
Generate: A NLG system for educational content creation
Saad M. Khan
FineTune Learning

saad@finetunelearning.com

Jesse Hamer
FineTune Learning

jesse@finetunelearning.com

Tiago Almeida
FineTune Learning

tiago@finetunelearning.com

ABSTRACT
We present Generate, a AI-human hybrid system to help education
content creators interactively generate assessment content in an
efficient and scalable manner. Our system integrates advanced
natural language generation (NLG) approaches with subject
matter expertise of assessment developers to efficiently generate a
large number of highly customized and valid assessment items.
We utilize the powerful Transformer architecture which is capable
of leveraging substantive pretraining on several generic text
corpora in order to produce sophisticated, context-dependent text
as the basis for item creation. We present early results from
experimental studies demonstrating the efficiency of our
approach.

Keywords
NLP, Transformer Networks, Domain Knowledge Modeling

1. INTRODUCTION

The COVID-19 pandemic has accelerated the push towards
remote delivery of formative and summative assessments and with
it have arisen heightened security concerns of item pool exposure.
Moreover, there is growing adoption of highly personalized and
adaptive learning and assessment experiences [25] that require
regularly replenished assessment item pools. These twin factors
among others are placing ever growing demands on traditional
processes of creating assessment content that are based in large
part on manual labor, highly dependent on subject matter
expertise and challenging to scale up. Furthermore, the manual
generation of content and assessment items heightens the risk of
incomplete, duplicate and/or redundant content. We believe
advances in AI, particularly natural language generation (NLG)
can help mitigate this bottleneck and open new possibilities for
personalized learning experiences.
Classical natural language processing (NLP) work in this area
dates back to John Wolfe’s seminal work [17] that demonstrated
the feasibility of automatically generating natural language
questions. In recent years there has been a revival in interest,
spurred in part by advances in dialogue systems such as Amazon
Alexa. While traditional approaches to NLP-based assessment
item generation involve a pipeline of modules such as content
selection, template design and item realization [18], these have
been criticized for being rigid and too reliant on arbitrary heuristic
rules and having limited novelty and psychometric variability
[19]. There is growing interest in developing end-to-end deep

neural network based approaches that do not require customized,
hand crafted rules and are better equipped to generalize across
content areas [20]. A key element of such approaches is
leveraging large text content databases and well annotated
datasets such as BookCorpus [21], SQuAD [22] and Wikipedia.
For further details on related work, readers are directed to the
survey of state of the art by Kurdi et al. [26].
In this paper we present Generate, a NLG system that efficiently
and in real-time creates lexically and semantically appropriate
item content, dramatically speeding up assessment item authoring,
freeing item writers and subject matter experts (SMEs) from
unnecessary work, and can enable personalized learning and
assessment experiences. At the core of Generate’s content
generation capabilities is the Transformer architecture [4] that
leverages substantive pretraining on several generic text corpora
to produce sophisticated, context-dependent text as the basis for
item creation. From a small number of representative items as
training samples to learn lexical and semantic structure, Generate
is able to produce a wide variety of draft item content. Users
utilize an intuitive graphical interface that allows selection of item
stems, keys (correct answers) and distractors from a number of
generated options.
In the following sections we provide technical details of our
system starting with a brief review of Transformers, system
implementation and architecture. Following that we present
analysis from experimental studies and share thoughts on future
directions.

2. TECHNICAL APPROACH AND
SYSTEM DETAILS
2.1 Transformers and NLG

In order to capture the subtlety and breadth of lexical patterns
necessary to faithfully generate novel assessment content, we
opted to base our NLG engine on the Transformer architecture,
which is capable of leveraging substantive pretraining on several
generic text corpora in order to produce highly sophisticated,
context-dependent token embeddings for a variety of NLP tasks.
First proposed in 2017 by Vaswani et al. [4], the Transformer
architecture has since revolutionized NLP research, with
state-of-the-art performance on benchmarks like the broad GLUE
suite of NLP tasks [5] being set by Transformer-based models
such as Google’s BERT [6] and OpenAI’s GPT series [7, 8, 9].

The central idea of the Transformer architecture is to do away
with sequential processing of text altogether, as was done
traditionally with deep-learning architectures like LSTMs [10]
and GRUs [11], and instead process the tokens (words, subwords,
and punctuation) of text simultaneously using an operation called
attention. The variant of attention used in the original formulation
of the Transformer architecture, scaled dot-product attention, is
defined as follows:

Attention(Q, K, V) = softmax() V𝑄𝐾𝑇

𝑑

The matrices Q and K are called the queries and keys,
respectively, and each have column-dimension d, while the matrix
V, called the values, has column-dimension d’. We consider the
case when Q, K, and V are all the same matrix X, and the resulting
operation is known as self-attention. Each row of X corresponds to
a context-independent dense embedding of a single token with a
small positional encoding vector added so that the model can take
into account the position of the token in the input text. Thus,
self-attention recomputes every token as a linear combination of
every other token, where the weights in the linear combination

depend on a scaled dot-product similarity (the term). In𝑄𝐾𝑇

𝑑
order to allow the Transformer to learn several different patterns
of lexical interaction, several matrices of weights are used to
compute multi-head self-attention:

MultiHead(X, X, X) = Concat(head1, head2, …, headh)WO,

where

headi = Attention(XWi
Q, XWi

K, XWi
V),

and all of the W matrices consist of learnable weights. After
multihead attention is computed, the results are aggregated and
resized using a simple single-hidden-layer feedforward neural
network, which has its own learnable weights. This combination
of multihead attention followed by a feedforward neural network
constitutes the fundamental building block of the Transformer
architecture: the Transformer block. A Transformer model, then,
is built by chaining together several Transformer blocks, each
potentially with its own set of weights.

For its NLG engine Generate utilizes a Transformer model
pre-trained for the task of next-token prediction. The Transformer
architecture processes the conditioning input text in order to
produce a probability distribution over all tokens in the
vocabulary. We sample from the vocabulary according to this
distribution, and then proceed auto-regressively: we process the
newly sampled token and use it to produce a new probability
distribution and sample a new token. We continue in this way
until a maximum token limit is met, or until a stop sequence is
produced (such as a newline character ‘\n’).

2.2 How Generate Works

As illustrated in figure 1 Generate has five main system
architectural components. The first is a React Javascript-based
graphical user interface. Through the interface, users can select
pre-uploaded AI models, generate an item, visualize and edit the
item and visualize the metrics generated by the AI, allowing the
user to create a complete item generation flow, from creation to
validation. The user interface is linked to the second component
which is the Auth0 authentication platform, a third party service
specialized in secure authentication and authorization workflows.
Once the user is authenticated, the GUI will connect with the third
component, Hasura [2]. Hasura serves mainly as a GraphQL API
to connect the GUI with the database and the serverless services.
The fourth component is the item generation services (SQS Queue
and Lambda Worker), which are responsible for interfacing with
the NLG engine API with all the advantages of a serverless
architecture [3]. The NLG engine API forms the last core
component and is responsible for generating content based on the
model provided.

Users begin their interaction with Generate by providing
specifications of desired content including: a content map of item
types and topics to be generated; user-specific writing guidelines

Figure 1: Generate system architecture is designed to be
modular with distributed services hosted on AWS.

Figure 2: Generate item authoring interface. Users can select
from a number of item generation models and create items
on-the-fly with the click of a button.

so that domain semantics and formatting can be tailored to best
practices; and specification of admissible lexical metric ranges,
such as type-token ratio, Flesch Reading Ease, and the
Coleman-Liau Index. These specifications constitute what is
called a project. Along with these specifications, users must also
supply a set of representative items. The number of such items is
usually between 100-200 items total, although it will depend on
the complexity of the content map specified in the project and the
number of different types of items to be generated. At a baseline,
all that is needed is the raw item, though users may supply their
own item metadata to help improve the performance of our AI
engine. Features such as item topic categorization, key and
distractor labels, item cognitive type (recall, application, etc.), and
difficulty metrics like p-value and point biserial [12] may all be
used to further hone our AI models’ performance.

After supplying content specifications and representative items,
the k-means clustering algorithm [13] is applied to produce
several groups of 8-10 representative items each. The clustering
algorithm is predicated on a combination of user-supplied
metadata, as well as numeric item features produced by the
Transformer-based Universal Sentence Encoder (USE) model
[14]. The goal of this clustering procedure is to produce groups of
items which are semantically and stylistically homogeneous,
which in turn improves the reliability of our AI engine to produce
items which are coherent, semantically and factually relevant to
the content domain, and stylistically appropriate according to the
user’s writing guidelines. Each group of representative items
corresponds to a different string of conditioning input text for our
AI engine, which we refer to as a model. Each model produces a
different “flavor” of content. By building several models, we
ensure that a user’s content specification demands are met, and a
wide diversity of items is produced while doing so.

Given a model, raw content is generated by our NLG engine and
then undergoes several automated quality checks before being
presented to the user. First, the raw content must pass a parse
check to ensure that desired item formatting has been captured.
Next, we perform an overlap check to ensure that no part of the
generated content overlaps too heavily with the representative
items, or with any other part of the generated content (e.g. to
prevent duplicate options in a multiple choice item). For multiple
choice content, users are able to specify a range of options to
generate and so we also check that a sufficient number of unique
options are produced. Finally, previously specified lexical metrics
are computed, and we check that the generated item lies in the
user-specified admissible ranges for these metrics.

As shown in figure 2, Generate offers a graphical user interface
where item writers interact with our NLG engine directly to
produce content. With this interface, item writers can select one of
several item generation models and generate items on-the-fly with
the click of a button. The item writer can then refine and annotate
generated items before saving a finalized version. Generate’s
content generation interface allows item writers the ability to save
an intermediate version of a promising item and regenerate
unwanted parts. For example, with multiple choice content, one
can select a key and one distractor from the list of available
options, and then regenerate the remaining options to produce a
fresh list to choose from. In this way, item writers can use
Generate to help them rapidly ideate additional options, leading to
significant speedups to the item-writing process.

Users can review generated content at any time using Generate’s
content dashboard. This dashboard allows users to review
project-level information such as lexical metric distributions, as
well as review individual items and their SME annotations. Once
a selection of items has been made, users can download their
content either as raw text or in QTI format.

2.3 SME Usability Experiment Results

For the content domain of nursing professional licensure, we
performed two experiments with a subject matter expert
(SME)/item writer in the domain. In the first experiment, the SME
was asked to perform a quality review of a set of 40 items purely
created by Generate NLG spanning four topic areas including
biotechnology, medical assisting, nursing assisting, and practical
nursing (see figure 3 for an item from this set). For a baseline of
comparison, we mixed in a “calibration set” of 40 representative
items produced by a separate human item writer spanning these
same four topic areas. The SME was not told which items were

Figure 3: Sample item created by Generate. A user/SME is
able to select the key/correct answer and make any edits
required.

from the calibration set, and which were created by Generate. To
perform the quality review, the SME was asked to check factual
accuracy and topic relevance, make any necessary edits, estimate
the difficulty of the item on a subjective easy/medium/hard scale,
give any general comments and feedback, and assign a subjective
overall quality rating on a 1-7 Likert scale (with 1 being poor and
7 being excellent). The median quality rating for Generate items
was 5.5, compared to a median quality of 6 on the calibration set,
with 70% of Generate items rated 5 or higher. There was also
considerable overlap in the difficulty distributions, as shown in
table 1. It took the SME an average of 3.75 minutes/item to
perform this quality review. Compared to the SME’s estimated
20-30 minutes/item to write an item manually, Generate
demonstrates clear improvements to SME item writing
throughput.

In the second experiment, the same SME was asked to interact
directly with the Generate content generation interface to produce
50 more items in the domain of nursing professional licensure. We
gave the SME five models ranging over a single nursing topic and
requested that they produce ten items for each model. We captured
data on generation time as well as item survival rate. For each
item, the SME used Generate’s content generation interface to
first generate a multiple choice item with eight possible options.
The SME was then asked to select the best combination of key
and three distractors from these available eight options, and then
perform necessary fact checking and editing. Using the Generate
system, it took the SME an average of 2.7 minutes/item, including
latency necessary for the system to generate the raw item.
According to SME testimony, a similar exercise with a
conventional item writing approach would have taken roughly 30
minutes/item, not including slowdowns due to SME fatigue and
burnout. We are currently working on a number of follow-on
experiments with item writers in a variety of domains including
K-12 education, higher-ed and professional licensure.

Table 1: Comparison of difficulty distributions

Easy Medium Hard

Generate 42.5% 40% 17.5%

Calibration 37.5% 45% 17.5%

3. DISCUSSION AND FUTURE
DIRECTIONS
Our early investigations with item writers indicate a significant
increase in assessment authoring throughput, which if borne out in

future and ongoing studies would mitigate bottlenecks in
producing easily accessible high quality assessment items. We
believe this would help enable innovations in formative
assessment, personalized learning, and building customized and
efficacious classroom activities.
In addition to assessment content generation, we plan to
implement the following functionality to Generate over time.

3.1 Item Difficulty Estimation

Content creators must ensure that assessments adhere to a desired
difficulty distribution, where we take difficulty to be measured by
p-value (the proportion of examinees that answered a question
correctly). Current methods for estimating p-values involve
manual field-testing of provisional items, which is both
time-intensive and risks item exposure, reducing the lifespan of
the item. While previous work in automated difficulty estimation
has employed techniques of first-order-logic [15] as well as a
machine learning-based word embedding approach [16], we are
exploring a blended approach which leverages structured item
metadata with Transformer-based processing of unstructured item
text. In this way, users can quickly recycle items which do not
adhere to required difficulty specifications, thereby increasing the
survival rate of items produced by Generate.

3.2 Automated Content Tagging

Tagging educational content with the most relevant learning and
assessment standards such as CCSS [23], NGSS [24], etc. is one
of the most critical elements in creating highly efficacious
content. This enables the tracking of student skill gaps,
recommendation of remediative learning resources and mastery of
discipline topics, skills and cross cutting capabilities. We are
currently developing a text content classification approach that
can be used to delineate skills, learning objectives and core
disciplinary ideas in the generated assessment items.

4. CONCLUSION
In this paper we have introduced Generate, a system that utilizes
an NLG approach to significantly increase productivity of
assessment content creators. Generate is built on a language
modeling architecture that understands the deep semantic and
lexical structure of assessment content that allow us to handle a
variety of assessment domains and item types. Our system’s
content dashboard integrates elegantly with existing item writer
workflows for item review, editing and approval. To the best of
our knowledge Generate is the first NLG content authoring
system designed for use in education and we believe can enable
innovations in personalized learning, formative assessment and
efficacious classroom activities.

5. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.16147.

[2] Hasura’s open-source engine gives you instant GraphQL &
REST APIs that unify your data and power modern
applications - https://hasura.io/.

[3] Servereless architecture advantages -
https://blog.newrelic.com/engineering/what-is-serverless-arc
hitecture/

[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł. and Polosukhin, I. 2017. Attention
is all you need. Advances in Neural Information Processing
Systems, 5998-6008.

[5] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and
Bowman, S. 2018a. GLUE: A multi-task benchmark and
analysis platform for natural language understanding.
Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
353-355.

[6] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL-HLT (1), 4171-4186.
DOI=10.18653/v1/N19-1423.

[7] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I.
2018. Improving language understanding by generative
pre-training. Technical report.
https://cdn.openai.com/research-covers/language-unsupervis
ed/language_understanding_paper.pdf.

[8] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and
Sutskever, I. 2019. Language models are unsupervised
multitask learners. Technical report
https://openai.com/blog/better-language-models/.

[9] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. 2020. Language models are few-shot learners.
Advances in Neural Information Processing Systems.

[10] Hochreiter, S. and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9, 8, 1735-1780.

[11] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H. and Bengio, Y. 2014. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. Proceedings of the 2014
Conference on EMNLP (Oct. 2014), 1724-1734.
DOI=10.3115/v1/D14-1179.

[12] Glass, G. and Hopkins, K. 1995. Statistical Methods in
Education and Psychology (3rd ed.). Allyn & Bacon. ISBN
0-205-14212-5.

[13] Lloyd, S. 1982. Least squares quantization in PCM. IEEE
Transactions on Information Theory 28, 2, 129-137.
DOI=10.1109/TIT.1982.1056489.

[14] Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., St. John,
R., Constant, N., Guajardo-Céspedes, M., Yuan, S., Tar, C. et
al. 2018. Universal sentence encoder. Proceedings of the
2018 Conference on EMNLP: Demonstrations, (Nov. 2018),
169-174, DOI=10.18653/v1/D18-2029.

[15] Perikos, I., Grivokostopoulou, F., Kovas, K. and
Hatzilygeroudis, I. 2016. Automatic estimation of exercises’
difficulty levels in a tutoring system for teaching the
conversion of natural language into first-order logic. Expert
Systems 33, 6 (Dec. 2016), 569-580.
DOI=https://doi.org/10.1111/exsy.12182.

[16] Hsu, F.-Y., Lee, H.-M., Chang, T.-H. and Sung, Y.-T. 2018.
Automated estimation of item difficulty for multiple-choice
tests: An application of embedding techniques. Information

http://doi.acm.org/10.1145/161468.16147
https://hasura.io/
https://blog.newrelic.com/engineering/what-is-serverless-architecture/
https://blog.newrelic.com/engineering/what-is-serverless-architecture/
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109%2FTIT.1982.1056489
http://dx.doi.org/10.18653/v1/D18-2029
https://doi.org/10.1111/exsy.12182

Processing & Management 54, 6 (Nov. 2018), 969-984.
DOI=https://doi.org/10.1016/j.ipm.2018.06.007.

[17] Wolfe, J., 1977. Reading retention as a function of method
for generating interspersed questions. Technical report, DTIC
Document

[18] Gierl, M., Lai, H., Turner, S., 2012. Using automatic item
generation to create multiple-choice test items. Medical
Education 46, 8 (July 2012), 757-65.
DOI=10.1111/j.1365-2923.2012.04289.x.

[19] Heilman, M. 2011. Automatic factual question generation
from text, Ph.D. thesis, Carnegie Mellon University.

[20] Cervone, A., Khatri, C., Goel, R., Hedayatnia, B., Venkatesh,
A., Hakkani-Tur, D. and Gabriel, R. 2019. Natural language
generation at scale. arXiv preprint arXiv:1903.08097.

[21] Zhu. Y., Kiros, R., Zemel, R., Salakhutdinov, R., Torralba, A.
and Fidler, S. 2015. Aligning books and movies. In
Proceedings of the IEEE ICCV, 19-27.

[22] Rajpurkar, P., Zhang, J., Lopyrev, K. and Liang, P. 2016.
SQuAD: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250.

[23] National Governors Association Center for Best Practices,
Council of Chief State School Officers 2010. Common Core
State Standards. National Governors Association Center for
Best Practices, Council of Chief State School.

[24] NGSS Lead States. 2013. Next Generation Science
Standards: For states, by states. Washington, DC: The
National Academic Press.

[25] Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S.
(2015). Continued Progress: Promising Evidence on
Personalized Learning. Rand Corporation.

[26] Kurdi, G., Leo, J., Parsia, B., Sattler, U., & Al-Emari, S.
(2020). A systematic review of automatic question
generation for educational purposes. International Journal of
Artificial Intelligence in Education, 30(1), 121-204.

https://doi.org/10.1016/j.ipm.2018.06.007
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1111%2Fj.1365-2923.2012.04289.x?_sg%5B0%5D=gbKiAVm08lKPwzD85chuICBZZ5bXos0xAjjxs_lsoex3cUp5I6lZZ18y5vGwvC9egsxLsMiu0MG8Z3hZB6P2b9hpkg.3G2uGLyuDuV2P-eCcj54NCY1Z-dtyB2VrcKyuKkfwOPaPFB3v9aKxNmTlDd2CsFeIwe-Zy0K8RZjxXc4vaXrHA

