Early Detection of At-risk Students based on
Knowledge Distillation RNN Models

Ryusuke Murata
Department of Advanced
Information Technology
Kyushu University, Japan
murata@limu.ait.kyushu-
u.ac.jp

ABSTRACT

Recurrent neural network (RNN) achieves state-of-the-art in
several researches of the performance prediction. However,
accuracy in early time steps is lower than that in late time
steps, even though the early detection of at-risk students is
important for timely interventions. To improve the accu-
racy in early time steps, we propose a knowledge distillation
method for RNN. Our method distills the time-series infor-
mation in the RNN model of late time steps into the RNN
model of early time steps. This distillation makes the predic-
tion of early time steps closer to that of late time steps. The
experimental result showed that our method improved the
detection rate of at-risk students compared with traditional
RNNSs, especially in early time steps.
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1. INTRODUCTION

The detection of at-risk students is an essential task to en-
sure intervention as early as possible. At-risk students are
those who may drop out of lecture courses and have low
scores (e.g., grade point averages and quiz scores). When
potential at-risk students are automatically detected in the
early stage of courses, teachers can have sufficient time to
encourage them to continue learning.

In recent years, prediction models based on recurrent neu-
ral networks (RNNs) have reached high performance [1, 3,
6, 7, 10, 11, 14, 19]. RNNs can handle time-series informa-
tion such as weekly learning behavior and predict students’
performance in each time step. Therefore, RNNs can detect
at-risk students in each time step such as after each lecture.
However, prediction accuracy in early time steps is lower
than that in late time steps because it is difficult for RNNs
to extract representative features from only the time-series
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Figure 1: KD for the earlier detection of at-risk students.

information in early time steps.

To solve this problem, we propose a novel training strat-
egy for improving the prediction in early time steps. Figure
1 shows an overview of our proposed method. Traditional
RNNs can extract more representative features in later time
steps, and prediction accuracy can also increase because
RNNs can use longer time-series information. If RNNs can
obtain more representative features from the inputs of ear-
lier time steps, they can detect at-risk students earlier and
maintain detection accuracy.

To transfer extracted features, we use knowledge distillation
(KD) [4]. KD is a compression method for deep neural net-
works (DNNs), and many methods have been proposed in
several fields such as visual recognition [2, 8] and natural lan-
guage processing [5, 13, 15]. In KD, the model is compressed
by training a small DNN model (student model) from a large
DNN model (teacher model); that is, the knowledge in the
teacher model is distilled to the student model. Further, KD
does not require new annotations. In our method, KD is ap-
plied to transfer the representative features extracted from



longer time-series information. As shown in Figure 1, this
distillation makes the prediction of early time steps closer to
that of late time steps, allowing us to detect at-risk students
earlier.

The contributions of this study are summarized as follows.

e We introduce KD to predict students’ performance.
To the best of our knowledge, this is the first study to
apply KD to performance prediction.

e We propose the RNN-FitNets model to improve early
performance prediction. This model performs as if the
learning behaviors in all the time steps are inputted,
even though the model only receives the learning be-
havior in early time steps.

e We evaluate the effectiveness of our model for detect-
ing at-risk students based on the learning logs collected
from a higher education course.

2. KNOWLEDGE DISTILLATION

RNN MODEL
In this study, we propose RNN-FitNets, which is an inte-
gration of RNNs and FitNets [12]. RNN-FitNets distils the
well extracted features in the later time step into the RNNs
in the earlier time steps by using the architecture of Fit-
Nets. Therefore, RNN-FitNets can improve the prediction
accuracy in the earlier time steps. For example, as shown in
Figure 1, RNN-FitNets can extract representative features
in time step 3, whereas traditional RNNs obtain the same
feature in time step 7.

Figure 2 shows the architecture. The teacher model is pre-
trained using all the time steps (1,2,...,T"), and the student
model is trained until time step ¢ (1 <t < T'). During the
pre-training of the teacher model and training of the student
model, the same ground truth holds (e.g., the final grade
is passed to all the time steps). The teacher and student
models have the same structure; only the time steps differ
between them. Therefore, unlike FitNets, no regressor that
transforms the size of the hidden layer of the student model
exists.

The student model is trained using two steps in each train-
ing epoch as with FitNets. First, it updates its parameter,
except for the output layer. Given the t-th time step feature
vector of the student model as h: and T-th time step feature
vector of the teacher model as h/-, the parameter is updated
by minimizing the following hint loss function Lgr:

1
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After updating the parameter, the entire student model, in-
cluding the output layer, is updated by minimizing the dis-
tillation loss. Given the output of the student model as
Y1,¥2, - ¥, T-th output of the teacher model as y/., and
ground truth as y,,.., the distillation loss Lk p is calculated
as follows:
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Figure 2: RNN-FitNets.

Table 1: Grade point average distribution.
GPA A|B|C|D|F
Number of students | 25 | 50 | 16 | 12 | 5

where H refers to the cross-entropy and A is a hyperparam-
eter that balances both cross-entropies.

3. EXPERIMENT

3.1 Dataset

We used the same dataset as [10]. The data were collected
from the Information Science course at Kyushu University.
This course started in April 2016 and 15 lectures were held
weekly. Table 1 shows the grade point average of the 108
students that took this course. More than two-thirds of stu-
dents received an “A” or “B.” On this course, the teacher and
students used a learning support system called M2B [9]. The
M2B system consists of three subsystems: the learning man-
agement system, Moodle; the e-portfolio system, Mahara;
and the e-book system, BookLooper. Moodle recorded stu-
dents’ attendance, submission of reports, and access to the
course. Mahara recorded students’ logbook in each lecture
on the course. BookLooper recorded students’ reading be-
havior such as turning pages, drawing highlights, and taking
notes.

We also applied the feature engineering method used by [10].
The collected data were converted into active learner points,
as shown in Table 2. As shown in the table, the learning be-
havior of each lecture was evaluated on a five-point scale
(0-5). Attendance and report submission were evaluated
based on whether the activities were on time, late, or not
completed. The quiz was evaluated based on the ratio of
collected answers. The other behaviors were evaluated by
comparing the students in each lecture. Before inputting
these features into the prediction model, the evaluated val-
ues were divided by 5 (i.e., they were normalized with in the
range of 0 to 1).



Table 2: Criteria for active learner points.

Activities 5 4 3 2 1 0
Attendance Atten Being Absence
dance late
. Above Above Above Above Above Other
Quiz 80% 60% 40% 20% 10% wise
Report Subml Late None
ssion
Course Upper Upper Upper Upper Upper Other
accesses 10% 20% 30% 40% 50% wise
‘Word count Upper Upper Upper Upper Upper Other
in Mahara 10% 20% 30% 40% 50% wise
Reading time Upper Upper Upper Upper Upper Other
in BookLooper 10% 20% 30% 40% 50% wise
Highlights Upper Upper Upper Upper Upper Other
in BookLooper 10% 20% 30% 40% 50% wise
Notes Upper Upper Upper Upper Upper Other
in BookLooper 10% 20% 30% 40% 50% wise
Total Actions Upper Upper Upper Upper Upper Other
in BookLooper 10% 20% 30% 40% 50% wise

3.2 Evaluation Criteria

We applied 5-fold cross-validation to the 108 students in the
dataset. The folds were made by preserving the percentage
of samples for each student’s grade of “A,” “B,” “C,” “D,”
and “F.” After the separation, we grouped grades “A” and
“B” into the “no-risk” class and grades “C,” “D,” and “F” into
the “at-risk” class because more than two-thirds of students
received “A” or “B” (see Table 1). Therefore, we conducted a
binary classification between “no risk” (“A” or “B”) and “at-
risk” (“C,” “D,” or “F”). For the evaluation, we calculated the
recall, precision, and F-measure values for detecting at-risk
students.

3.3 Comparison Models

To investigate the effectiveness of our model, we compared
the evaluation values for predicting the final grades between
the following three types of models:

e RNN baseline model

Training the RNN-based prediction model using the
learning behavior in all lecture weeks.

o Week-by-week model

Training the RNN-based prediction model using the
learning behavior in each lecture week. Therefore,
there were 15 independent models (trained by only
first-week behavior, trained until the second week of
behavior, and so on).

o RNN-FitNets

Training the student model from the RNN baseline
model as the teacher model in each lecture week. As
with the week-by-week model, there were 15 student
models.

The three types of comparison models had the same archi-
tecture. We set the batch size to one. The length of time
steps took an integer from 1 to 15 when the three types of
comparison models predicted students at-risk. When the
models were trained, the RNN baseline model used 15 time
steps and the other models used the same time steps as the
prediction. The input features of the model were the active
learner points shown in Table 2; therefore, the number of

features was nine. For the hidden layer, we used GRU with
32 units and the activation function was tanh. The output
layer had two units and the activation function was softmax.
We used RMSprop optimizer [16] for the hint loss and dis-
tillation loss. In both the optimizations, we set the learning
rate to 0.001. In addition, we applied L2 regularization with
a parameter of 0.004 for the optimization of the weights and
biases in the hidden and output layers. A in the distillation
loss (Eq. (2)) was equal to the time step; for example, when
RNN-FitNets was trained using the learning behavior until
the second week, we set A to 2. The aim was to make the
second term in Eq. (2) the same scale as the first term (i.e.,
RNN-FitNets is equally affected by the teacher model and
ground truth). All models were trained for 50 epochs.

3.4 Experimental Result
Figure 3 illustrates the evaluation of the three types of mod-
els. We summarize the results as follows:

e In most time steps, the recall values of the RNN-FitNets
were higher than the values of the RNN baseline and
week-by-week models. In other words, RNN-FitNets
detected more at-risk students than other models.

e However, the precision values of the RNN-FitNets were
lower than the value of the RNN baseline model, i.e.,
RNN-FitNets misdetected more no-risk students as at-
risk.

e As shown by the F-measure values, the RNN-FitNets’
values were higher than that of the RNN baseline and
week-by-week models in most time steps. This dif-
ference was marked in early time steps. Therefore,
the increase in the detection of at-risk students out-
weighed the increase in the misdetection, especially in
early time steps.

e Comparing the evaluation values of the RNN baseline
model with those of the week-by-week model, the for-
mer was superior in early time steps, although the val-
ues of the week-by-week model were close to or outper-
formed those of the RNN baseline model in late time
steps.
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Figure 3: Evaluation of three types of models.
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Figure 4: Visualization of the extracted feature vectors in the
three types of models by t-SNE.

3.5 Discussion

The experimental result showed that the proposed models
improved the detection rate of at-risk students, especially
in early time steps. This improvement resulted from the
distillation of time-series information. The evaluation values
of the RNN baseline model were higher than those of the
week-by-week model in early time steps. This result implies
that the time-series information obtained by training in all
the time steps is effective for early detection. In the RNN-
FitNets, the time-series information was expressly passed
through KD and that improved the model’s performance.

To investigate whether the time-series information was dis-
tilled into the models in early time steps, we visualized the
extracted feature of the three types of models. Figure 4
shows the visualization results of the feature vectors. Be-
cause the models have a 32-dimensional hidden state, we
used t-SNE [17] and reduced the 32 dimensions to two di-
mensions for the visualization. Each point represents each
feature vector for the students in the dataset. The red point
is at-risk students and the blue point is no-risk students,
as defined in Section 3.2. By observing the feature vectors
of the RNN baseline and week-by-week models, the more
time steps are used, the closer the red points are to each
other and the more the shape of the mass of points becomes
elongated. This means that the detection of at-risk students
becomes easier in the feature vectors of late time steps. In
the RNN-FitNets models, the tendency to gather red points
and elongate appears in early time steps. This result shows

that our KD method properly distills the time-series infor-
mation extracted in the late time step.

4. CONCLUSION

In this study, we proposed RNN-FitNets, which extends Fit-
Nets, a KD method, for application to RNN architecture.
RNN-FitNets transfers the time-series information extracted
by the later time-step RNN into an earlier time-step RNN.
Hence, the earlier time-step RNN learns the method of ex-
tracting the representative features in late time steps from
short time-series data.

In the experiment, we applied RNN-FitNets to detect at-
risk students in higher education. The results show that the
proposed distillation model improves the detection rate of
at-risk students from the base RNN models. The analysis of
feature vectors indicated that our proposed model in earlier
time steps extracted similar feature vectors to those of the
base model in late time steps. This confirmed that our distil-
lation strategy properly distilled the time-series information
in later time steps into the model in earlier time steps.

In future work, we plan to investigate the availability of
RNN-FitNets for other datasets. Moreover, we aim to for-
mulate a new distillation method for time-series information
for other models such as the Transformer model [18].
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