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ABSTRACT
Feedback on student answers and even during intermediate
steps in their solutions to open-ended questions is an im-
portant element in math education. Such feedback can help
students correct their errors and ultimately lead to improved
learning outcomes. Most existing approaches for automated
student solution analysis and feedback require manually con-
structing cognitive models and anticipating student errors
for each question. This process requires significant human
effort and does not scale to most questions used in home-
works and practices that do not come with this information.
In this paper, we analyze students’ step-by-step solution pro-
cesses to equation solving questions in an attempt to scale
up error diagnostics and feedback mechanisms developed for
a small number of questions to a much larger number of
questions. Leveraging a recent math expression encoding
method, we represent each math operation applied in so-
lution steps as a transition in the math embedding vector
space. We use a dataset that contains student solution steps
in the Cognitive Tutor system to learn implicit and explicit
representations of math operations. We explore whether
these representations can i) identify math operations a stu-
dent intends to perform in each solution step, regardless of
whether they did it correctly or not, and ii) select the ap-
propriate feedback type for incorrect steps. Experimental
results show that our learned math operation representa-
tions generalize well across different data distributions.
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1. INTRODUCTION
Math education is of crucial importance to a competitive
future science, technology, engineering, and mathematics
(STEM) workforce since math knowledge and skills are re-
quired in many STEM subjects [11]. One important way
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to help struggling students improve in math is to diagnose
errors from student answers to math questions and deliver
personalized support to help them correct these errors [1].
In short-answer questions, feedback of various types [39] can
be deployed according to the specific incorrect final answers
students submit, while in open-ended questions, feedback
can be deployed at intermediate solution steps according to
the specific actions they take and their outcomes [22]. In
traditional educational settings, this feedback process relies
on teachers going over student work, identifying errors, and
providing feedback [15], which results in a labor-intensive
process and a slow feedback cycle for students. Such a set-
ting is even more limited as a result of the COVID-19 pan-
demic, which introduced new barriers to face-to-face inter-
actions between teachers and students.

In intelligent tutoring systems, a more scalable approach to
math feedback is to automatically deploy feedback based on
students’ final answers or certain incorrect intermediate so-
lution steps. For example, in ASSISTments [12], teachers
can create hints and feedback messages for specific incorrect
student answers to short-answer questions that they antici-
pate [28], which the system can automatically deploy when
students submit these incorrect answers. This crowdsourc-
ing approach efficiently scales up teachers’ effort so that they
can benefit a large number of students without putting in
additional effort. In many other systems such as Cognitive
Tutor [34] and Algebra Notepad [27], researchers use cogni-
tive models to anticipate student errors as results of buggy
production rules or insufficient knowledge on key math con-
cepts [20, 24]. They then develop corresponding feedback
for intermediate solution steps in multi-step questions (e.g.,
those on equation solving). This cognitive model-based ap-
proach requires significant effort by domain experts and has
shown to be highly effective in large-scale studies.

However, these approaches for student feedback are still lim-
ited in their generalizability to many math questions de-
ployed in daily homeworks and practices. For the teacher
crowdsourcing approach, hint and feedback messages have
to be written for each individual question (or group of ques-
tions generated from the same template with different nu-
merical values). For the cognitive model-based approach, a
rigorous solution process has to be specified for each ques-
tion with annotations on the math operations that should
be applied at each solution step. However, questions used
in many real-world educational settings do not come with
such information; teachers simply adopt them from sources



such as textbooks and open education resources and assign
them to students without developing corresponding feedback
mechanisms. Moreover, past research has shown that a large
portion of incorrect student answers cannot be anticipated
by cognitive models [43], teachers/domain experts [8], or nu-
merical simulations [37]. Therefore, it may be hard for high-
quality feedback developed for questions used in intelligent
tutoring systems to generalize to questions in the wild.

1.1 Contributions
In this paper, we develop data-driven methods that enable
us to analyze step-by-step solutions to open-ended math
questions. In contrast to existing methods that rely on a
top-down approach, i.e., defining the structure of the so-
lution process and anticipating student errors, we propose
a bottom-up approach, i.e., using learned representations of
math expressions and math operations to predict i) math
operations in student solution steps and ii) the appropriate
feedback for incorrect solution steps. We restrict ourselves
to the specific domain of equation solving where the solu-
tion process consists of applying specific math operations
between math expressions in consecutive steps; other sub-
domains of math such as algebra word problems [45] and
questions involving graphs and geometry [16] are left as fu-
ture work. Specifically, our contributions are:

• First, we characterize math operations by how they
transform math expressions in the math embedding
space in each solution step. We leverage recent work
on learning math symbol embeddings from large-scale
scientific formula data [46] to encode math expressions
in student solutions: each math expression is mapped
to a point in the math embedding vector space. We use
synthetically generated data as well as solution steps
generated by real students to learn the representation
of each math operation. We explore several meth-
ods for learning both implicit and explicit math op-
eration representations: a classification-based method
that does not explicitly impose a structure on math op-
erations, a linear model that assumes each operation is
characterized by an additive vector in the embedding
space, and a nonlinear model where math operations
live in their own, interconnected embedding spaces.

• Second, we apply these math operation representation
learning methods to a real-world student step-by-step
solution dataset collected while student learn equation
solving in an intelligent tutoring system, Cognitive Tu-
tor [34]. We validate our math operation representa-
tion learning methods via two tasks: i) predicting the
specific math operation the student intended to ap-
ply in a solution step from the math expressions be-
fore and after the step and ii) predicting the appro-
priate feedback deployed to students from the incor-
rect math expressions they enter. Quantitative results
show that tree embedding-based math expression en-
coding methods outperform other encoding methods
since they are able to explicitly capture the seman-
tic and structural characteristics of math expressions.
They also have better generalizability across different
data distributions and remain effective across different
question difficulty levels and even when student solu-
tions steps contain errors.
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Figure 1. Demonstration of the generalizability of our math
operation representations to other data sources for a solution
process provided on Algebra.com. Our methods can success-
fully predict the math operations applied in each step and
the appropriate feedback type in an incorrect step.

1.2 Use Case
Before diving into the technical details, we first illustrate
a potential use case for our math operation representation
learning methods and corresponding operation/feedback
classifiers. Our goal is to transfer expert designs in intel-
ligent tutoring systems for math education to questions in
the wild. Specifically, we apply the math operation rep-
resentations learned from student solution steps and corre-
sponding labels (step name, feedback message) in the highly
structured Cognitive Tutor system to environments that are
not highly structured. Figure 1 shows the solution process
to an equation solving question on Algebra.com1 and the
corresponding math operation and feedback predictions at
each step. We see that our math operation representation
learning methods can accurately predict the math opera-
tions applied in solution steps 1, 3, and 4 using the opera-
tion names provided in the Cognitive Tutor system. Even
in step 2 where two different math operations are combined
into a single step, i.e.,

7x+ 9 = 7− x
↓ ADD x TO BOTH SIDES

7x+ 9 + x = 7− x+ x

↓ COMBINE TERMS ON RIGHT SIDE

7x+ 9 + x = 7,

despite only training on steps in Cognitive Tutor that involve
only one math operation, the classifier is able to recognize
both of them with high predictive probability for both. We

1The original question and the solution process can be
found at https://www.algebra.com/algebra/homework/
equations/Equations.faq.question.4872.html.



also change one of the solution steps, i.e., step 5, to make
it incorrect and test our feedback classifier. In this case,
the classifier is able to recognize the error in this step and
find the corresponding feedback types in Cognitive Tutor.
This potential use case demonstrates the utility of our math
operation representation learning methods: by transferring
knowledge learned in well-designed, highly-structured sys-
tems such as Cognitive Tutor, especially on what feedback
to deploy for each student error, to other domains such as
online math Q&A sites, we are scaling up the effort domain
experts put into the design of these feedback mechanisms.

2. RELATED WORK
One related body of work in math education that studies
student solution processes to identify student strategies and
assess errors. Specifically, [33] uses inverse Bayesian plan-
ning to learn solution strategies (i.e., policies) in equation
solving and capture student misunderstandings in a Markov
decision process framework. Our work focuses on a differ-
ent aspect of the solution process: the representation of the
math expressions at each solution step and the modeling
of the transitions between different math expressions under
math operations. [9] uses basic math operations to con-
struct programs to understand errors that students make in
their solutions to arithmetic questions. Our work focuses
on equation solving, which is a more difficult problem in
which students responses are are more diverse and are less
structured than arithmetic calculations.

Another related body of work focuses on learning representa-
tions of student answers to short-answer questions. [21] an-
alyzes incorrect student answers across multiple questions,
learn representations of errors, and generalize misconception
feedback across questions. Our work analyze the full math
expressions in intermediate solution steps while their work
represents short answers according to the frequency they
occur in an answer pool. [8] uses trained word embeddings
to represent short answers for automated grading purposes.
Our work focuses on learning transitions of math expressions
across solution steps instead of learning representations of
only the final answer.

In domains other than math education, there exist methods
for automated feedback generation, including programming
[30, 31, 40] and essays [35]. However, transferring these
methods to math solutions is not trivial since i) open-ended
math solutions are less structured than programming code
and ii) data-driven representations of math symbols have not
been developed until recently [46] whereas such representa-
tions have been studied for a long time in natural language
processing [6, 7, 26].

Another body of remotely-related work focuses on using
computer vision techniques to identify math expressions
from images for similar math expression retrieval [29], turn-
ing hand-written math expressions into LATEX [47], and au-
tomatically identifying and correcting student errors [14].
These works often bypass the inherent structure of math
expressions and directly use an end-to-end model for their
tasks, which means that they cannot be used to analyze
student knowledge. Nevertheless, these techniques can be
used to build large-scale datasets containing hand-written
student solutions which we can use in the future.

3. BACKGROUND: EMBEDDING MATH
EXPRESSIONS INTO VECTOR SPACES

In this section, we provide an overview of a recent method
that we developed to embed math expressions into a vec-
tor space, i.e., a math embedding space. Doing so turns
discrete, symbolic math expression representations into con-
tinuous, distributed representations [2], which enables us to
manipulate math expressions in a manner compatible with
modern machine learning methodologies.

Our embedding method is a tree-structured encoder illus-
trated in Figure 2. The key observation is that any math
expression has a corresponding symbolic tree-structured rep-
resentation in the operator tree format. In the operator tree,
the non-terminal (non-leaf) nodes are math operators, i.e.,
addition and subtraction, and terminal (leaf) nodes are num-
bers or variables; See Figure 2 for an illustration. Thus, an
operator tree explicitly captures the semantic and structural
properties of a math expression. A number of existing works
have demonstrated the superior performance of using oper-
ator tree representations of math expressions compared to
other math expression representations in applications such
as automatic math word problem solving [32, 48, 51] and
math formulae retrieval [5, 25, 49, 50].

Therefore, we built a math expression encoder that lever-
ages the operator tree representation of math expressions.
Specifically, during the encoding process, it first converts a
math expression into its corresponding tree format, using the
parser introduced in [5]. It then linearizes the tree by depth
first search that enables us to process nodes as a sequence in
which each math symbol is associated with its own trainable
embedding. Next, it leverages positional encoding, similar
to [44, 38], to retain the relative position of each node in the
tree. The output of our encoder is a fixed-dimensional em-
bedding vector that represents the input math expression,
which we will use to learn representations of math operations
for the math operation classification and feedback prediction
tasks. We pretrain the encoder on a large corpus of math
expressions extracted from Wikipedia and arXiv articles and
demonstrated superior performance in reconstructing math
expressions (and scientific formulae) and retrieving similar
expressions. See the anonymized version of our work at [46].
We will refer to the trained encoder as the math expression
encoding method in what follows.

4. LEARNING REPRESENTATIONS OF
MATH OPERATIONS

In this section, we detail methods we use to learn both im-
plicit and explicit math operation representations by study-
ing how they transform math expressions in each solution
step in the math embedding space. In these methods, we
leverage the math expression encoding method developed in
our prior work that we reviewed above to embed math ex-
pressions into vectors and work with these embedding vec-
tors. However, since these embeddings are trained on math
expressions that are very different from those occurring in
actual student solution steps, we use an additional train-
able, fully-connected neural network to adapt these embed-
dings to our dataset, following a popular approach in natural
language processing [13]. Specifically, we have e = gγ(m)
where m and e are the embedded vector of a math expression



Figure 2. Illustration of the math expression encoding method that we employ in this work.

in our dataset before and after the adaptation, respectively.
γ denotes the set of parameters in the fully-connected net-
work that we will learn during the training process.

We define a step in a student’s solution to open-ended math
questions as a tuple (E1, E2, z), where z ∈ Z is the math
operation applied in this step, with Z denoting the set of
possible math operations. E1 ∈ E and E2 ∈ E denote the
math expressions involved in this step before and after ap-
plying this math operation, i.e., the step can be expressed as
E1

z−→ E2. E denotes the set of all unique math expressions
(across all steps in a dataset). For simplicity, we assume that
only one math operation is applied in each step; an extension
to cases where multiple math operations is trivial and will
be discussed in what follows. e1 ∈ RD and e2 ∈ RD are the
fine-tuned embedding vectors that correspond to math ex-
pressions E1 and E2, respectively, where D is the dimension
of the embedding.

4.1 Math Operation Classification
The first task we will study in this paper is to classify the
math operation applied in a solution step given the math
expression embeddings before and after appliying it, e1 and
e2. The same notations and approaches also apply to our
second task, feedback classification. This task can simply be
solved using a supervised learning method, e.g., a regression
model where the predicted probability of predicting a math
operation ẑ is given by

p(ẑ = z) = softmax(vTz [eT1 , e
T
2 ]T ),

where softmax(·) is the softmax function for multi-label clas-
sification [10]. vz is a parameter vector associated with each
math operation z, which is used to compute an inner product
with the concatenation of e1 and e2 before being fed into the
softmax function. On a training dataset with given tuples
(e1, e2, z), we can learn the parameters (vz) by minimizing
the cross-entropy loss [10] between the predicted math op-
eration ẑ and the actual math operation. This approach can
be seen as learning implicit representations of math expres-
sions since they are captured by the classifier parameters.

4.2 Learning Math Operation
Representations

The classification approach we detailed above can help us
classify the math operation applied in a solution step but
falls short on learning explicit representations of math oper-
ations. The latter is important, however, to help us under-
stand students’ math solution processes and diagnose their
errors. We now detail a series of methods for us to learn
explicit representations of math operations.

4.2.1 Translating embeddings

Figure 3. Illustration of the TransE and TransR frameworks.
TransE puts the embeddings of equations e1, e2, and math
operation z in the same embedding space, whereas TransR
puts them in their own embedding spaces.

We will leverage the translating embedding (TransE) frame-
work [3] that has found success in embedding entities
and characterizing relationships between entities in multi-
relational data. Our key assumption here in this framework
is that math operations are linear and additive, i.e., the rela-
tionship between math expressions before and after a math
expression satisfy

e2 ≈ e1 + hz,

where hz ∈ RD is the embedding of the math operation z. In
other words, we assume that the effect of a math operation
is characterized by the difference in the embedding vectors
between the math expressions before and after it in a single
step; adding it to the embedded vector of E1 results in the
embedded vector of E2 after the step.

To learn these math operation embeddings from data, we
use two loss functions. The first loss function promotes this
linear and additive relationship between embeddings of the
math expressions and operations on the training data. To
this end, we define a distance function as d(e1, e2,hz) =
‖e1 + hz − e2‖22 and define the loss function as

L1 =
∑

(E1,E2,z)

d(e1, e2,hz).

The second loss function pushes counterfeit step tuples that
are generated by replacing elements in an observed step tu-
ple with other ones in the dataset to not satisfy the afore-
mentioned linear and additive relationship. To this end, we
minimize the pairwise marginal distance ranking-based loss



given by

L2 =
∑

(E1,E2,z)∈S

∑
(E′1,E

′
2,z

′)∈S′
(E1,E2,z)

[γ + d(e1, e2,hz)− d(e′1, e
′
2,h
′
z)]+,

where [x]+ = x when x > 0 and 0 otherwise and γ > 0
is a hyper-parameter that controls the margin of the dis-
tance ranking. S denotes the set of steps in the dataset and
S′(E1,E2,z) is a set of counterfeit steps that are perturbed ver-
sions of the actual step (E1, E2, z), generated by randomly
replacing one of the triplet elements in the step by a differ-
ent math expression or math operation from another step,
i.e.,

S′(E1,E2,z) ∼ A ∪B ∪ C,
where A = {(E ′1, E2, z) : E ′1 6= E1 ∈ E}

B = {(E1, E ′2, z) : E ′2 6= E2 ∈ E}
C = {(E1, E2, z′) : z′ 6= z ∈ Z}.

Intuitively speaking, our objective encourages the distance
function calculated on an actual tuple in the dataset to be
smaller than that calculated on a perturbed version of it.
Figure 3 illustrates the whole process.

The final loss function that we minimize is simply the combi-
nation of these two loss functions as L = L1 +L2. Using the
learned embeddings of each math operation, we can classify
them from the math expressions E1 and E2 using the nearest
neighbor classifier, i.e., ẑ = argminzd(e1, e2,hz).

4.2.2 Learning Entity and Relation Embeddings
Despite potentially exhibiting excellent interpretability,
TransE’s assumption that math operations are linear and
additive in the math expression embedding space may be
too restrictive. This assumption puts math operations are
vectors in the same latent space where similar math expres-
sions will be close to each other. However, different math
operations are fundamentally different and can transform
the same math expression into dramatically different math
expressions that are far apart in the embedding space. For
example, different math operations can focus on transform-
ing different parts of the same math expression. The steps
(3 + 5 + 2x = x+ 1, 8 + 2x = x+ 1, combine similar terms)
and (3 + 5 + 2x = x + 1, 3 + 5 + 2x − x = x + 1 −
x, subtract from each side) have the same starting math ex-
pression E1. In the first step, only similar terms on the left
hand side of the equation are combined, regardless of the
other side of the equation. In the second step, we subtracted
x from both sides of the equation, which is a consequence
of the equality symbol in the equation, which means that
subtracting the same term on both sides of the equation but
not what exactly is on each side. Therefore, TransE’s lin-
ear and additive assumption means that the resulting E2 in
these steps will be very different due to the different math
operations applied, which conflicts with the observation that
they are very similar. To address this limitation, we explore
the Learning Entity and Relation Embeddings (TransR) [23]
model, which models math expressions and math operations
in different spaces, i.e., there will be a shared embedding
space for all math expressions but separate relation spaces
for different math operations.

TransR learns the embeddings of math operations by pro-
jecting them to their corresponding relation spaces and then
learning translations between those projected expressions.
For each math operation z, we set a projection matrix
Mz ∈ RD×D that projects a math expression to its rela-
tion space. To make this projection nonlinear, we apply the
rectified linear unit (ReLU) activation function [10] to it and
define the corresponding distance function as

dz(e1, e2,hz) = ‖ReLU(Mze1) + hz − ReLU(Mze2)‖22.

Correspondingly, the two loss functions in the TransR frame-
work are given by

L1 =
∑

(E1,E2,z)

dz(e1, e2,hz),

L2 =
∑

(E1,E2,z)∈S

∑
(E′1,E

′
2,z

′)∈S′
(E1,E2,z)

[γ + dz(e1, e2,hz)− dz(e′1, e′2,h′z)]+.

The projection matrices Mz, ∀z ∈ Z are included as part of
the trainable parameters. The rest of the training and re-
sulting math operation classification procedure remains un-
changed from the TransE framework.

5. EXPERIMENTS
We now detail a series of quantitative and qualitative exper-
iments that we have conducted to validate the learned rep-
resentations of math operations. Using the Cognitive Tutor
2010 equation solving (CogTutor) dataset,2 we focus on two
tasks: i) classifying the math operation a student applies in
a solution step and ii) classifying the feedback category cor-
responding to certain types of incorrect steps, from the math
expressions the student enters before and after the step.

5.1 Dataset
We use the CogTutor dataset which we accessed via the
PSLC DataShop [19]. The dataset contains detailed tu-
tor logs generated as students in a school use the Cog-
nitive Tutor system [34] for their Algebra I class. These
logs contain the students’ step-by-step solutions to equa-
tion solving problems, where each step is a tuple with
three elements: a math expression E1 at the beginning of
the step, the step name z, i.e., the math operation the
student selected to apply to this math expression, and
the resulting math expression E2 after the step. Students
can select math operations from a built-in list in Cogni-
tive Tutor: COMBIN ADD, COMBINE MUL, ADD SIDE,
SUB SIDE, MUL SIDE, DIV SIDE, and DISTRIBUTE; see
Table 1 for an illustration of these operations and some ex-
amples of the corresponding math operations before and af-
ter them in a step.

There are a total of 50, 406 steps in this dataset that can be
further divided into three subsets according to their out-
comes: OK (43, 413 steps), ERROR (6, 377 steps), and BUG

(5, 744 steps). The OK subset contains steps that are cor-
rect, i.e., the student both selected the correct math op-
eration and arrived at the correct math expression. The
BUG and ERROR subsets contain incorrect student steps, ei-
ther because the operation they selected was incorrect or

2https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=660



Step (Math operation) Description Example

COMBINE ADD combine two similar terms with add/sub operator 3x+ 2x→ 5x

COMBINE MUL combine two similar terms with multiply/divide operator x ∗ x→ x2

ADD SIDE add a math term on each side x = 1→ x+ 1 = 1 + 1
SUB SIDE subtract a math term on each side x = 1→ x− 1 = 1− 1
MUL SIDE multiply a math term on each side x = 1→ x ∗ 2 = 2
DIV SIDE divide a math term on each side x = 1→ x/2 = 1/2
DISTRIBUTE distribute(expand) the terms (x+ 1)x→ x ∗ x+ x

Table 1. Detailed descriptions and examples for each math operation in the CogTutor dataset.

because they selected the correct operation but did not ap-
ply it correctly, i.e., arriving at an incorrect math operation
after the step. The difference between these two subsets is
that BUG contains steps that fit one of the predefined er-
ror templates in the Cognitive Tutor system; in this case,
the system can automatically diagnose the error and deploy
a predefined feedback. On the other hand, ERROR contains
incorrect steps that Cognitive Tutor could not automati-
cally diagnose the underlying error. The OK subset can be
further split into six predefined difficulty levels (named as
ES 01,ES 02, ES 03 ,ES 04, ES 05, and ES 07), with 2, 068,
7, 546, 8, 183, 13, 393, 5, 484, and 2, 801 steps, respectively.
We do not further split the BUG and ERROR subsets for the
math operation classification task due to their limited sizes.

To learn the representation of math operations, we need
examples of how they transform one math expression into
another. However, the CogTutor dataset may not contain
enough data that is rich in both quantity and diversity for
neural network-based models to learn from. Therefore, we
designed a synthetic data generator stemming from the math
question answering dataset created by DeepMind [36]. The
generator can generate steps by first generating the initial
math expression and then applying math operations listed
in Table 1 to arrive at a resulting math expression. We
have full control over the generated steps through the en-
tropy, degree, and flip parameters. Increasing entropy intro-
duces more complexity to the math expressions as numer-
ical constants generated get larger. Increasing the degree
parameter introduces monomials of higher degrees and also
adds more terms in the math expression. Finally, the flip
parameter allows us to control which side of an equation
has a higher chance to be more complicated than the other.
Tuning these parameters within this flexible synthetic data
generation method enables us to generate a large amount of
steps that closely resembles those in the CogTutor dataset.

5.2 Methods
To fully evaluate the effectiveness of our math operation
representations, we also experiment with two other ways of
encoding math expressions commonly used in natural lan-
guage processing tasks, in addition to the tree embedding-
based and translation-based encoder that we introduced in
Section 4.2. These two encoders include a gated recurrent
unit (GRU)-based encoder [4] and a convolutional neural
network (CNN)-based encoder [17]; we will use the output
of these encoders to replace [eT1 , e

T
2 ]T as input to the clas-

sifier detailed in Section 4.1.

Specifically, these two encoders first concatenates the two
math expressions before and after the step, i.e., E = [E1, E2].

For each character xt in E , we compute its embedding

xt = WT onehot(xt) ,

where W is a trainable embedding matrix. Using these char-
acter embeddings, the GRU encoder computes

ht = GRUθ(xt,ht−1) ,

where θ represents all the trainable parameters in GRU. We
then replace [eT1 , eT2 ]T with hT as input to the classifier
where T is the total number of characters in E . Similarly,
the CNN encoder computes

h = max pool(CNNφ([x1, · · · ,xT ])) ,

where CNNφ represents a 2D CNN with parameters φ and
max pool is a 1D max pooling operator. Combined, they
return a fixed dimensional feature vector h that replaces
[eT1 , eT2 ]T as input to the classifier. For each of these two
models, we learn its parameters jointly with the classifica-
tion task using the cross-entropy loss that we described in
Section 4.1.

Overall, we test five different methods for the math oper-
ation classification and feedback classification tasks. The
first three methods use different encoding methods in con-
junction with a classifier: i) using the GRU encoder to en-
code math expressions as input to the classifier, which we
dub GRU+C, ii) using the tree embedding-based encoder in-
stead, which we dub TE+C, and iii) using the CNN encoder
instead, which we dub CNN+C. These methods do not learn
explicit representations of math operations. The next two
methods use the TransE and TransR frameworks to learn
these representations using tree embeddings: iv) using tree
embedding-based encoder as input to the TransE framework
in conjunction with a nearest neighbor classifier, which we
dub TE+TransE, and v) using the TransR framework in-
stead of the TransE framework to study math operations in
multiple relation spaces, which we dub TE+TransR.

5.3 Experimental Setup
We first test our math operation representation learning
methods on the OK subset via 5-fold cross-validation, i.e.,
training on 80% of steps in the subset to learn representa-
tions of math operations and testing them on the remaining
20%. We also test the generalizability of the learned repre-
sentations to incorrect steps, i.e., replace the test set with
the ERROR and BUG subsets, and check whether we can still
recognize the math operation a student applied in an incor-
rect step. The results are detailed in Section 5.4.1.

Since the distribution of math expressions in the OK, ERROR
and BUG data subsets are mostly similar with minor differ-



OK ERROR BUG

GRU+C 99.18± 0.23 93.87± 0.66 95.89± 0.63
TE+C 99.82± 0.04 93.30± 0.65 95.38± 0.62
CNN+C 95.37± 0.44 86.82± 1.38 91.02± 0.59
TE+TransE 96.27± 0.17 86.32± 1.23 84.21± 2.13
TE+TransR 99.17± 0.21 91.28± 1.12 91.31± 1.87

Table 2. Math operation classification accuracy for all meth-
ods training on the OK subset of the CogTutor dataset and
testing on different data subsets. Accuracy is high across
the board, while GRU-based encoding and tree embedding-
based encoding in conjunction with a classifier result in the
best performance.

ences, the previous experiment does not give us a good idea
on the generalization ability of our math operation repre-
sentation learning methods. Therefore, we further divide
the OK subset into six smaller subsets, each corresponds to
a different difficulty level (with different structure and com-
plexity) according to questions within it, and test the gen-
eralizability of the learned math operation representations.
The results are detailed in Section 5.4.2. In practice, so-
lution step data generated by real students is often limited.
Therefore, we conduct two more experiments to test whether
synthetically generated steps can help us learn math opera-
tion representations that generalize to real data. First, we
repeat the experiments above using synthetically generated
steps as the training set. This synthetic training set consists
of 1, 000 steps for each math operation defined in Table 1
(adding up to a total of 7, 000 across different difficulty lev-
els). The results are detailed in Section 5.4.3. Second, to
study the impact of synthetically generated data when real
data is limited, we pre-train the math operation represen-
tations with synthetic data, fine-tune on a small amount of
real data from each difficulty level in the OK subset, and test
on the rest. The results are detailed in Section 5.4.4.

To test the ability of our learned math operation representa-
tions on recognizing student errors, we use them to classify
feedback types provided by CogTutor in the BUG data subset.
Examples of such errors include when a student calculated
the wrong simplification result, used the wrong sign in front
of terms, and applied useless/unlogical steps to solve the
problem, etc. The results are detailed in Section 5.4.5.

We use Adam optimizer [18] with learning rate 0.001, batch
size 64 and run 10 training epochs for each experiment.
The math expression encoder outputs length-512 embed-
ding vectors for each math expression, which we adapt to
length-32 embedding vectors dimensions using a trainable
fully-connected neural network. All of our experiments were
conducted on a server with a single Nvidia RTX8000 GPU.

5.4 Results and Discussion
5.4.1 Generalizing to incorrect steps

Table 2 shows the averages and standard deviations of math
operation classification accuracy for every method we ex-
perimented with using the OK subset as the training set. As
expected, testing on the ERROR and BUG subsets result in
slightly lower (5-10%) math operation classification accu-
racy for all methods since the training set does not contain

incorrect steps. However, even on steps that are incorrect,
these methods can still effectively identify the math opera-
tion a student intended to apply (with up to 95% accuracy),
suggesting that they may be applicable to fully open-ended
question solving solutions that are not highly structured, un-
like those in Cognitive Tutor, to provide feedback to teachers
on students’ solution approaches.

We observe that using GRUs and tree embeddings as repre-
sentations for math expressions and applying a classification
method on top of these representations result in similar per-
formances; GRUs slightly outperform tree embeddings in
cases where we use the ERROR and BUG subsets as the test
set while tree embeddings slightly outperform GRUs in the
case where we use a part of the OK subset as the test set.
Using CNNs to encode math expressions as input to a clas-
sifier results in worse performance, suggesting that they do
not capture the semantic and structural information in math
expressions as well as GRUs and tree embeddings. As ex-
pected, using tree embeddings under the TransE and TransR
frameworks leads to worse performance than the first two
methods, with TransE achieving low performance (especially
on the BUG subset) and TransR achieving comparable per-
formance to the classification-based methods on the OK sub-
set but lower performance on the ERROR and BUG subsets.
This result can be explained by the additional structural
restriction that math operations are represented as linear
and additive in some embedding space in the TransE frame-
work, which makes it less robust against incorrect student
solution steps. Using the TransR framework mitigates this
problem due to its use of different relation spaces for each
math operation.

These methods perform similarly in the math operation clas-
sification task on real data largely due to the limited varia-
tion and complexity in the math expressions. The Cognitive
Tutor system limits the degrees of freedom in a students’
response by splitting an open-ended step into the separate
actions of selecting a single math operation and entering
the resulting math expression, which limits the variability
in the data. In the next experiment, we see that when we
control against different levels of complexity in these math
expressions and forcing these methods to generalize across
complexities, their performance vary significantly.

Figure 4 visualizes the confusion matrix for math operation
classification on the OK subset and the pairwise euclidean
distances between math operation embeddings learned via
the TransE framework using tree embeddings for math ex-
pressions. Rows correspond to the true math operations
applied in steps and columns correspond to predicted ones.
Percentages in the confusion matrix (Figure 4a) are nor-
malized w.r.t. the number of appearances of each math
operation. We see that our math operation representa-
tion learning method captures some meaning of these op-
erations (Figure 4b); the learned math operation embed-
dings capture the structural changes in math expression in
ways that match our intuition. For instance, both COM-
BINE ADD and COMBINE MUL can be considered types
of simplifications, so the Euclidean distance between the
learned embeddings for these two operations is low. This
observation is not surprising due to the similar nature
of these operations. Moreover, COMBINE ADD, COM-



(a) Confusion matrix of math operations classification.

(b) Euclidean distance between learned math
operation embedding vectors.

Figure 4. Details of TE+TransE for the math operation
classification task on the OK subset. These results match
our intuition on how these math operations are related.

BINE MUL, and DISTRIBUTE are often confused with one
another. These results are also validated by a 2-D visu-
alization (using t-SNE [42] as a dimensionality reduction
method) of the learned math operation embeddings in Fig-
ure 5, where different math operations are mostly well sep-
arated except for COMBINE ADD, COMBINE MUL, and
DISTRIBUTE. One possible explanation is that these op-
erations are all applied to one side of the equation during
a solution step, leaving one side of the equation unchanged,
while the other operations, such as ADD SIDE, SUB SIDE,
MUL SIDE, and DIV SIDE are all applied to both sides
of the equation. Therefore, this result suggests that tree
embeddings enable us to characterize a math operation by
the structural change in math expressions before and after
a solution step where it is applied. Furthermore, the classi-
fication accuracy for the DISTRIBUTE operation is signif-
icantly lower than that for other operations. This result is
likely due to the fact that the number of steps with this op-
eration is significantly lower than that for other operations.

5.4.2 Generalizing to different difficulty levels
In this experiment, we test the ability of our learned math
operation representations to generalize to math expressions
with different levels of complexity in questions at differ-

Figure 5. Visualization of learned math expression change
for a randomly sampled subset of student solution steps in
2-D and corresponding operations (best viewed in color).

ent levels of difficulty. Although they are all about equa-
tion solving, questions at different difficulty levels in Cog-
nitive Tutor involve math expressions that look very differ-
ent. For example, in the easiest level (ES 01), the equation
that needs to be solved in a question looks like x + 5 = 9,
with only a single variable and without numbers with dec-
imals. In contrast, in the hardest level (ES 07), a ques-
tion may contain coefficients with several decimal places
and multiple variables, such as solve for m in the equation
m(k − n) = gs. We only compare the GRU-based encoder
and the tree embedding-based encoder in conjunction with
a classifier since they are the best performing methods in
the previous experiment. Table 3 lists the math operation
classification accuracy for both methods after training on
steps at different difficulty levels in the OK subset and testing
on steps at other difficulty levels (including incorrect ones).
We see that TE+C overall outperforms GRU+C in almost
every case. This results suggest that tree embeddings are
effective at capturing the structural property of a math ex-
pression. As a result, math operation representations based
on tree embeddings excel at capturing the structural change
in math expressions before and after applying a math op-
eration, leading to better generalizability than GRU-based
encoding that do not explicitly account for this change.

5.4.3 Generalizing to different data distributions
In this experiment, we test the ability of our methods to
generalize from synthetically generated data to real student
data. We train different math operation classification meth-
ods on the 2, 000 synthetically generated steps and test them
on steps generated by real students in the CogTutor dataset.
Table 4 shows the mean and standard deviation for each
method on each real data subset. We see that TE+C signif-
icantly outperforms GRU+C and CNN+C on all data sub-
sets, which is in stark contrast to the previous experiment
where the difference in performance across all methods is
much smaller. This observation suggests that tree embed-
dings are more effective at capturing the semantic/structural
effect of math operations on math expressions, thus general-
izing better to different data distributions. Indeed, although
the synthetically generated steps and the real steps have the
same set of math operations, the distributions of numbers



Train
on

Method OK ERROR BUG

ES 01
GRU+C 58.82± 1.12 63.74± 1.13 66.02± 1.12
TE+C 76.51± 0.62 84.24± 0.87 67.49± 1.10

ES 02
GRU+C 71.05± 1.12 76.66± 1.11 69.01± 1.14
TE+C 87.89± 0.34 93.96± 0.72 80.44± 0.78

ES 03
GRU+C 82.39± 3.93 79.24± 1.47 80.01± 1.67
TE+C 90.79± 1.12 93.83± 1.32 84.70± 1.54

ES 04
GRU+C 76.72± 0.14 71.35± 6.12 83.32± 2.24
TE+C 94.65± 0.12 92.72± 1.32 90.99± 1.72

ES 05
GRU+C 81.74± 0.33 73.36± 1.69 78.36± 1.07
TE+C 87.66± 0.25 80.00± 1.32 77.81± 0.99

ES 07
GRU+C 76.25± 3.21 73.15± 3.42 67.35± 3.62
TE+C 79.44± 0.62 79.29± 0.72 72.53± 2.26

Table 3. Math operation classification accuracy after train-
ing on steps with different difficulty levels and testing on the
OK ERROR, and BUG subsets. Tree embedding-based encoding
outperforms GRU-based encoding.

Figure 6. Math operation classification accuracy for the
TE+C method when real data is limited. Using synthet-
ically generated steps as a starting point, we already start
with acceptable classification accuracy even with few real
steps generated by students. The performance steadily im-
proves after more real data becomes available.

(1, 0.5,−7, etc.) and variables (x, u, t, etc.), resulting in a
mismatch between the data distributions. Tree embedding-
based methods benefit from the tree-based representations
of math expressions that can effectively capture structural
information, making it easy for the learned embeddings of
math expressions to generalize to unseen data.

5.4.4 Generalizing from synthetic data
Ideally, if there is a large amount of training data, i.e., steps
generated by real students containing different types of math
expressions and detailed labels on these steps such as the
math operation(s) applied, the error(s) if a step is incorrect,
and corresponding feedback, we can simply use that data
to learn our math operation representations. However, in
practice, the amount of real data is often limited. Figure 6
plots the performance of TE+C on all subsets of the Cog-
Tutor dataset, training on a portion of steps in the subset
for training and testing on the rest. We see that the perfor-
mance on math operation classification suffers considerably
when we only have limited training data. Therefore, syn-

OK ERROR BUG

GRU+C 62.89± 3.93 64.06± 4.70 62.94± 2.24
TE+C 83.79± 0.14 75.49± 0.90 75.16± 0.55
CNN-C 51.12± 1.64 45.52± 0.98 59.82± 1.68
TE + TransE 80.17± 2.32 71.86± 3.24 72.32± 2.72
TE + TransR 82.22± 2.88 73.83± 3.46 74.85± 3.23

Table 4. Math operation classification accuracy for all meth-
ods training on 7, 000 synthetically generated steps and test-
ing on different subsets of the CogTutor dataset. Tree
embedding-based methods significantly outperform other
methods, showing better ability to generalize to different
data distributions.

Figure 7. Math classification accuracy (difference in per-
centage) for TE+C, pre-training on synthetic data before
fine-tuning on real data versus training only on real data.
When real data is limited, pre-training on synthetic data
results in significantly better performance.

thetically generated data can play a vital role in improving
their performance under this circumstance; the strategy of
fine-tuning models trained on synthetically generated data
using a small amount of real data can be effective. Specif-
ically, we start with a pre-trained math operation classifi-
cation model on the 7000 synthetically generated steps and
fine tune it on a small number of real steps by doing gradi-
ent descent on these steps for 10 epochs. Figure 7 plots the
improvement in math operation classification accuracy for
the fine-tuned model over the model that trains on only real
data of various amounts on all data subsets. We see that
the pre-trained models always performs better, with signif-
icant improvement when the real data is extremely limited.
This result suggests that i) effectively leveraging synthet-
ically generated data can mitigate the problem of limited
real data and ii) our math operation representation learn-
ing methods are capable of generalizing across different data
distributions (synthetic → real).

5.4.5 Feedback type classification
In this experiment, we evaluate our math operation rep-
resentation learning methods on the feedback type classi-
fication task. These feedback items were automatically de-
ployed by Cognitive Tutor for incorrect steps in the BUG sub-
set. We pre-processed these steps and grouped the detailed
feedback items according to the students’ errors that each



Method Accuracy

GRU+C 75.35± 1.41
TE + C 78.71± 1.74
CNN+C 67.23± 1.54
TE + TransE 69.15± 1.13
TE + TransR 73.21± 1.63

Table 5. Feedback type classification accuracy for all meth-
ods on the BUG subset. Tree embedding-based encoding out-
performs other encoding methods while TransE and TransR
frameworks do not reach similar performance levels due to
shortage of training data.

feedback item addresses and narrowed it down to a total
of 24 types that occur multiple times. We perform 5-fold
cross validation on this subset. Table 5 shows the averages
and standard deviations of feedback classification accuracy
for all methods on this task across the five folds. We see
that due to the limited size of the BUG subset (only 5, 744
steps) and the high number of classes (24), all method per-
form worse than they do on the math operation classification
task. Specifically, we see that the tree embedding-based en-
coder in conjunction with a classifier performs best while
GRU-based encoding also performs well. This result shows
that although tree embeddings are superior at capturing the
meaning of math expressions, their advantage over simple
encoding methods such as GRU-based encoding decreases
due to increased noise in the data; some math expressions
submitted by students in incorrect steps are ill-posed and
do not make sense. Using the TransE and TransR frame-
works result in slightly worse performance than classifiers
since these methods explicitly learn a representation for each
math operation, which limits their performance on this task
due to the shortage of training data. However, since they
capture the structural difference in math expressions before
and after the step, they can cancel out some of the noise in
erroneous steps, resulting in acceptable performance.

5.5 Discussions
Overall, we find that the GRU-based and tree embedding-
based math expression encoders in conjunction with a classi-
fier perform almost equally well in most situations, while the
CNN-based encoder performs worse. The tree embedding-
based encoder has stronger generalizability across different
data distributions. We believe that as the math expressions
and operations get more complicated, methods that lever-
age the tree structure of math expressions would be more
advantageous. We also observe that TransR outperforms
TransE most of the time, although in some experiments us-
ing TransE and TransR to explicitly learn math operation
embeddings lead to slightly worse performance than clas-
sifiers using implicit representations of math expressions.
However, TransE and TransR are much more powerful and
enable us to study more tasks such as clustering solution
steps and identifying typical student errors and learning so-
lution strategies; See Section 6 for a detailed discussion.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed a series of methods to learn
representations of math operations by observing how math
expressions change as a result of these operations in step-by-

step solutions to open-ended math questions. Our methods
leverage math expression encoding methods that map tree-
structured math expressions into a math embedding vector
space. We demonstrated the effectiveness of our methods
on a dataset containing detailed student solution steps to
equation solving questions in the Cognitive Tutor system on
two tasks: i) classifying the math operation applied in each
step and ii) classifying the feedback the system deploys for
each incorrect step. Results show that our learned math
operation representations are meaningful and can often ef-
fectively generalize across different data distributions such
as questions with different difficulty levels.

However, the success of our methods heavily depends on the
availability of diverse large-scale training data. The Cogni-
tive Tutor dataset that we used in this work represents a
heavily restricted solution process since the list of math op-
erations a student can apply in a step is pre-defined. There-
fore, additional work has to be done to extend our method
to truly open-ended step-by-step solution processes that are
less structured. Moreover, our methods are restricted to a
single solution step only and do not consider the relation-
ship across multiple steps, which is related to another im-
portant aspect of solving open-ended math questions: the
overall solution strategy, i.e., which math operation to apply
next. Furthermore, in both classification tasks, using tree
embeddings to encode math expressions in conjunction with
a classifier outperforms explicitly learning vectorized repre-
sentations of math operations in the TransE and TransR
frameworks. However, these explicit representations may
enable us to perform other tasks such as Nevertheless, our
work provides a series of tools to analyze the math expres-
sions students write down in their solutions by bridging the
gap between symbolic math representations with continuous
representations in vector spaces, enabling the use of state-
of-the-art neural network-based methods. We believe that
this work can potentially open up a new line of research that
studies how to automatically analyze student solutions for
grading and feedback purposes.

There are many avenues of future work. First, since most
real-world open-ended solutions contain a mixture of math
expressions and text, there is a need to learn a joint represen-
tation of math expressions and text in a shared embedding
space. Second, this joint representation will enable us to
train automated feedback generation methods in an end-to-
end manner, using sequence-to-sequence learning methods
[41]. Third, using learned math expression representations
as the states and learned math operation representations
from the TransE and TransR frameworks as the state transi-
tion model, we can apply reinforcement learning and inverse
reinforcement learning methods to learn solution strategies,
i.e., which math operation to apply in the next step. We can
also study solution strategies employed by real students [33]
and diagnose their errors and design corresponding feedback
mechanisms to improve their learning outcomes. These fu-
ture work directions will enable us to tap into the full poten-
tial of explicit math operation representations, which is not
fully demonstrated in this paper: on the CogTutor dataset,
the only relevant real-world dataset we found, we could only
evaluate these explicit representations on the math opera-
tion and feedback prediction tasks, where they may not out-
perform tree embedding-based classification-based methods.
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Z. Popović. Automatic generation of problems and
explanations for an intelligent algebra tutor. In
International Conference on Artificial Intelligence in
Education, pages 383–395. Springer, 2019.

[28] T. Patikorn and N. T. Heffernan. Effectiveness of



crowd-sourcing on-demand assistance from teachers in
online learning platforms. In Proceedings of the
Seventh ACM Conference on Learning@ Scale, pages
115–124, 2020.

[29] L. Pfahler, J. Schill, and K. Morik. The search for
equations–learning to identify similarities between
mathematical expressions. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 704–718. Springer, 2019.

[30] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[31] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming.
International Educational Data Mining Society, 2016.

[32] J. Qin, L. Lin, X. Liang, R. Zhang, and L. Lin.
Semantically-aligned universal tree-structured solver
for math word problems. In Proc. Conf. Empirical
Methods Natural Lang. Process., pages 3780–3789,
Nov. 2020.

[33] A. N. Rafferty, R. A. Jansen, and T. L. Griffiths.
Assessing mathematics misunderstandings via
bayesian inverse planning. Cognitive science,
44(10):e12900, 2020.

[34] S. Ritter, J. R. Anderson, K. R. Koedinger, and
A. Corbett. Cognitive tutor: Applied research in
mathematics education. Psychonomic bulletin &
review, 14(2):249–255, 2007.

[35] R. D. Roscoe, E. L. Snow, L. K. Allen, and D. S.
McNamara. Automated detection of essay revising
patterns: Applications for intelligent feedback in a
writing tutor. Grantee Submission, 10(1):59–79, 2015.

[36] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli.
Analysing mathematical reasoning abilities of neural
models, 2019.

[37] D. Selent and N. Heffernan. Reducing student hint use
by creating buggy messages from machine learned
incorrect processes. In International conference on
intelligent tutoring systems, pages 674–675. Springer,
2014.

[38] V. Shiv and C. Quirk. Novel positional encodings to
enable tree-based transformers. In Proc. Intl. Conf.
Neural Info. Process. Syst., pages 12081–12091, 2019.

[39] V. J. Shute. Focus on formative feedback. Review of
educational research, 78(1):153–189, 2008.

[40] R. Singh, S. Gulwani, and A. Solar-Lezama.

Automated feedback generation for introductory
programming assignments. In Proc. 34th ACM
SIGPLAN Conf. on Programming Language Design
and Implementation, volume 48, pages 15–26, June
2013.

[41] I. Sutskever, O. Vinyals, and Q. Le. Sequence to
sequence learning with neural networks. In Proc.
Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

[42] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,
9(11), 2008.

[43] K. VanLehn. Bugs are not enough: Empirical studies
of bugs, impasses and repairs in procedural skills. The
Journal of Mathematical Behavior, 1982.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Proc. Intl.
Conf. Neural Info. Process. Syst., volume 30, 2017.

[45] L. Wang, D. Zhang, L. Gao, J. Song, L. Guo, and
H. T. Shen. Mathdqn: Solving arithmetic word
problems via deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[46] Z. Wang, A. Lan, and R. Baraniuk. Mathematical
formula representation via tree embeddings. Online:
https://people.umass.edu/~andrewlan/papers/

preprint-forte.pdf, 2021.

[47] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and
C.-L. Liu. Handwritten mathematical expression
recognition via paired adversarial learning.
International Journal of Computer Vision, pages 1–16,
2020.

[48] Z. Xie and S. Sun. A goal-driven tree-structured
neural model for math word problems. In Proc. Int.
Joint Conf. Artificial Intell., pages 5299–5305, 7 2019.

[49] W. Zhong, S. Rohatgi, J. Wu, C. Giles, and
R. Zanibbi. Accelerating substructure similarity search
for formula retrieval. In Proc. European Conf. Info.
Retrieval, pages 714–727, 2020.

[50] W. Zhong and R. Zanibbi. Structural similarity search
for formulas using leaf-root paths in operator subtrees.
In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff,
and D. Hiemstra, editors, Proc. Intl. Conf. Neural
Info. Process. Syst., pages 116–129, 2019.

[51] Y. Zou and W. Lu. Text2Math: End-to-end parsing
text into math expressions. In Proc. Conf. Empirical
Methods Natural Lang. Process. and Intl. Joint Conf.
Natural Lang. Process., pages 5327–5337, Nov. 2019.


