
UPreG: An Unsupervised approach for building the
Concept Prerequisite Graph

Varun Sabnis
R V College of Engineering,

Bangalore
varunsabnis@gmail.com

Kumar Abhinav
Accenture Labs, Bangalore

k.a.abhinav
@accenture.com

Venkatesh Subramanian
Accenture Labs, Bangalore
venkatesh.subramania

@accenture.com
Alpana Dubey

Accenture Labs, Bangalore
alpana.a.dubey

@accenture.com

Padmaraj Bhat
Accenture Labs, Bangalore

padmaraj.bhat
@accenture.com

ABSTRACT
Today, there is a vast amount of online material for learners.
However, due to the lack of prerequisite information needed
to master them, a lot of time is spent in identifying the right
learning content for mastering these concepts. A system that
captures underlying prerequisites needed for learning differ-
ent concepts can help improve the quality of learning and can
save time for the learners as well. In this work, we propose an
unsupervised approach, UPreG, for automatically inferring
prerequisite relationships between different concepts using
NLP techniques. Our approach involves extracting the con-
cepts from unstructured texts in MOOC (Massively Open
Online Courses) course descriptions, measuring semantic re-
latedness between the concepts and statistically inferring the
prerequisite relationships between related concepts. We con-
ducted both qualitative and quantitative studies to validate
the effectiveness of our proposed approach. As there are no
ground truth labels for these prerequisite relations, we con-
ducted a user study for the evaluation of the prerequisite
relations. We build the concept graph using prerequisite re-
lations. We demonstrate few examples of the learning maps
generated from the graph. The learning maps provide pre-
requisite information and learning paths for different con-
cepts.

Keywords
Prerequisite relation, Text mining, Learning path

1. INTRODUCTION
In today’s fast-paced world, skill development and a strong
foundation in fundamental concepts are becoming very cru-
cial for career growth. MOOCs, offering a wide variety of
courses online are becoming ubiquitous among many learn-

ers interested in acquiring knowledge and becoming compe-
tent in their field of interest. In this journey, learners need
to know the order in which they must learn different con-
cepts to attain a good level of mastery in a specific topic.
Knowing the prerequisites when learning a topic improves
the learning experience of learners and is influential to the
learner’s achievements [20]. Prerequisite concepts define the
concepts one must know or understand first before attempt-
ing to learn or understand something new.

With the increasing amount of educational data available,
automatic discovery of concept prerequisite relations has be-
come both an emerging research opportunity and an open
challenge. There is a growing interest today in researching
different techniques for automatically inferring the prereq-
uisite relations between concepts [17][20]. Various solutions
like curriculum planning [23], learning assistant [10], auto-
mated reading list generation [9] etc, have been developed
based on such techniques.

Prerequisites at the course-level have been manually curated
by experts and this helps find prerequisite relations between
the concepts covered within the courses. For example, con-
cepts in a course on Optimization are prerequisites to con-
cepts in a course on Deep Learning. An example in this sce-
nario would be the Gradient Descent algorithm being a pre-
requisite for understanding the Backpropagation algorithm
used in Deep Neural Networks. Such relations created man-
ually will not scale in real-world online applications. Mod-
ern applications today support learning content from a wide
variety of domains and cater to learners from multiple edu-
cational backgrounds. Manual processes for creating prereq-
uisite relations in such applications are expensive and time-
consuming. Hence, it is necessary to develop solutions that
can infer prerequisite relations using automated approaches.

In this work, we propose an unsupervised approach, UP-
reG, for automatically inferring prerequisite relationships
between different concepts using NLP techniques. We built
a concepts graph capturing the concepts and the prerequisite
relation between them. Concepts here refer to technologies,
programming languages, tools, and topics in the Software
and Computer Science domain. The concepts graph can be

Figure 1: Flow Diagram

leveraged to find the right content for the learner, includ-
ing the prerequisite content. We conducted both qualitative
and quantitative studies to validate the effectiveness of our
proposed approach. As there are no ground truth labels for
these prerequisite relations, we conducted a user study for
the evaluation of the prerequisite relations. We observed
that our approach is effectively able to infer the prerequisite
relations between concepts. The approach can be extended
to other domains as well.

This paper is structured as follows. We present the re-
lated work in Section 2. In Section 3, we describe our ap-
proach for concept graph generation followed by the evalu-
ation methodology and results in Section 4. In section 5,
we discuss the challenges we encountered while building the
concepts graph. Finally, Section 6 concludes with future
work.

2. RELATED WORK
Pan et al. [17] propose a learning-based method for latent
representations of course concepts. They defined various fea-
tures and trained a classifier that can identify prerequisite
relations among concepts. Roy et al. [20] proposed PRE-
REQ, a supervised learning method for inferring concept
prerequisite relations. The approach uses latent representa-
tions of concepts obtained from the Pairwise Latent Dirichlet
Allocation model, and a neural network based architecture.
They assumed that concept prerequisites are available to
train supervised model. Yu et al. [24] present an improved
version PREREQ-S by introducing students’ video watch or-
der to enhance the video dependency network. They sorted
the watched videos of each student by time and utilize these
sequences for replacing the video sequences. They apply
two simple DNN models, which first encode the embeddings
of the concept pairs and then train an MLP to classify the
prerequisite ones. Alzetta et al. [3] applied a deep learning-
based approach for prerequisite relation extraction between
educational concepts of a textbook. Lu et al. [13] proposed
an iterative prerequisite relation learning framework, iPRL,
which combines a learning based model and recovery based
model to leverage both concept pair features and dependen-
cies among learning materials. Liang et al. [12] addressed
the problem of recovering concept prerequisite relations from
university course dependencies. They [11] further applied
active learning to the concept of prerequisite learning prob-
lem. Pal et al. [16] proposed an approach to find the order of
concepts from textbooks using the rule-based method. Prior
work assumes the prerequisite relationship pairs available as
ground truth and apply supervised learning approach. How-

ever, acquiring labeled prerequisite pairs is time-consuming
and expensive. Currently, the major drawback of supervised
learning is that it doesn’t perform well over cross-domains
[16]. To the best of our knowledge, we are the first to apply
unsupervised approach to extract the prerequisite relation-
ship for software domain.

3. APPROACH
In this section, we discuss our approach to build the concepts
graph. It is a directional graph where nodes represent the
concepts and the edges between nodes represent the prereq-
uisite relationship between them. Our approach in building
the concepts graph involves concept representation, measur-
ing semantic similarity between the concepts and identifica-
tion of the prerequisite relationship between them.

3.1 Concept Representation
The descriptions of the courses in MOOCs contain rich infor-
mation about the concepts that will be taught to the learn-
ers. Many courses do not have annotated course tags to rep-
resent the concepts taught in the course. It is very expensive
and time-consuming to manually create course tags from the
course content [13]. Hence, the concepts must be extracted
from the course content using text mining approaches. We
collected course metadata from different MOOCs (Udemy
and edX) and our internal Learning Management System.
We apply Latent Dirichlet Allocation (LDA) [4], a topic
modeling algorithm on each course description to extract
the concepts. The algorithm generates a topical distribu-
tion for each course description. To determine the most
relevant topic that represents the concepts a course covers,
the topic with highest probability from the distribution is
selected. After performing several iterations, we found that
setting k=5 (number of topics to be extracted) gave the best
results. We extract a total of 9750 unique concepts.

3.2 Semantic similarity between concepts
The Semantic similarity measure between concepts gives a
measure of the semantic relatedness between them. Con-
cepts that appear in the same context or appear together
very often have higher semantic similarity scores. Seman-
tic Similarity computation eliminates noise present in the
results of the topic modeling algorithm and reduces the pos-
sibilities of weak relations in the concepts graph. It is also
useful in prerequisite relation identification as it is likely
that concepts appearing in similar contexts will have better
chances of being identified with prerequisite relation. This
improves the selection of candidates in the concepts graph.

Figure 2: Concepts generated for a JavaScript course

Figure 3: Stack Overflow questions and tags

To measure semantic similarity between the concepts we
compute Pointwise Mutual Information (PMI) and Word2Vec
cosine similarity scores. The Semantic similarity scores be-
tween the concepts are computed as the weighted average of
the two scores.

3.2.1 Pointwise Mutual Information
PMI gives a measure of concept association used in informa-
tion theory [6]. It gives a measure of how likely two concepts
would occur together when compared to their independent
occurrences in the data. For computing the PMI of con-
cept pairs, tags of Stack Overflow questions obtained from
Stack Overflow data dumps were used. The author posting
a question on Stack Overflow is asked to provide tags as-
sociated with the posted question (as shown in Figure 3).
Tags that appear often together across all the questions are
likely to be strongly related. Higher the score between the
two concepts, the more similar they are. We assume that
the concepts occurring together have some correlation over
a large set of pairs. To compute the PMI scores, we lever-

age the Stack Overflow dump consisting of 1,000,000 Stack
Overflow questions along with their tags [21]. PMI score
between any two concepts c1 and c2 is defined as:

PMI(c1, c2) = max

(
0,

log [p(c1) · p(c2)]

log p(c1, c2)
− 1

)
(1)

Here p(c1, c2) is the probability of co-occurrence of concepts
c1 and c2. It is fraction of Stack Overflow questions in which
concepts c1 and c2 co-occur as tags. p(c1) and p(c2) is the
probability of the independent occurrence of concepts c1 and
c2 as tags across all Stack Overflow questions. The score
obtained is a normalized score that takes values between 0
and 1. This ensures PMI and Word2Vec similarity scores
have the same scale when taking their weighted average.

3.2.2 Word2Vec Embeddings
Raw word frequency is not a great measure of association
between words. One problem is that raw frequency is very
skewed and not very discriminative. It also does not capture

the kinds of contexts shared between the words, which word
embedding techniques capture [2]. We apply Word2Vec ap-
proach to learn semantic relatedness between concepts. The
Word2Vec model is based on the intuition that words which
are similar in context appear closer in the word embedding
space. Word2Vec algorithm uses a neural network model
to learn word associations from a large corpus of text. We
use skip-gram model [15] to learn word embeddings which
are low dimensional vector representations of the extracted
concepts. The neural network is trained using a text corpus
of course descriptions. We train the skip-gram model for
generating 300-dimensional word embeddings. Word2Vec
neural network is trained using the text corpus of the course
description and objectives. We train Word2Vec model on
a corpus of 64,150 courses using the Python library gen-
sim [18] with default parameters. Some of the Word2Vec
similarity scores between concepts are captured in Table 2.
Word2Vec(W2V) similarity score between the concepts is
computed as the cosine similarity between these word em-
beddings.

W2V (c1, c2) =
c1 · c2
‖c1‖‖c2‖

(2)

Here c1 and c2 represent 300 dimensional embedding vectors
of concept c1 and c2.

Finally, we compute the similarity score as a weighted av-
erage of the above two scores. For simplicity, we set the
weights to 0.5.

Sim(c1, c2) = w1 ·W2V (c1, c2) + w2 · PMI(c1, c2) (3)

We observed that extracted concepts can appear with dif-
ferent representations in the Stack Overflow question tags.
Examples include synonymous pairs such as node.js and
nodejs, javascript and js, mvc and model view controller,
etc. To identify such instances, we use the Stack Overflow
synonym tag api [22] and identify the matching or synony-
mous concepts in the Stack Overflow tags. We also filter
out irrelevant concepts having no occurrence or synonyms
in the Stack Overflow tags. After this process, we end up
with 5200 concepts. During the computation of probabili-
ties for PMI scores, we also consider the occurrence count
of the synonyms. For example, when computing PMI be-
tween javascript and any other concept, we compute the
independent and co-occurrence probabilities by counting oc-
currences of both javascript and js tags in the Stack Overflow
questions.

3.3 Identifying Concept Relation
In this section, we explain the process of identifying the
prerequisite relationship between different concepts. We
only consider the concept pairs with high semantic similar-
ity scores. It is very likely that concept pairs that have very
low semantic similarity scores are not related at all and we
can ignore such pairs. For example, it is not useful to learn
the relationship between Neural Network and PHP which
are not related and occur in different domains (deep learn-
ing and web development respectively). However, it would
be interesting to study the concept pairs Gradient Descent
and Backpropagation which are algorithms used in machine
learning and share high semantic similarity scores. Inferring
the relation that Gradient Descent is a prerequisite of Back-
propagation and not vice-versa would be useful. To infer

such relations, we make use of Wikipedia articles. For each
pair of concepts with high semantic similarity (threshold of
0.5), we compute the concept relevancy scores. For concepts
c1 and c2, we measure how often the concept c1 is referred in
the Wikipedia article of concept c2 and vice-versa. Based on
the concept relevancy scores, we can infer the prerequisite
relation. For example, we know that Java is a prerequisite of
Spring Boot. So, it is quite possible that in an explanation
for Spring Boot (a Java Web framework), the concept Java
would be mentioned more often when compared to the con-
cept Spring Boot being mentioned in an explanation about
Java. Algorithm 1 captures the steps to identify the prereq-
uisite relation between concepts.

Algorithm 1 Prerequisite relation inference between concepts

Input: Pair of concepts ci and cj which are strongly related,
and Wikipedia Knowledge articles.

Output: Relationship between concept pairs (prerequisite
relationship) i.e. c1 is prerequisite of c2 or vice-versa

1: Tokenize the knowledge articles for all the concepts
(Cn), where Cn is set of concepts

2: for ordered pair concepts (ci, cj) do
3: Compute Concept Relevancy scores (CRS) for ordered

pairs (ci, cj) as

CRS(ci, cj) =
TF (ci ∈ Dj)

V (Di, Dj)

CRS(cj , ci) =
TF (cj ∈ Di)

V (Di, Dj)

where ci and cj are the concepts for which CRS is
computed, Di and Dj are the wikipedia articles for
concepts ci and cj respectively, TF (ci ∈ Dj) captures
the term frequency for concept ci in wikipedia article
Dj , TF (cj ∈ Di captures the term frequency for con-
cept cj in wikipedia article Di, and V (Di, Dj) is the
normalization term that captures the total vocabulary
in articles Di and Dj .

4: If CRS(ci, cj) > CRS(cj , ci), then ci is prerequisite
of cj and vice-versa

5: end for

Table 1: Data collected from online learning platforms

Platform # Courses Categories
Udemy 13601 Software development,

and design
Edx 1072 Software development
Internal LMS 49202 Software development,

and design

3.4 Learning Maps
The identified prerequisite relation pairs were used to build
the concept graph. The concept graph has 1325 concepts
and 1868 edges. We use networkx [8] python library to build
the concept graph. We pass the adjacency list created from
the identified concept-prerequisite pairs as an input to the
library. The edges in the graph have directions from the
concept node to the prerequisite node. The learning maps
are built for each concept in the graph using the Depth-first
search (DFS) algorithm. They are represented as DFS trees
generated by the algorithm. To visualize the learning maps

Table 2: Semantic similarity scores from Word2Vec Embeddings and PMI

c1 c2 PMI Scores W2V Scores
Hadoop Hive 0.67 0.43
MongoDB NoSQL 0.64 0.72
JavaScript jQuery 0.44 0.68
JavaScript NodeJS 0.57 0.61
Neural Network Backpropagation 0.74 0.61
Blockchain Cryptocurrency 0.34 0.73
Inheritance Polymorphism 0.54 0.62
ASP.NET Java 0.17 0.08
NodeJS Promise 0.54 0.21
ASP.NET C# 0.20 0.42
Hadoop Java 0.1 0.23
SVM Classification 0.62 0.43
RDBMS SQL 0.19 0.37
Machine Learning Linear Algebra 0.18 0.49

we use d3.js force layout [5]. In visualizing the learning maps
we reverse the edge direction, i.e, from prerequisite node to
concept node. This is done for the purpose of meaningful
and easy identification of prerequisites in the learning maps.
The learning maps for the concepts Blockchain and Java
Spring framework are shown in Figure 4. The root node
colored in blue represents the main concept and all nodes
below the root node colored in orange represent the con-
cepts that are prerequisites for the main concept. The child
nodes represent the prerequisite concepts for its parent node
concept.

Table 3: Extracted prerequisite relation between concepts

c1 c2
Distributed systems Mapreduce

Probability Logistic Regression
Encryption Cryptography

Smart Contract Ethereum
Backpropagation Neural Networks

Regression Neural Networks
JavaScript NodeJS

4. EVALUATION AND RESULTS
4.1 Datasets
We collected metadata about various courses from MOOC
platforms and our internal Learning Management System
(LMS) using REST APIs. We fetched data from categories
relevant to Software Development and Design. The distri-
bution of the number of courses fetched from different plat-
forms is shown in Table 1. There are 13,600 courses from
Udemy, 1,050 courses from edX, and 49,500 courses from
our LMS in the Software Development and Design category.
The output from the REST APIs was in JSON format and
each had a different schema. Hence, we selected MongoDB,
a NoSQL database to store the retrieved data.

We apply text pre-processing on course metadata. Specif-
ically, the course descriptions from Udemy contain HTML
tags. We parse the HTML tags in course descriptions us-
ing Beautiful Soup [19]. We remove stopwords and apply
Lemmatization and Stemming to reduce words to their base

forms. We also create custom stopwords manually by ana-
lyzing the topic modeling output. We stored pre-processed
data in MongoDB for further processing and evaluation.

4.2 Evaluating extracted concepts
We apply Latent Dirichlet Allocation (LDA), a topic mod-
eling algorithm to infer topics from the course descriptions.
We extract five topics from each course description. Each
topic is a vector representation that not only indicates the
words belonging to the topic but also the probability of the
words belonging to the topic. From the topical distribution
for the course description, the words from the topic with
maximum probability were considered and stored against
each course metadata as tags in the database. Figure 2
shows the description and the tags obtained for a Javascript
course in Udemy.

To evaluate the concepts extracted from the course descrip-
tion, we apply the Overlap Coefficient to measure the sim-
ilarity between the concepts extracted from the course de-
scription and concepts tagged by Udemy. The overlap co-
efficient, or Szymkiewicz–Simpson coefficient, is a similarity
measure that measures the overlap between two finite sets
[1]. It is related to the Jaccard index and is defined as the
size of the intersection divided by the smaller of the size of
the two sets. Mathematically, we define the Concept overlap
coefficient as

concept overlap(X,Y) =
|X ∩ Y |

min(|X|, |Y |) (4)

where concept overlap(X, Y) captures the average concept
overlap between two sets X and Y, X is the concepts ex-
tracted from topic modeling, Y is the concepts tagged in
course descriptions of Udemy dataset, and N is the num-
ber of course descriptions in the dataset. We observed the
average concept overlap coefficient to be 0.97. This shows
that the concepts extracted from the topic modeling algo-
rithm quite well capture the relevant concepts covered in the
course. Udemy’s course description contains a maximum of
two concepts tagged. We further analyzed how well our ap-
proach is able to identify the other concepts from course
descriptions, not captured in Udemy’s concepts tag. We
performed a quantitative analysis with 20 Subject Matter

Figure 4: Learning maps for Blockchain and Java Spring framework

Experts (SMEs). The SMEs are having experience ranging
from 5-10 years and have worked on different technologies in
IT companies. We randomly sampled 100 courses offered on
Udemy and provided five courses to each SME along with
inferred concepts for each course. The SMEs were asked to
provide their response on whether these inferred concepts
are relevant for the course or not. We computed the ac-
curacy considering SME’s responses as true labels. We ob-
served the accuracy of inferred concepts to be 0.73.

4.3 Evaluating concept Prerequisite Relations
There are no ground truth labels available for inferred pre-
requisite relationships. To assess the effectiveness of pre-
requisite pairs generated by our approach, we conducted a
quantitative analysis with 25 SMEs to identify if a concept
c1 is a prerequisite for another concept c2. We created five
groups with 5 SMEs in each group. We randomly sampled
250 concept prerequisite pairs. Each group is provided with
50 concept prerequisite pairs. We used the Majority voting
approach to aggregate their responses. We computed the
accuracy of these pairs considering the SME’s response as
ground truth labels. We observed the accuracy of concept
prerequisite pairs to be 0.82. We also measure inter-rater
agreement amongst experts using Fleiss’ Kappa [14]. Fleiss’
Kappa is a statistical measure for assessing the reliability of
agreement between a fixed number of raters when assigning
categorical ratings to a number of items or classifying items.
If the raters are in complete agreement then κ =1. If there
is no agreement among the raters (other than what would
be expected by chance) then κ ≤ 0. We observed κ coeffi-
cient to be 0.74 which indicates a level of strong agreement
among the raters. We believe some level of disagreement
may be due to the fact that prerequisites can be subjective
[12] i.e. it is difficult to get consensus for some pairs of con-
cepts. Different individuals may have different experiences
of acquiring knowledge on specific topics, and this may lead
to different opinions of the prerequisite requirement for a
topic. Some of the extracted prerequisite relationships are
shown in Table 3.

5. CHALLENGES
Some of the challenges that we faced while building the con-
cepts graph.

1. For some concepts extracted from the course descrip-
tion we had disambiguation issues when checked in
Wikipedia. For example, Java can refer to a program-
ming language or an island in Indonesia. To deal with
this issue, we pass the extracted concepts to google
search API [7] and fetch the Wikipedia article that is
ranked higher in the search results. Due to the popu-
larity of these software concepts, we observe that rele-
vant results were returned by picking the higher ranked
Wikipedia article from the search queries.

2. Our inference of prerequisite relationships is based on
reference scores computed from Wikipedia articles of
the concepts. These scores may not always provide ac-
curate results. It is possible that articles for some of
the concepts may have high reference scores for con-
cepts that are derived from it and not vice-versa.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed our approach to infer prerequi-
site relations between concepts and build the concept graph.
The proposed method does not require manually annotated
data which was the major drawback of supervised learning
approaches. We use relevant data sources in different steps
to incorporate relevant and rich semantic information to in-
fer prerequisite relations accurately. To validate our results,
we performed both quantitative and qualitative evaluations.
The identified concept prerequisite pairs were evaluated by
subject matter experts. We observed an accuracy of 0.82
for the inferred prerequisite relations. We built the concept
graph from the prerequisite relation pairs and demonstrated
few examples of the learning maps generated from the con-
cept graph. Learning maps can be used in many applica-
tions ranging from content-based recommendation systems
to more sophisticated online tutoring systems etc. As future
work, we plan to extend our research by creating a personal-
ized curriculum planner system that captures the concepts
learners currently know and what they want to learn. By
leveraging this information, the system will create a person-
alized learning plan for them using their input information
and prerequisite relations. Although, our approaches are not
limited to the software domain, we plan to carry out further
studies and experimentation to measure the system’s gener-
alization to other domains.

7. REFERENCES
[1] J. Adler and I. Parmryd. Quantifying colocalization

by correlation: the pearson correlation coefficient is
superior to the mander’s overlap coefficient.
Cytometry Part A, 77(8):733–742, 2010.

[2] F. Almeida and G. Xexéo. Word embeddings: A
survey, 2019.

[3] C. Alzetta, A. Miaschi, G. Adorni, F. Dell’Orletta,
F. Koceva, S. Passalacqua, and I. Torre. Prerequisite
or not prerequisite? that’s the problem! an nlp-based
approach for concept prerequisite learning. In CLiC-it,
2019.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
2003.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3
data-driven documents. IEEE Transactions on
Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011.

[6] G. Bouma. Normalized (pointwise) mutual
information in collocation extraction. Proceedings of
GSCL, pages 31–40, 2009.

[7] A. Casagrande. Google Search API.
https://github.com/abenassi/Google-Search-API,
2020. [Online; accessed 05-Mar-2021].

[8] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using networkx. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in
Science Conference, pages 11 – 15, Pasadena, CA
USA, 2008.

[9] J. G. Jardine. Automatically generating reading lists.
In Technical Report UCAM-CL-TR-848, 02 2014.

[10] L. Jiang, S. Hu, M. Huang, Z. Wang, J. Yang, X. Ye,
and W. Zheng. Massistant: A personal knowledge
assistant for mooc learners. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 133–138, 2019.

[11] C. Liang, J. Ye, S. Wang, B. Pursel, and C. L. Giles.
Investigating active learning for concept prerequisite
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[12] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. Giles.
Recovering concept prerequisite relations from
university course dependencies. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[13] W. Lu, Y. Zhou, J. Yu, and C. Jia. Concept
extraction and prerequisite relation learning from
educational data. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
9678–9685, 2019.

[14] M. L. McHugh. Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282, 2012.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[16] S. Pal, V. Arora, and P. Goyal. Finding prerequisite
relations between concepts using textbook. arXiv
preprint arXiv:2011.10337, 2020.

[17] L. Pan, C. Li, J. Li, and J. Tang. Prerequisite relation
learning for concepts in moocs. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1447–1456, 2017.

[18] R. Řeh̊uřek and P. Sojka. Software Framework for
Topic Modelling with Large Corpora. In Proceedings
of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pages 45–50, Valletta, Malta, May
2010. ELRA.

[19] L. Richardson. Beautiful soup documentation. April,
2007.

[20] S. Roy, M. Madhyastha, S. Lawrence, and V. Rajan.
Inferring concept prerequisite relations from online
educational resources. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
9589–9594, 2019.

[21] I. Stack Exchange. Stack Exchange Data Dump.
https://archive.org/details/stackexchange, 2021.
[Online; accessed 05-Mar-2021].

[22] StackExchange. StackExchange.
https://api.stackexchange.com/docs/synonyms-by-
tags, 2020. [Online; accessed
05-Mar-2021].

[23] Y. Yang, H. Liu, J. Carbonell, and W. Ma. Concept
graph learning from educational data. WSDM 2015 -
Proceedings of the 8th ACM International Conference
on Web Search and Data Mining, pages 159–168, 02
2015.

[24] J. Yu, G. Luo, T. Xiao, Q. Zhong, Y. Wang, J. Luo,
C. Wang, L. Hou, J. Li, Z. Liu, et al. Mooccube: A
large-scale data repository for nlp applications in
moocs. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3135–3142, 2020.

