arbitrary learning system as learning records
that meet the xAPI standard [1]. This “Raw xAPI” data may
either be sent directly by the system (e.g., through an API
for logging) or generated by running a converter on system
logs after-the-fact. Raw xAPI data logs are then cleaned by
a script (partially system-specific) which corrects common
data problems, such as sessions that terminated improperly
or missing data fields that can be inferred from other data.
This ensures that the Canonical xAPI data store does not
have missing data.

All xAPI records contain metadata which allow them to be
structured into an activity tree, representing both sequen-
tial and parallel tasks. While the tree can be nested ar-
bitrarily, four levels are analyzed to generate raw metrics
tables: steps, tasks, lessons, and sessions. Raw metrics pri-
marily record time-based information (e.g., duration of a
task, response time for first step), score-based information
(e.g., numerical score and/or correctness), and support used
(e.g., hint counts, retrying a problem).

Metrics related to task skills are not calculated, since the ma-
jority of systems do not tag their tasks with a consistent on-

tology of knowledge components. Intermediate metrics are
generated using feature construction calculations based on
raw metrics, without analyzing the xAPT logs. For this work,
the most important intermediate metrics are averages across
attempts (e.g., average scores, average task duration), the
average difficulty for each task (inferred from first-attempt
scores), z-scores for task metrics (e.g., time-on-task for the
learner relative to other users) and a Laplace-smoothed log-
arithm of each task duration (i.e., In(t + 1)). Additional
metrics can be added fairly rapidly, if they rely on raw met-
rics.

Based on these metrics, feature vectors are generated that
represent each learner’s performance in the system. In the
current work, these vectors rely on all of the learner task
data for a session, though one could generate similar fea-
tures for specific tasks, across multiple sessions, or for re-
cent tasks in a session (i.e., any collection of tasks). First,
two simple features were calculated: average response time
across tasks (Avg. RT) and average task performance (Avg.
Score). These were considered the minimal information to
potentially infer engagement.

Next, a more complex feature set was developed to model
interactions between task response time (RT), task scores,
and task difficulty. Based on z-score cutoffs, the value of
each variable was placed into one of three categories (low,
medium or high) when possible, and into the most cate-
gories available when not (i.e., only medium if all values
equal; only low and high if only two types of values). This
was done based on a one-dimensional Gaussian distribution,
with cutoff values at <33% (low), 33-66% (medium), and
>66% (high). Further we ensured that each variable had at
least 4 corresponding data-points in order to arrive at ro-
bust cutoffs (i.e., each unique task had been attempted by
at least 4 different learners, to judge its difficulty, score and
time distribution). Each scored task increments a bin asso-
ciated with its three variables (e.g., RT=fast, score=high,
difficulty=high will increment exactly one out of 27 possible
bins). This binning approach is fairly general, and can be
inferred using only standard logging data.

Since 27 bins will often be fairly sparse for an individual



learner, these were aggregated to form 7 bins which align
to behavioral engagement patterns from the literature: Ex-
pert, Cherry Picking, Engagement/Diligent, Self-Regulated,
Distracted, Racing, and Careless. These bins roughly cor-
respond to the patterns we introduced earlier except we
omitted Nominal Engagement, roughly equivalent to av-
erage, and we added a Careless bin focused on errors on
easier tasks. The Expert bin was increased whenever high
scores were obtained for difficult problems with only a nor-
mal or low delay or for high scores on ordinary problems
done quickly. The Cherry Picking bin incremented for high
scores with a low delay (regardless of problem difficulty).
Engagement/Diligent was incremented when difficult prob-
lems were completed after a high delay. Self-Regulated was
incremented when the amount of time spent on the problem
was at least as high as the difficulty level, even if the score
was not high. Distracted was triggered in the opposite case,
where the time to respond was overly long for the difficulty
of the problem. Racing was incremented for fast responses,
either with low scores or with medium / high scores on eas-
ier problems. The Careless bin included only low scores on
easy problems or low scores on medium difficulty problems
when completing them quickly.

These bins were not mutually exclusive, since more than
one behavior might explain a given interaction. Addition-
ally, they are not validated and should be thought of as
noisy constructs to bin low-level features, rather than neces-
sarily predictive of their given labels. However, since these
aggregation patterns are derived from the literature, these
features are candidates that may be relevant across different
systems, users, or data sets.

4.2 User Data: ELITE Scenarios

We use data from the system, ELITE Lite Counseling, de-
signed for U.S. Army officers in training to learn leadership
counseling skills, such as active listening, checking for un-
derlying causes, and responding with a course of action [11].
Learners select what to say to virtual subordinates from a
menu leading to different points in a branching graph repre-
senting the possible conversations. The virtual subordinates
speak using pre-recorded audio and act via 3D animations.

Each learner choice can have both positive and negative an-
notations. Positive annotations correspond to correctly ap-
plying a skill such as active listening, and negative annota-
tions correspond to omissions or misconceptions. Based on
these annotations, a choice can be fully correct (only positive
annotations) or two forms of incorrect: fully incorrect (only
negative annotations) or mixed (both positive and negative
annotations). For the pipeline, this was converted to two
forms: a correctness category and a numerical score in which
mixed answers were given partial credit (0.5) compared to
correct answers (1.0) and incorrect answers (0.0).

Each simulated conversation is also followed by an After
Action Review (AAR) in which learners are asked multiple-
choice questions about all of their dialogue choices that were
mixed or incorrect. For these AAR questions, if the first
attempt to answer was successful the learner earned a score
of 1; otherwise, the learner earned a score of 0 but had to
keep trying until they selected the correct response.

The ELITE data set for this research included a corpus of
145 subjects from experiments described here [17] which we
consider user data. Each “user” completed three scenarios:
Scenario 1, Scenario 1 (Repeated), and Scenario 2. Due to
the dialog trees, users did not all see the same decision tasks
when completing the same scenarios. However, substantial
overlap was observed for tasks and a majority of tasks were
attempted by a significant number of users. For the pur-
pose of estimating task difficulty, a threshold of 5 attempts
was used, below which the difficulty and metrics relying on
difficulty (e.g., binning) could not be calculated.

4.3 Play Persona Data

Play-testers were students and employees of the lab who
volunteered their time, and generally were not familiar with
the scenario content. For the ELITE system, only 5 play-
test archetypes were reasonable to classify: Expert, Diligent,
Nominal Engagement, Racing, and Distracted. Play-testers
followed the same protocol (i.e., scenario 1, scenario 1 re-
peated, scenario 2) used to collect the user data. Thus, they
had no direct control over the tasks they encountered, and
so some patterns were unlikely to be observed (e.g., Self-
Regulated and Cherry Picking).

Each play-tester was able to generate data for up to three
archetypes, by attempting them in a specific sequence. First,
they could play as either Diligent or Distracted. These roles
could only be played at the beginning of testing to simulate
a novice seeing the system for the first time. Next, a Racing
run was completed; fast response times meant testers would
still make errors despite their previous practice. Expert runs
were collected in two ways: either an actual expert gener-
ated the data (2 sessions), or a tester carefully reviewed the
correct answers (e.g., in the AAR) and/or was coached by
an expert (13 sessions). These different methods for “ex-
pert” data produced similar results, though actual experts
were slightly faster. In the unlabeled data, an archetype for
Nominal Engagement was generated by extracting five clus-
ters and assigning Nominal Engagement to the cluster not
aligning with the other four archetypes.

Instructions for each play-test archetype were as follows.
Diligent: spend as much time as you need on each choice
to try to get the best answer, including reading carefully,
and double-checking answers. Distracted: engage in one
or more competing activities, including checking email and
responding when relevant, browsing social media, engaging
in a conversation, and eating. Racing: pretend you don’t
care much about the content, so you are doing the bare mini-
mum and are fine with a so-so score to get done quickly. Ex-
pert: review content in-depth immediately ahead of time,
and approach it with as many answers memorized or quickly-
available as possible (e.g., in notes, from an expert) so you
can answer well quickly. Of these, all except Distracted were
easily understood by testers. Due to the lack of standard-
ization for Distracted, some testers struggled to find a com-
peting distraction task (e.g., did not use much social media,
did not have high email volume, already ate lunch). In this
case, a member of the research team asked the user questions
or other requests to distract them. A total of 51 archetype
sessions were collected, which may be more than necessary,
since preliminary analyses found similar results with about
25 points balanced across classes.
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4.4 Cluster Alignment Testing

As shown earlier in Fig. 1, both the real user data and the
play-tester archetype data were processed by SMART-E to
generate feature vectors that represent each individual. A
number of techniques were then applied to generate labeled
clusters. This cluster-labelling process allowed us to classify
a learners’ engagement coarsely on the basis of the cluster
that they were assigned to.

First, user feature data was clustered bottom-up into five
distinct clusters using k-means and Gaussian mixture mod-
els (GMM) methodologies as implemented in the scikit-learn
package [30]. The number of clusters was verified through an
elbow-curve analysis of variance explained (elbow at k=5).
Exploration of k=4 and k=6 found both to be less stable;
cluster assignments were often very different for subsamples
of data points, with k=4 being particularly unstable.

For this analysis of the full sample, we associated each user

cluster with a unique archetype (i.e., alignment of the smaller

archetype clusters with the user clusters). The alignment

was determined using the Hungarian Method (Kuhn-Munkres
algorithm)[24], which is a global, optimal-matching algo-

rithm which minimized the sum of the Euclidean distances

between these user cluster centroids and archetype centroids.

As noted previously, the Nominal cluster was determined

as the cluster remaining after all archetype groups were

matched. As a result, each of the user clusters (and con-

sequently the points within that cluster) had an associated

unique archetype which additionally served as its label. When
this cluster alignment process is used as the only technique

to label points, it will be referred to as Clustering Alone.

4.5 Semi-Supervised Classification

This technique of clustering alignment was compared against
a semi-supervised approach that built a classifier using the
play-test and user clusters. The high level concept of this
semi-supervised classifier is shown in Fig. 2. The first two
steps of the semi-supervised approach are the same as Clus-
tering Alone. This generates a pool of weakly-labeled can-
didate labeled points. The points in this pool can be either

taken as a full set to train a classifier model such as SVM or
they can be sampled to incrementally train a classifier using
active learning techniques until a stopping rule is hit (e.g.,
entropy sampling).

To compare the classifier against cluster-level labels based on
archetype alignment alone, we calculated two quality met-
rics for the labels given to user sessions, which we will term
consistency and stickiness. Consistency refers to the frac-
tion of sessions that are labeled with the same engagement
archetype which they would receive when the full data set
is available. This is important because as data gets larger,
unsupervised clusters are more likely to reflect the true dis-
tributions.

Stickiness refers to the likelihood that a user session retains
the same engagement label after a batch of new data is added
(similar to intra-rater reliability). This is important for ac-
tionable engagement metrics: if Student A is classified as
Diligent, it will be confusing if Student B who completes an
identical run is classified differently due to data that arrived
in between. While this cannot be fully avoided, approaches
that tend to keep the same label for an identical session will
appear more fair and reliable, so that an instructor could be
more confident in using the classifications.

That said, neither consistency or stickiness alone are suffi-
cient for useful classification. For example, always assign-
ing all users to the same category maximizes both metrics.
However, assuming clusters for the full data set are reliable,
then these measures help to identify how quickly and reli-
ably labels approximate the final labels. This is important
for addressing the cold start problem, so that engagement
patterns can be quickly identified in a new system.

To calculate the number of samples to reach a given level of
cold start performance, random splits were made of the user
data set into train-test subsets (115 train, 30 test). For each
random split, the classifier was trained using the archetype
data set (51 samples) and increasingly larger subsets of the
user training data in increments of 5. When evaluating cold-



start performance, a consistency of 85% was considered a
reasonable target threshold for reliability against the full
sample. While the actual consistency required will depend
on the specific application, this cutoff should give some in-
sight into how quickly different approaches converge toward
their larger-sample performance.

Since the pipeline parameterizes the specific algorithms, follow-

up exploratory analyses were conducted with different types
of clustering algorithms (e.g., k-means, GMM), classifica-
tion algorithms (e.g., logistic regression, support vector ma-
chines), and semi-supervised sampling algorithms (e.g., full
sampling, margin sampling with stopping rules to exclude
certain unsupervised samples). Different combinations of
these algorithms did not show qualitatively different end-
results on these metrics, and any differences were not conclu-
sive (e.g., GMM clusters appeared slightly more stable than
k-means as data was added, but within random variation).
As a result, this paper presents results for the GMM clus-
tering with a Support Vector Classifier, where these results
are representative for the different approaches explored.

S. RESULTS

Focusing on GMM clustering, we revisit the alignment of the
five user clusters with the play-tester archetype groups. The
clusters were generated using the average of the logarithms
for task response time (Log-RT) and average of task scores
(Scores). Fig. 3 plots the real user data with unsupervised
clusters. Table 1 shows feature means and standard de-
viations for each archetype, above its most closely-aligned
bottom-up cluster. Note that while Log-RT was used for
clustering, the actual time in seconds is given in the table
and figure for easier interpretation.

Despite being generated independently, the play-test data
closely resembles the real bottom-up clusters. As a trend,
the play-tester archetypes tend to be more extreme (i.e., far-
ther from the average user) than the clusters they align to.
This is likely due to play-testers acting out more exagger-
ated or consistent patterns than real users. However, this
may actually be an advantage, since play-test archetype data
points may be more likely to be outliers in the vector space
and good anchors for distinct clusters. The results from Ta-
ble 1 support research question Q1, in that play-testers were
able to act out similar patterns as real users and that the
play-tester data showed fairly distinct groupings (as evident
in the standard deviation values). One exception was the
Distracted archetype, which had a very high variance for
time compared to real users in the corresponding cluster.
However, despite the high variance, the Distracted archetype
data remained distinct from other archetypes’ data.

5.1 Reliability vs. Expert Labels

The validity of this alignment on the full data set was eval-
uated by surveying a set of external engagement experts
(N=5) to label the same bottom-up clusters obtained from
the user feature data, based on the descriptions of the en-
gagement archetypes. Selection criteria for experts required
a Ph.D. in a relevant area, publishing at least one substan-
tial paper researching learner engagement, and having no
prior experience with the data set.

Experts labeled cluster graphs (e.g., Fig. 3) generated by

| Group | N | Avg. RT (s) | Avg. Score |

Expert (Arch) 15 8.53 +2.43 0.95+0.04
Cluster 1 25 8.10£1.00 0.93£0.03
Diligent (Arch) 14 | 13.15+3.83 0.89 +0.07
Cluster 2 75 | 11.06 £1.61 0.90 +£0.03
Nominal (Arch) - - -

Cluster 3 13 8.63 +1.11 0.82 +0.02
Distracted (Arch) | 12 | 22.27+13.80 | 0.77+0.17
Cluster 4 28 15.81 £ 3.43 0.83 £0.07
Racing (Arch) 10 7.18 £2.47 0.56 +0.17
Cluster 5 4 7.98 £ 1.08 0.55 + 0.09

Table 1: Cluster vs. Archetype Centers (u £ o)
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Figure 3: GMM User Clusters for Response Time and Score
Features

both k-means and GMM, and maintained quite similar la-
bels across each (76% agreement). Since the clusters and la-
bels for both GMM and k-means were very similar, all labels
were treated as examples from the same task. Inter-rater re-
liability metrics were moderate between experts: 55% Agree-
ment; Fleiss’ kappa = 0.44; Krippendorft’s alpha = 0.45.
Expert raters had very high reliability for Expert and Rac-
ing labels, but approximately half of experts demonstrated
a consistently different interpretation for Diligent, Nominal
(phrased as “Average” in the survey), and Distracted. Based
on open response comments, this may have been the result of
interpreting minor wording differences in the prompts (e.g.,
“novice learners” for Diligent vs. “learners” in Distracted).

The human labels for clusters were then compared pair-
wise against the automated alignments, resulting in Agree-
ment, Fleiss’ Kappa and Krippendorff’s alpha metrics which
were higher than within-experts though still in the moderate
range: 66% Agreement; Fleiss’ kappa = 0.57; Krippendorff’s
alpha = 0.58. Given these results and expert sensitivity to
the wording of archetype descriptions, we conclude that the
automatic alignment appears to be at least as useful as ex-
pert consensus ratings for labeling engagement clusters. We
anticipate automatic alignment to be even more advanta-
geous when the feature space expands beyond 3 dimensions,
making it difficult for human experts to visualize or evaluate.
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Figure 4: Consistency and Stickiness

5.2 Consistency of Semi-Supervised vs.

Clustering Alone

To evaluate how play-test data can be used to classify new
user sessions, a semi-supervised approach was explored which
trained a Support Vector Machine (SVM) classifier using
both the play-test archetype data and the data from the
bottom-up cluster that best aligned to each archetype, with
test-set labels determined by the classifier. For the cluster-
ing alone comparison case, bottom-up clusters were directly
aligned against archetype data to determine their labels and
test-set labels were determined based on their closest clus-
ter. 20 random splits were made of the user data set into
train-test subsets (115 train, 30 test). For each random split,
the classifier was trained using the archetype data set (51
samples) and increasingly larger subsets of the training data
set in increments of 5, and then evaluated.

Consistency was calculated against the test set of 30 sam-
ples. Stickiness of labels was calculated for each set of la-
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for Semi-Supervised vs. Clustering Alone

bels against the prior set (e.g., model trained on N sam-
ples vs. N-5 samples). Due to the higher level of noise
for clustering alignment alone, 100 runs were conducted in-
stead of 20 for a smoother average. These results indicated
that training a classifier which combined both types of data
produced higher consistency and less variation. Specifically,
on the basic features (avg. RT and performance only), the
semi-supervised SVM reached 85% average consistency at
52 samples (Fig. 4a), while aligned clusters alone required
95 samples to reach this level (Fig. 4c). Clustering alone
was more consistent with the full-data cluster labels until
approximately 25 samples (i.e., when the user data reached
approximately half of the archetype data).

Likewise, the stickiness of labels as data increased reached
an average of 85% by 45 samples for the semi-supervised
classifier (Fig. 4b). Clustering alone never reached 85% and
remained less than 70% on average (Fig. 4d). For both
metrics, the variance (blue bars) were larger for clustering
alone. One reason for greater variability for clustering alone



is that sparse data for certain cluster regions (e.g., Rac-
ing, with only 4 real users), so alignment alone may try to
align a non-existent cluster given limited data. However,
the semi-supervised classifier appears to mitigate this issue
since training is anchored by play-test data points.

These analyses were performed using both the basic features
and the expanded feature set (e.g., bins that count instances
of engagement behavior patterns based on response time,
score, and difficulty categories). Both feature sets required
a similar number of samples to reach the same level of consis-
tency (e.g., about 85% consistency after 50 samples). While
it is possible that the expanded feature set might produce
more valid labels for an instructor (e.g., better reflecting the
categories of users who an instructor might follow-up with),
this will not be due to improved cold-start performance.

5.3 Semi-Supervised Class-wise Consistency

An analysis of the consistency for labels in individual clus-
ters (Fig. 5) shows similar insights to the overall clustering
label consistency. Points in larger clusters (e.g., Diligent,
Expert) are consistent fairly quickly. However, small clusters
(Racing) may have few/zero examples even when consider-
ing as many as 40 data points, and even with 100 data points
have poor consistency. As such, classes with few examples
might only be useful for a smaller set of use-cases (e.g., suf-
ficient to share with an instructor, but possibly not reli-
able enough to take an automated action confidently). We
also note that based upon the stickiness analysis (Fig. 4d),
performance may be limited by the instability of clustering
(points moving between clusters even with nearly full data).
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Figure 5: Class-wise Consistency for Semi-Supervised SVM

5.4 Semi-Supervised vs. Final Clusters

The semi-supervised results were compared for their agree-
ment with the labels obtained via alignment with the final
clusters generated using the full data set. This final-clusters
reference point (see Fig. 3) was used to calculate average ac-
curacy, precision, recall and F-scores (Fig. 6), as a function
of the increasing dataset size. While final clusters are not
a perfect reference, it shows that accuracy versus final clus-
ters increases fairly rapidly, but that precision, recall and
F-scores are consistently lower.
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Figure 6: Agreement of Semi-Supervised SVM vs. Final

Cluster Labels

6. DISCUSSION

Based on the results presented, this work demonstrates the
feasibility of using a play-testing methodology for detect-
ing behavioral patterns of engagement. Moreover, this work
also found that a classifier could be developed using this
approach without engineering application-specific features.
The classifier also offered reasonable cold-start performance
and labeled engagement data fairly consistently for 5 cate-
gories after 52 unlabeled samples and 51 archetype samples.

Of the five research questions investigated, there was posi-
tive support for four answers, with one left indeterminate.
For Q1, play-tester data was distinctive and archetype data
followed coherent patterns on features (e.g., response time,
correctness). Archetype data did not show substantial over-
lap between archetypes, even though play-testers received
only limited instructions. This may be due to the limited
degrees of freedom for the task. In a more complex or open-
ended system, increased variation might lead to less coherent
archetype data. With that said, many systems have simi-
lar characteristics to the ELITE scenarios studied here (i.e.,
sequential linear or branching choice tasks, mixed with pas-
sive content such as videos or animations). Moreover, these
kinds of systems are often problematic for engagement, such
as mandatory corporate training modules.

For 2, it was demonstrated that automated matching of
play-test archetypes against pre-defined clusters performed
comparably to expert labels for the same clusters. While
refining instructions might improve inter-rater reliability on
this specific task, the features presented to experts were al-
ready chosen to be simple and visualizable so this repre-
sented an optimistic scenario for expert cluster labeling. On
more complex feature sets or systems, expert analysis might
not even be possible. The broader question not explored
in this work is the machine vs. human play-test agreement
if they were not given pre-defined clusters (i.e., a data ex-
ploration task). However, this would be challenging to con-
duct: it requires a deep analysis by each expert researcher
and the types of engagement categories might be highly un-
even. Alternatively, archetypes might be determined from
already-analyzed data sets (e.g., such as for hint-abuse), to



see how effectively traces of play-test disengagement might
match authentic disengagement patterns.

For Q3, it was established that training a classifier with
both play-test data and unsupervised cluster data showed
advantages over simply re-clustering with new unsupervised
data and then aligning clusters to archetype data. In some
respects, this is not surprising: while the consistency met-
ric used for evaluation is based on the unsupervised results
from the full data set, the classifier is able to train with
more data up-front (as much as double initially). More im-
portantly, since all key archetypes are present in the play-
test data, no category will start unrepresented. This par-
ticularly helps for classifying points from relatively rare but
distinctive categories (e.g., Racing). However, despite this
advantage, points in small classes remained substantially less
consistent than those in larger classes.

As a long term issue, it is an open question about the best
way to mix this data. Neither data source represents ground
truth. The archetype data demonstrates coherent engage-
ment patterns, but these patterns might not reflect the ways
real users experience the system (e.g., in the current re-
search, they were exaggerated/overly extreme). The real
user data is authentic, but may slowly wash out the classi-
fier with unremarkable samples (e.g., overly ordinary). Ex-
ploratory work was conducted where stopping rules were
applied to balance the number of archetype vs. authentic
samples (derived from active learning techniques, such as
margin sampling and entropy sampling), but this has not
yet produced obvious improvements. Similarly, techniques
for weighting samples might be applied. However, the ideal
balance between these data sources probably depends on
the target use-case for the classifier. A recommender sys-
tem may want a classifier that acts on labels regardless of
their confidence scores. By comparison, a human instructor
might prefer a narrowly-scoped but highly-actionable classi-
fier, which might detect clear outliers but allow the majority
of user sessions to be in a non-descript “Nominal” category
or not confidently classified.

On questions about the features required to classify en-
gagement, we found that basic features for the log of re-
sponse times and scores were sufficient in this case (Q4) but
did not show improvement with the expanded feature set
including task difficulty and feature interactions improved
classification (Q5). These features helped to detect engage-
ment behavior that matched patterns observed from play-
testing: Expert/Recall, Diligent, Racing, and Distracted
as well as Nominal (i.e., matched by exclusion). However,
both k-means and GMM tended to split up the mass of
points in the region of Expert, Diligent, and Nominal despite
these clusters being adjacent to each other. The cluster-
alignment approach used in this work was selected primar-
ily for the ability to interpret cold-start trends, while more
advanced methods should further improve performance. It
might be preferred to investigate techniques such as anomaly
detection, which would favor a larger central cluster and
smaller outliers which could correspond to atypical behavior
which is actionable. Alternatively, alternate semi-supervised
techniques are available, such as applying specialized semi-
supervised support vector machines (which optimize mar-
gins for both labeled and unlabeled data) [8, 31] or more

advanced techniques for integrating cluster data [16]. While
expanded features did not improve consistency or stickiness
metrics (Q5), other systems may still benefit from expanded
features. However, additional features also increase the re-
quired data and may result in overfitting, need attenuat-
ing/filtering features during clustering, or other trade-offs.
As such, further research is needed on this problem.

7. CONCLUSIONS AND FUTURE WORK

Based on these findings, this work contributes a number of
novel approaches to analyzing engagement. First, this re-
search demonstrates the utility of play persona data gath-
ered during professional or quality assurance testing for train-
ing useful data mining algorithms. Since there is no defini-
tive metric for engagement, play-test data offers an addi-
tional distinct data source to help recognize engagement and
disengagement. To our knowledge, this approach has not
been applied to analyzing engagement in learning.

Second, this approach offers advantages over current ap-
proaches for cold-start labels. Since the behavioral inten-
tions of the play-test users is known with confidence, these
labels offer a good data set to help overcome cold start prob-
lems. As compared to traditional approaches such as train-
ing observers or collecting in-the-moment self-reported en-
gagement [13, 29], play persona data can be collected prior
to real system users. This approach also allows balanced
sampling for important but lower-frequency engagement be-
haviors (such as racing, in this analysis).

Third, we have demonstrated that semi-supervised classi-
fiers trained based on a combination of play-test labels and
unlabeled data offer more consistent labels than relying on
clustering alone, which has been used to analyze engagement
behaviors [23]. Moreover, as shown by agreement with ex-
pert labels at the cluster level, the alignment approach can
provide similar insights without manually interpreting clus-
ters. While expert interpretation is still ideal, this allows
immediate insights without waiting for an expert analysis.

This approach is also pragmatic: System developers should
already test and perform quality assurance on their soft-
ware and content [35]. Behavioral archetype data can be
collected during this process, by having testers play out en-
gagement styles in a prescribed order based on their ex-
pected learning. Moreover, this work is not unique to spe-
cific archetypes: if learners are expected to engage in dif-
ferent patterns, play-testers may be able to produce those
patterns instead. However, not all archetypes may be re-
alistically playable by testers. For example, experts cannot
typically generate novice answers. As such, this approach
may be most effective when testers are similar to authentic
users. As such, future work will explore how expert observer
labels and self-report data might complement this play per-
sona data.

8. ACKNOWLEDGMENTS

This research was sponsored by U.S. Army through the USC
ICT University Affiliated Research Center (W911NF-14D-
0005). However, all statements in this work are the work of
the authors alone and do not necessarily reflect the views of
sponsors, and no official endorsement should be inferred.



9.
1]
2]

3]

[12]

REFERENCES

Advanced Distributed Learning. xA PI Specification,
2020.

R. D. Axelson and A. Flick. Defining student
engagement. Change: The magazine of higher
learning, 43(1):38-43, 2010.

R. S. Baker, A. T. Corbett, K. R. Koedinger,

S. Evenson, I. Roll, A. Z. Wagner, M. Naim,

J. Raspat, D. J. Baker, and J. E. Beck. Adapting to
when students game an intelligent tutoring system. In
International Conference on Intelligent tutoring
systems (ITS), pages 392—-401. Springer, 2006.

R. S. Baker, S. K. D’Mello, M. M. T. Rodrigo, and
A. C. Graesser. Better to be frustrated than bored:
The incidence, persistence, and impact of learners’
cognitive-affective states during interactions with
three different computer-based learning environments.
International Journal of Human-Computer Studies,
68(4):223-241, 2010.

R. S. Baker and L. M. Rossi. Assessing the disengaged
behaviors of learners. Design recommendations for
intelligent tutoring systems, 1:153-163, 2013.

J. E. Beck. Engagement tracing: using response times
to model student disengagement. In International
Conference on Artificial intelligence in Education
(AIED), pages 88-95. 10S Press, 2005.

O. Chapelle, B. Scholkopf, and A. Zien.
Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]. IEEE Transactions on Neural
Networks, 20(3):542-542, 2009.

O. Chapelle, V. Sindhwani, and S. S. Keerthi.
Optimization techniques for semi-supervised support
vector machines. Journal of Machine Learning
Research, 9(Feb):203-233, 2008.

S. L. Christenson, A. L. Reschly, and C. Wylie,
editors. Handbook of Research on Student
Engagement. Springer, New York, 2012.

M. Cocea and S. Weibelzahl. Disengagement detection
in online learning: Validation studies and perspectives.
IEEFE transactions on learning technologies,
4(2):114-124, 2010.

M. G. Core, K. Georgila, B. D. Nye, D. Auerbach,

Z. F. Liu, and R. DiNinni. Learning, adaptive support,
student traits, and engagement in scenario-based
learning. In Proc. of the Interservice/Industry
Training, Simulation, and Education Conference
(I/ITSEC), 2016.

R. S. d Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
intelligent tutoring systems, pages 406—415. Springer,
2008.

M. A. A. Dewan, M. Murshed, and F. Lin.
Engagement detection in online learning: a review.
Smart Learning Environments, 6(1):1, 2019.

S. D’Mello and A. Graesser. Dynamics of affective
states during complex learning. Learning and
Instruction, 22(2):145-157, 2012.

S. D’Mello, A. Olney, C. Williams, and P. Hays. Gaze
tutor: A gaze-reactive intelligent tutoring system.
International Journal of Human-Computer Studies,

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

[26]

27]

28]

29]

70(5):377-398, 2012.

H. Gan, N. Sang, R. Huang, X. Tong, and Z. Dan.
Using clustering analysis to improve semi-supervised
classification. Neurocomputing, 101:290-298, 2013.

K. Georgila, M. G. Core, B. D. Nye, S. Karumbaiah,
D. Auerbach, and M. Ram. Using Reinforcement
Learning to Optimize the Policies of an Intelligent
Tutoring System for Interpersonal Skills Training. In
Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, 2019.
Y. Gong and J. E. Beck. Towards detecting
wheel-spinning: Future failure in mastery learning. In
Proceedings of the second (2015) ACM conference on
learning@ scale, pages 6774, 2015.

J. F. Grafsgaard, J. B. Wiggins, A. K. Vail, K. E.
Boyer, E. N. Wiebe, and J. C. Lester. The additive
value of multimodal features for predicting
engagement, frustration, and learning during tutoring.
In International Conference on Multimodal Interaction
(ICMI), pages 42—49. ACM, 2014.

R. K. Hambleton, H. Swaminathan, and H. J. Rogers.
Fundamentals of item response theory. Sage, 1991.

C. Holmgard, A. Liapis, J. Togelius, and G. N.
Yannakakis. Evolving models of player decision
making: Personas versus clones. Entertainment
Computing, 16:95-104, 2016.

R. Janning, C. Schatten, and L. Schmidt-Thieme.
Perceived task-difficulty recognition from log-file
information for the use in adaptive intelligent tutoring
systems. International Journal of Artificial
Intelligence in Education, 26(3):855-876, 2016.

M. Khalil and M. Ebner. Clustering patterns of
engagement in massive open online courses (moocs):
the use of learning analytics to reveal student
categories. Journal of computing in higher education,
29(1):114-132, 2017.

H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955.

B. Lehman, S. K. D’Mello, A. C. Strain, M. Gross,
A. Dobbins, P. Wallace, K. Millis, and A. C. Graesser.
Inducing and tracking confusion with contradictions
during critical thinking and scientific reasoning. In
International Conference on Artificial Intelligence in
Education (AIED), pages 171-178, 2011.

D. J. Leiner. Too fast, too straight, too weird: Post
hoc identification of meaningless data in internet
surveys. SSRN Electronic Journal, 2013.

E. Mattheiss, M. Kickmeier-Rust, C. Steiner, and

D. Albert. Approaches to detect discouraged learners:
Assessment of motivation in educational computer
games. Proceedings of eLearning Baltics (eLBa),
10:1-10, 2010.

B. D. Nye, S. Karumbaiah, S. T. Tokel, M. G. Core,
G. Stratou, D. Auerbach, and K. Georgila. Engaging
with the scenario: Affect and facial patterns from a
scenario-based intelligent tutoring system. In
International Conference on Artificial Intelligence in
Education, pages 352-366. Springer, 2018.

J. Ocumpaugh. Baker rodrigo ocumpaugh monitoring
protocol (bromp) 2.0 technical and training manual.
New York, NY and Manila, Philippines: Teachers



College, Columbia University and Ateneo Laboratory
for the Learning Sciences, 60, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning
research, 12(Oct):2825-2830, 2011.

T. Sakai, M. C. du Plessis, G. Niu, and M. Sugiyama.
Semi-supervised classification based on classification
from positive and unlabeled data. In Proceedings of
the 34th International Conference on Machine
Learning- Volume 70, pages 2998-3006. JMLR. org,
2017.

A. Tychsen and A. Canossa. Defining personas in
games using metrics. In Proceedings of the 2008
Conference on Future Play, 2008.

S. C. Weissgerber, M.-A. Reinhard, and S. Schindler.
Study harder? the relationship of achievement goals to
attitudes and self-reported use of desirable difficulties
in self-regulated learning. Journal of Psychological and
Educational Research, 24(1):42, 2016.

F. Wiltgren. 8 archetypes for break-testing your game,
2015.

B. M. Winn. The design, play, and experience
framework. In Handbook of research on effective
electronic gaming in education, pages 1010-1024. IGI
Global, 2009.

N. Yee. The gamer motivation profile: What we
learned from 250,000 gamers. In Proceedings of the
2016 Annual Symposium on Computer-Human
Interaction in Play, pages 22, 2016.



