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ABSTRACT
The state of the art knowledge tracing approaches mostly
model student knowledge using their performance in as-
sessed learning resource types, such as quizzes, assignments,
and exercises, and ignore the non-assessed learning resources.
However, many student activities are non-assessed, such as
watching video lectures, participating in a discussion forum,
and reading a section of a textbook, all of which poten-
tially contributing to the students’ knowledge growth. In
this paper, we propose the first novel deep learning based
knowledge tracing model (DMKT) that explicitly model stu-
dent’s knowledge transitions over both assessed and non-
assessed learning activities. With DMKT we can discover
the underlying latent concepts of each non-assessed and as-
sessed learning material and better predict the student per-
formance in future assessed learning resources. We compare
our propose method with various state of the art knowledge
tracing methods on four real-world datasets and show its ef-
fectiveness in predicting student performance, representing
student knowledge, and discovering the underlying domain
model.

Keywords
Knowledge Tracing, Multiple Learning Resource Types, Non-
Assessed Learning Resources, Memory Augmented Neural
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edge Modeling

1. INTRODUCTION
As the education landscape shifts toward distance learning,
the online learning systems advance in complexity and ca-
pacity. They can handle more students, evaluate students
through different kinds of assessments, and offer various
types of learning resources to them. In such systems, a
student can study a reading section, take a quiz, watch a
video lecture, and practice programming in an embedded
development environment. As a result, students learn from
heterogeneous types of activities in modern online learning

systems, among which some can be assessed and some can-
not.

Despite this heterogeneity in learning resource types, current
student knowledge tracing models mostly focus on assessed
learning resources, ignoring the non-assessed ones. In the
assessed learning resource types, such as quizzes and assign-
ments, students’ performance can be evaluated given their
answers and solutions. These kinds of learning resources
provide a window to student knowledge through observing
their performance. Conversely, in the non-assessed learning
resources, such as readings and video lectures, such an ob-
servation does not exist. Hence, evaluating student knowl-
edge and performance while interacting with these learning
resources is a difficult task [4, 11, 10].

Indeed, because current knowledge tracing approaches do
not model non-assessed learning resources, identifying their
underlying concepts, finding the similarities between these
learning resources, and in general domain knowledge mod-
eling for such non-assessed learning materials is still a chal-
lenging problem. That is, many modern knowledge tracing
models do not rely on a predefined domain knowledge model,
such as a Q-matrix, and can identify the “latent concepts”
that are being evaluated in problems, quizzes, or assign-
ments [20, 23, 21, 7, 9]. This is particularly useful when
annotating learning materials with their concepts is expen-
sive or infeasible. However, discovering such latent concepts
in non-assessed learning resources is an under-explored re-
search area. Some recent works have aimed in identifying
such latent concepts [19] and similarities [17] between as-
sessed and non-assessed learning materials. However, their
findings were according to static student performance, ig-
noring the sequential learning data of students.

In this paper, we argue that modeling non-assessed learning
materials is essential and non-dispensable in tracing student
knowledge. Students learn from all types of activities and
ignoring a large portion of student activities is a missed op-
portunity in student knowledge tracing. Especially that pre-
vious research has shown that working with various learning
activity types has considerable benefits for student learn-
ing [15, 2, 1, 12]. Hence, modeling both assessed and non-
assessed learning activities should result in a more accurate
estimation of student knowledge state and prediction of their
performance on future assessed learning resources.

Accordingly, we propose Deep Multi-type Knowledge Trac-



ing (DMKT) model, which not only traces student knowl-
edge states over various learning activity types but also pro-
vides a feasible solution to discovering underlying patterns
or concepts for both assessed and non-assessed learning re-
sources. To this end, DMKT estimates student knowledge
gain between every two consecutive assessed learning activi-
ties according to student performance on them. At the same
time, it distributes this estimated knowledge gain among the
in-between non-assessed learning activities and the latest as-
sessed activity. We use an attention mechanism for this dis-
tribution. As a result, DMKT can model the underlying
latent concepts for each of the assessed and non-assessed
learning resources, evaluate student knowledge after inter-
acting with these learning resources and predict student per-
formance on the assessed ones.

We evaluate our proposed model on four real-world datasets,
showing the significant effect of modeling various learning
resource types on the task of student performance predic-
tion. Also, we showcase the interpretability of DMKT by
visualizing student knowledge while working with various
learning resource types. Finally, we demonstrate the power
of DMKT in discovering the learning resources’ similarities
and underlying latent concepts.

2. RELATED WORK
Student knowledge tracing aims to capture the student’s
knowledge state and knowledge state transition patterns,
which could be further used for tasks like students’ perfor-
mance prediction, intelligent curriculum design, and inter-
pretation and discovery of structure in student tasks.

Traditional knowledge tracing methods modeled knowledge
transition on assessed learning resources using predefined
domain knowledge models (concepts of learning resources).
For example, Drasgow et al. proposed IRT that leverages
the structured logistic regression to model student’s dichoto-
mous responses and estimates the student’s ability, learning
resource difficulty [8]. BKT uses binary variables for mod-
eling whether student acquires a concept or not, and a Hid-
den Markov Model is used to update the probability that
student answers a question correctly [6, 22]. However, since
annotating a domain knowledge model can be expensive and
time consuming, in many real-world scenarios, such prede-
fined domain knowledge models are not be provided. To
solve this problem, new approaches turn to investigate mod-
eling student knowledge and domain knowledge at the same
time. For example, Lan et al. utilized the matrix factoriza-
tion to model the student knowledge and concept-question
association, assuming the sparse association between con-
cepts and questions [14]. As another example, Doan et al.
model student learning with a tensor factorization in which
the student knowledge is having an increasing trend using a
rank-based constraint [7].

At the same time, in the past few years with the advance
of deep neural networks, deep knowledge tracing methods
have emerged. For example, DKT [18] utilizes LSTM to
model students’ knowledge transition over time. Recently,
transformer-based neural networks have been successfully
applied to model the different knowledge transitions of dif-
ferent students’ historical interactions on learning resources [5,
9]. SAKT [16] uses the self-attention mechanism to model

the interdependencies among interactions on the sequence.
In [23], Zhang et al. proposed a Dynamic Key-Value Mem-
ory Networks based method (DKVMN), which integrates
the memory augmented neural networks with the attention
mechanism, to exploit the relationships between underly-
ing concepts for better students’ skill acquisition modeling.
Yeung et al. extended DKVMN, by integrating the one-
parameter logistic item response theory to provide better
interpretability [21]. However, none of the deep knowledge
tracing models have focused on modeling the non-assessed
learning activities and tracing student knowledge on such
activities.

Knowledge Tracing using Multiple Learning Resource Types.
Previous approaches ignored the effect of learning activi-
ties on non-assessed learning resources, none of the methods
mentioned above consider both assessed and non-assessed
learning resources at the same time. However, in reality,
students not only learn from practicing assessed learning
resources (such as questions) but also learn by studying
the non-assessed one, such as watching video lectures, read-
ing textbooks, and discussing with others. One reason for
not modeling the non-assessed activities is that reliable stu-
dent performance observations are missing in these activi-
ties. This makes modeling the knowledge transition from
these non-assessed learning activities difficult. To the best
of our knowledge, the only existing work that models non-
assessed learning activities along with the assessed ones is
Multi-View Knowledge Model (MVKM) [25]. MVKM mod-
els multiple learning resources jointly using tensor factoriza-
tion to capture latent students’ features and latent learning
resource concepts, assuming that latent concepts are shared
by different learning resource types. However, this method
can only capture the linear dependencies between variables,
as the latent students’ features and latent learning resource
concepts are multiplied via linear matrix and tensor prod-
ucts. On the other hand, due to the large memory cost of
tensor factorization, MVKM can not handle the datasets
with very large student and learning resource numbers. Un-
like MVKM, our proposed method in this paper considers
the non-linear relationships between variables, and handles
large datasets, while modeling student knowledge gain from
multiple learning resource types (both assessed and non-
assessed).

3. DEEP MULTI-TYPE KNOWLEDGE TRAC-
ING (DMKT)

3.1 Problem Formulation
A standard knowledge tracing (KT) problem is to predict
student performance or response on an upcoming question,
given the learner’s performance records on previously solved
questions. These records typically consist of a sequence of
questions and responses at each discrete time step, denoted
as a tuple (qst , r

s
t ) for student s at time step t. Since we

only discuss how to predict future performance for a single
student, we omit the superscript s in the following sections.
Therefore, given students’ past history records up to time t−
1 as {(q1, r1), · · · , (qt−1, rt−1)}, the goal of KT is to predict
their response rt to question question qt at the current time
step t.

In this paper, we aim to incorporate students’ non-assessed



learning activities and model student knowledge transition
over both assessed and non-assessed learning resources, such
as solving quizzes, watching video lectures, viewing anno-
tated examples or hints, and participating discussion fo-
rums. Therefore, given student’s past historical responses
to assessed learning materials as well as past history of non-
assessed learning activities, we would like to estimate stu-
dent knowledge and predict their performance in the next
assessed learning resource. To do this, assuming L distinct
non-assessed learning resources and Q distinct assessed ones,
we represent students’ historical records up to time t − 1
as {(q1, r1),L1, (q2, r2),L2, · · · , (qt−1, rt−1),Lt−1}, in which
Lt = {l1t , l2t , · · · , ...lnt } at each time step t denotes the se-
quence of n non-assessed learning activities (e.g., watching
video lectures) between the assessed activities (e.g., answer-
ing questions) qt and qt+1. Our goal is to predict student
performance on assessed learning material qt at each time
step t, model student knowledge at and between time steps
in interaction with qt and all lits, and discover the underlying
latent concepts of assessed qs and non-assessed lis.

3.2 The Base Model
We base our DMKT model upon a recent successful deep
knowledge tracing model: DKVMN [23]. DKVMN is a spe-
cial type of memory-augmented neural networks (MANN)
for knowledge tracing which has one static key matrix to
store the knowledge concepts and one dynamic value ma-
trix to store students’ updated mastery levels of those cor-
responding concepts. Assuming that there are N latent con-
cepts {c1, · · · , cN} for each learning resource, and each la-
tent concept can be represented by dh-dimensional embed-
dings, similar to DKVMN, DMKT has the key matrix Mk

of size N×dh to store the N knowledge concepts. Similarly,
the value matrix Mv

t of size N × dh stores the student’s
mastery levels of each concept, at time step t.

However, DKVMN only supports updating knowledge states
Mv

t on assessed learning materials, and lacks the ability to
leverage the abundant of data other than student responses
on assessed learning materials. To overcome this limita-
tion, our proposed DMKT updates Mv

t with an additional
internal component that employs the attention mechanism
to process the non-assessed learning activities between any
two assessed ones and use the updated Mv

t to predict stu-
dent’s performance on upcoming assessed learning resource.
This component contains two functionalities, one is to up-
date student knowledge state on non-assessed learning ac-
tivities, and another is to summarize all activity contexts
before an assessed activity to help accurate prediction of
student performance.

One may think that a straightforward solution to integrate
the non-assessed learning resources would be to consider
them as student interaction features. However, since the
non-assessed learning activities are not explicitly represented
in such models, their contribution to student knowledge
could be assessed. Also, such an approach cannot model stu-
dent’s knowledge transition between different non-assessed
learning activities. In the following, we introduce our novel
updating and summarizing functionalities that help DMKT
to model all learning activity types. An overview of DMKT’s

architecture can be found in Figure 11.

3.3 Learning Resource Attention Weights
For the simplicity of illustration, let us assume that there
is only one non-assessed learning activity, e.g., watching a
video lecture, between solving two problems qt−1 and qt,
that is Lt−1 = {lt−1}. DMKT assumes that student knowl-
edge gets updated as the student interacts with lt−1 and qt,
weighted by their corresponding attention weights. So, in
each step, DMKT uses attention weights from qt and lt−1 to
update the student knowledge in the concepts’ embeddings,
Mv

t .

To compute the attention weights, DMKT first embeds all
questions into an embedding matrix Aq ∈ RQ×dh , and all
video lectures in another embedding matrix Al ∈ RL×dh .
At each time step, DMKT extracts the embedding vector
of qt (kt ∈ Rdh) from Aq, as well as the embedding vector
kl
t−1 ∈ Rdh of lt−1 from Al. Then, it uses these embedding

vectors to query the key memory matrix Mk to obtain the
attention weights wq

t (i) and wl
t(i) respectively as follows:

wq
t (i) = Softmax

(
kq
t
>Mk(i)

)
(1)

wl
t−1(i) = Softmax

(
kl
t−1

>
Mk(i)

)
(2)

The attention weight in wq
t and wl

t−1 can be viewed as re-
spectively the correlation between question qt and lecture
lt−1 with each of the N latent concepts. Notice that, wq

t (i)
and wl

t−1(i) are the i-th element in the attention weight
vectors wq

t and wl
t−1 respectively, and for interpretability

purposes the attention weights sum to one (
∑N

i=1 w
q
t (i) =∑N

i=1 w
l
t−1(i) = 1).

3.4 Student Performance Prediction
At each time step t, DMKT aims to predict the student’s
performance on qt. Since the predicted performance is a
result of student knowledge that is gained by interacting
with both problems and lectures, it is intuitive to aggre-
gate these knowledge gains and predict the student perfor-
mance accordingly. Remember that the memory value ma-
trix Mv

t ∈ RN×dh is used to represent student’s knowledge
state on each concept embedding. So, to summarize the stu-
dent’s mastery level of question qt and lecture lt−1 in the N
concepts, we compute the weighted sum of all memory slots
in the value matrix using attention weight vectors wq

t and
wl

t−1, respectively.

rqt =

N∑
i=1

wq
t (i)Mv

t (i) (3)

rlt−1 =
N∑
i=1

wl
t−1(i)Mv

t (i) (4)

Then, we concatenate the latent knowledge states or mas-
tery levels rqt and rlt−1 on question qt and lecture lt−1 with
question embedding kq

t as well as lecture embedding kl
t−1

1The source code is provided at: https://github.com/
persai-lab/EDM2021-DMKT

https://github.com/persai-lab/EDM2021-DMKT
https://github.com/persai-lab/EDM2021-DMKT


vertically and pass them into a fully connected layer with a
Tanh activation to obtain a summary vector ft

ft = Tanh
(
W>

1

[
rqt , r

l
t−1,k

q
t ,k

l
t−1

]
+ b1

)
(5)

where [·] denotes concatenation. This summary vector ft
contains a summary of all information, such as student abil-
ity and the relationship between question qt and lecture lt−1,
to predict student response at time t accurately. Finally, the
student’s performance in query question qt is calculated by
passing the feature vector ft through another fully connected
layer with a Sigmoid activation as follows:

pt = Sigmoid
(
W>

2 ft + b2

)
(6)

3.5 Student Knowledge Update
DMKT tracks the student knowledge states by updating the
memory value matrix Mv

t after each learning activity on qt
and lt so as to predict student performance on qt+1 using
the updated Mv

t+1.

For assessed learning activities, we first retrieve an embed-
ding vector of (qt, rt), denoted by vq

t ∈ Rdh , from a response
embedding matrix B of size 2Q × dh. This embedding vt

contains the information about how much student knowl-
edge should be updated after working on question qt with
outcome rqt . We also use the erase-followed-by-add mecha-
nism to update the memory value matrix, that is to erase the
memory first using erase vector eq

t ∈ [0, 1]dh before adding
new information with the add vector aq

t ∈ Rdh . This update
of each value memory slot could be summarized as an erase
step and an add step as follows:

Erase Step:

eq
t = Sigmoid

(
E>vq

t + bq
e

)
M̃v

t (i) = Mv
t−1(i)⊗ [1− wq

t (i)eq
t ]

(7)

Add Step:

aq
t = Tanh

(
D>vq

t + bq
a

)T
Mv

t (i) = M̃v
t−1(i) + wq

t (i)aq
t

(8)

where 1 is a vector of all ones, and ⊗ represents the element-
wise multiplication.

For each non-assessed activity, we follow a similar erase-
followed-by-add steps in Eq.(7) and Eq.(8), except that we
use kl

t directly instead of a new response embedding.

Erase Step on Non-assessed Resources:

el
t = Sigmoid

(
H>kl

t + bl
e

)
M̃v

t (i) = Mv
t−1(i)⊗

[
1− wl

t(i)e
l
t

] (9)

Add Step on Non-assessed Resources:

al
t = Tanh

(
G>kl

t + bl
a

)T
Mv

t (i) = M̃v
t−1(i) + wl

t(i)a
l
t

(10)

3.6 Network Architecture and Extension
The neural network architecture of DMKT is shown in Fig-
ure 1. For illustration simplicity, this figure assumes that
there is only one non-assessed learning resource lt between
qt and qt+1. This architecture mainly contains two com-
ponents: read component for making a prediction on input
question qt and write component for updating the value ma-
trix after interacting with lt and qt.

When there are multiple non-assessed learning activities be-
tween qt and qt+1, that is Lt = {l1t , · · · , lnt }, we can simply
extend the model by looping over each activity to generate

kli

t as well as rl
i

t using equation (4) for i ∈ {1, · · · , n}. When

making predictions, we use
∑n

i=1 k
li

t to represent kl
t and∑n

i=1 r
li

t to represent rlt in the architecture. When updat-
ing the knowledge, the value matrix is updated sequentially
over all activities as described in the previous subsection.

3.7 Training
All learnable parameters , i.e. Aq,Al,B, in the entire DMKT
model are trained in end-to-end manner by minimizing the
binary cross-entropy loss of all students’ assessed responses,
i.e.,

`BCE = −
∑
t

(ot log pt + (1− ot) log (1− pt)) (11)

where ot denotes the observation of correctness on assessed
response at time t and pt denotes the prediction of correct-
ness of DMKT at time t.

3.8 Knowledge State Calculation
DMKT is capable of tracing and depicting knowledge con-
cept mastery level for each student. A student’s knowledge
state before each assessed or non-assessed learning activity
can be obtained in the read process using the following steps.

Assume that there are N dummy query questions qis, each
of them only using one concept, for the purpose of knowledge
state calculation. Each of dummy questions can obtain a de-
signed embedding ki such that the correlation weight vector
wi is ”one-hotted”, that is wi = [0, · · · , wi, · · · , 0] where wi

of concept ci is equal to 1. Then, we can use each of these
one-hot correlation weight vectors to access value matrix
state on each slot Mv

t (i) to obtain rit for each concept ci. In
other words, rit = Mv

t (i) for qi.

Then, we can predict the student knowledge purely based on
rit by masking the weight of the input content embedding in
Eq. (5), which ends up as:

f it = Tanh

([
Wri

1 ,0,0,0
]> [

rit, r
l
t−1,k

i
t,k

l
t−1

]
+ b1

)
(12)

where W1 is split into four parts including Wri

1 , Wki

1 = 0,

Wrl

1 = 0, and Wkl

1 = 0. Finally, a scalar value pi is output
as in Eq.(6) to be the predictive mastery level of concept
ci. We repeat this process N times with N numbers of one-
hot correlation weight vectors to obtain student’s knowledge
state vector with size 1×N after each learning activity.

4. EXPERIMENTS



Cat.

embedding
lookup

embedding
lookup

embedding
lookup

 tanh  tanh 

Figure 1: Neural Network Architecture of DMKT.

To evaluate our proposed model, we conduct three kinds
of experiments. First, we compare it with state-of-the-art
baselines in the student performance prediction task. Sec-
ond, we analyze the discovered student knowledge transition
patterns in terms of assessed and non-assessed learning ac-
tivities. Last but not least, we validate the non-assessed
learning resources’ latent concepts discovered by the pro-
posed method.

4.1 Datasets
We use three real-world datasets to evaluate the proposed
model:
MORF2 is an open online course dataset from Coursera [3].
In this course, students can watch lecture videos and work
on problems. Each problem is a full complex course assign-
ment. These video lectures and assignments are published
in sequential order in this dataset, but students can have
multiple attempts on each assignment and watch any video
at any time. Students’ scores are normalized into [0, 1].
EdNet3 is collected by Santa4, a multi-platform AI tutoring
service for students to prepare TOEIC English testing. We
use the problem explanation documents as the non-assessed
learning resources. There are 297, 915 user records in the
full dataset, and we randomly extract 1, 000 users’ records

2https://educational-technology-collective.github.
io/morf/
3https://github.com/riiid/ednet
4https://aitutorsanta.com/intro

for experiments.
Junyi5 is a dataset that comes from a Chinese e-learning
website. Students work on problems from 8 math areas.
Each problem has several hints, students can request hints
when solving problems. We consider the problems as the as-
sessed learning resources and the associated problem hints as
the non-assessed learning resources. There are 25, 925, 922
records in total from 247, 606 users in the full dataset. We
extract two subsets of this full dataset for experiments. One
is called Junyi2063, which contains 2063 users’ records on
3760 questions and 1432 hints. A smaller dataset named
Junyi1564, which consists of 1564 users’ records on 142 ques-
tions and 116 hints, is extracted to serve the purpose of
visualization on concept discovery results. The descriptive
statistics of these four datasets are shown in the table 1.

4.2 Baseline Methods
In experiments of performance prediction, we compare with
13 baseline methods on the task of student performance pre-
diction on assessed learning resources, including six state-of-
the-art deep learning based knowledge tracing models, one
existing tensor factorization based knowledge tracing model
supporting multiple learning resource types, and seven ex-
tended deep learning based models utilizing non-assessed
learning resources as additional input features. These meth-
ods are:

5https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=1275

https://educational-technology-collective.github.io/morf/
https://educational-technology-collective.github.io/morf/
https://github.com/riiid/ednet
https://aitutorsanta.com/intro
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275


Table 1: Descriptive Statistics of 3 Datasets.

Dataset Users Questions
Question
Records

Mean
Question
Responses

STD
Question
Responses

Correct
Question
Responses

Incorrect
Question
Responses

Non-gradable
Materials

Non-gradable
Records

MORF 686 10 12031 0.7763 0.2507 N/A N/A 52 41980
EdNet 1000 11249 200931 N/A N/A 118767 82184 8324 150821

Junyi1564 1564 142 120984 N/A N/A 86654 34328 116 16389
Junyi2063 2063 3760 290754 N/A N/A 193664 97090 1432 69050

• DKT [18]: is a pioneer deep learning based knowledge
tracing method that uses LSTM to model students’
knowledge transition over time.

• DKVMN [23]: is a variant of memory augmented neu-
ral networks that model the latent knowledge concept
and dynamic student knowledge state over time.

• DeepIRT [21]: is an extension of DKVMN that in-
tegrates the one parameter logistic item response the-
ory (1PL-IRT) to provide better interpretability, which
could reduce the overfitting issue.

• SAKT [16]: is an attention-based method that lever-
ages the self-attention mechanism to model the inter-
dependencies among interactions on the sequence.

• SAINT [5]: is a transformer-based deep knowledge
tracing method, two multi-head attention mechanisms
are used to model exercise and response separately.

• AKT [9]: is a variant of transformer-based deep knowl-
edge tracing method that using a monotonic attention
mechanism to model the different knowledge transition
of students’ each historical performance on questions.

In addition to those baselines that support assessed learning
materials, we also compare our method with some baselines
that either can leverage additional students’ non-assessed
learning activities by design, or we modify them to consider
such non-assessed activities as features of the assessed ones
and predict students’ future performance. These methods
are:

• MLP-M: is a simple multi-layer perceptron that could
take query question ID, user ID, and user’s 3 past his-
torical records on current query question, as well as
3 most recent non-assessed learning activities as in-
put, and output a probability of user’s mastery level
on query question.

• DKT-M [24]: is an enhanced DKT model that could
incorporate additional question features by concate-
nating the feature embeddings with exercise response
embedding as the input of vanilla DKT.

• SAINT-M [5]: is a variant of SAINT that summing
over all embeddings of non-gradable activities along
with position encoding as the input of SAINT.

• MVKM [25]: is state of the art method on modeling
student knowledge transition over multiple learning re-
source types based on multiview tensor factorization.

Inspired by the DKT-M [24], we apply the same strategy to
DKVMN to incorporate additional non-assessed learning ac-
tivities as features to end up with method DKVMN-M. Also,
inspired by the way of SAINT-M [5] to incorporate rich fea-
tures into transformer-based model, we apply same strategy
as described in the paper into SAKT and AKT to incorpo-
rate additional non-assessed learning activities as response
features that ends up with baseline methods SAKT-M and
AKT-M, respectively.

4.3 Implementation Details
For binary response datasets, including EdNet and Junyi
datasets, we convert the response tuple (qt, rt) into a single
value z = qt + rt ×Q ∈ {1, · · · 2Q} as the lookup key of em-
bedding layer. For numerical response MORF dataset, we
feed the tuple (qt, rt) into a linear layer to get the embed-
ding. For the question qt and non-assessed learning resource
lt, we feed their ID into the embedding layers.

For evaluation purpose, we perform the 5-fold user stratified
cross-validation for all models and all datasets. Hence, for
each fold, 60% users are used as the training set, 20% are
validation set, and the rest 20% as test set. For each fold
and every method, we use the validation set to tune the
hyper-parameters and record the optimal training loss as
the condition of early stopping.

We utilize the Gaussian distribution with 0 mean and 0.2
standard deviation to initialize the values of Mk and Mv

0 .
We learn the model using the Adam optimization with a
learning rate of 0.01 and reduce the learning rate by half once
the training loss increases, with the minimal learning 1e-5
for all methods in 200 max epochs. We also utilize the norm
clipping threshold to 50.0 to avoid gradient exploding for all
methods. In addition, we follow the general processing steps
for knowledge tracing that truncate long sequence and pad
short sequence with 0s. The length of sequence is considered
as a hyper-parameter of all models which needs to tune.
In addition, we also tune the max sequence length of non-
assessed learning activities between two assessed learning
activities Lt. If the length of non-assessed learning activities
is over the maximum size, then we take the most recent ones.
Similarly, if the length is less than the required sequence
length, we pad with 0s. The table 2 shows the best hyper-
parameters of our DMKT on 4 datasets.

We implement the models using PyTorch on a computer
with a single NVIDIA Tesla-K80 GPU. For DKT and DKT-
M, our implementation is different from the original paper
[18], and we follow the same idea suggested by [23] that use
norm clipping and early stopping, which could ease the gra-
dient exploding as well as overfitting issues of LSTM. Xavier



Table 2: Hyperparameters of DMKT

Dataset dh N seq. len. |Lt|
MORF 128 8 50 8
EdNet 128 8 50 2

Junyi1564 256 8 50 2
Junyi2063 256 32 50 2

initialization is also used to initialize the parameters in DKT
and DKT-M. All the baseline methods are implemented in
PyTorch and tested to achieve similar performance as re-
ported in the original paper except the SAINT ans SAINT-
M. For SAINT, we borrow the implementation from github6

and extend it to the SAINT-M, since the authors did not
release the code.

4.4 Student Performance Prediction
The results of predicting students’ performance in the as-
sessed learning resources, including their 95-percentile con-
fidence intervals, are shown in Table 3. The RMSE is mea-
sured to evaluate the prediction performance on MORF dataset
due to numerical user responses, and the AUC is measured
on EdNet and Junyi datasets. A low RMSE score indicates
a high prediction performance. An AUC of 0.5 represents
the model’s performance is equivalent to a random guess
model. A high AUC score accounts for a high prediction
performance. As you can see, our proposed method, DMKT,
achieves the best performance over all baseline methods on
all four datasets. This shows that explicitly modeling non-
assessed learning materials, along with the assessed ones, is
essential in capturing the variations in student performance
data.

We can also see that by simply incorporating the non-assessed
activities between two assessed activities as additional in-
put features (the “-M” models) the prediction performance
is improved in some methods, such as AKT-M on MORF,
EdNet, and Junyi datasets. However, unlike attention-based
methods which could learn interaction correlation in a long
sequence, this kind of simple integration strategy does not
improve and may harm the prediction performance in other
methods, such as in DKT-M and DKVMN-M, which tend
to summarize past historical records as context embeddings.
The reason we believe is this trivial integration of non-assessed
activities not only loses a large amount of sequential infor-
mation to model student knowledge transition over time,
but also could introduce more noisiness on the data. We
conclude that simply adding the non-assessed learning ac-
tivities as features, without modeling them explicitly is not
enough and may even harm the prediction performance in
some models.

SAINT and SAINT-M have transformer based architecture,
which can stack multiple encoders and decoders. However,
in our EdNet dataset that contains only 1, 000 users with
200, 931 records on 11, 249 questions, and without additional
constraints or regularization as proposed in AKT (another
transformer based model), SAINT and SAINT-M can eas-
ily overfit the data. MVKM is the only existing baseline

6https://github.com/Shivanandmn/
Knowledge-Tracing-SAINT

method that can explicitly model multiple learning resource
types. We can see that it can outperform the deep knowl-
edge tracing methods that uses non-assessed learning ma-
terials as features in MORF, which is a mid-size datasets.
However, it cannot efficiently run in the larger datasets as
the memory usage and linear time complexity over number
of interaction records in MVKM limits its applicability on
large datasets, such as EdNet and Junyi. Therefore, due to
long running time on EdNet and Junyi datasets, we only
report its performance in the MORF dataset.

It is worth noting that when our model is fed with assessed
learning resources only, it will be equivalent to DKVMN.
However, as presented in the table, our proposed model
DMKT achieves a better performance over DKVMN as well
as DKVMN-M, because DMKT explicitly models the stu-
dent knowledge transition on non-assessed learning activi-
ties, which provides a more accurate encoded information
to make the predictions accurately.

4.5 Student Knowledge State Visualization
To see how intractable the discovered student knowledge
states are, we visualize the students’ knowledge states. Ba-
sically, knowledge state visualization shows student’s knowl-
edge mastery level on each concept before each attempt on a
non-assessed or an assessed learning activity. This provides
a useful tool to monitor student knowledge coverage over
different concepts and helps instructors to analyze the stu-
dent’s lacking concepts so as to provide tailored instructions
for each student. To visualize student knowledge states, we
follow the steps in section 3.8 to calculate knowledge state
values over all concepts across the student sequence for each
student. We show visualization of one example student’s
knowledge states in the MORF dataset in figure 2. As you
can see in the figure, the top x-ticks are labeled with stu-
dent learning activities. Assessed learning materials (assign-
ments) start with A and non-assessed ones (lecture videos)
are annotated by the week they are scheduled and the se-
quence of video lecture within the week. For example W4V0
means the student has watched week 4 video lecture 0 and
A1B denotes the Assignment-1B in week 1. The bottom x-
ticks are labeled by either student performance (grade) in
the assessed learning materials, or an icon indicating the
non-assessed learning resource type. Each row represents
one latent concept. In the figure, this student starts with a
randomly initialized value memory matrix Mt

0 at time step
0 before working on A1B. After finishing the A1B, student’s
knowledge is updated and increased a little on concept 3 and
6 before working on A3. Student’s knowledge grows gradu-
ally by working on assignments A3 and watching video lec-
tures in week 4. However, student’s knowledge drops a little
before working on assignment A4 and it explains the reason
why that student only receives a score 0.3 at the first at-
tempt. Student’s knowledge on all concepts grow by work-
ing on the assignments until the student started watching
video lecture W6V 1. We can see a slight drop in student’s
knowledge of some of the concepts (e.g., 7) and increase in
other concepts (e.g., 1) while they are watching these videos.
One potential reason for the decrease on concept 7 could be
the lack of practice with assignments. Watching video lec-
tures indeed improve student knowledge on concept 1 and
2. Another reason for the drop in concept 7 could be re-
lated to the student’s problem solving ability which results

https://github.com/Shivanandmn/Knowledge-Tracing-SAINT
https://github.com/Shivanandmn/Knowledge-Tracing-SAINT


Table 3: Student Performance Prediction Results on 3 Real-World Datasets. Root Mean Square Error (RMSE) and Area Under
Curve (AUC) are used to evaluate performance on datasets with numerical feedback and binary feedback, respectively. The
average performance over 5 folds as well as 95% confidence interval are reported.

MORF EdNet Junyi1564 Junyi2063
Methods RMSE AUC AUC AUC

DKT 0.1870± 0.0191 0.6393± 0.0137 0.8877± 0.0050 0.8635± 0.0059
DKVMN 0.2042± 0.0136 0.6296± 0.0104 0.8843± 0.0065 0.8558± 0.0068
DeepIRT 0.1946± 0.0080 0.6290± 0.0105 0.8749± 0.0053 0.8498± 0.0069

SAKT 0.2113± 0.0275 0.6334± 0.0125 0.8623± 0.0047 0.8053± 0.0075
SAINT 0.2019± 0.0077 0.5205± 0.0064 0.8454± 0.0096 0.7951± 0.0119
AKT 0.2420± 0.0155 0.6393± 0.0104 0.8311± 0.0102 0.8093± 0.0091

MVKM 0.1936± 0.0096 − − −
MLP-M 0.2433± 0.0350 0.6102± 0.0088 0.7055± 0.0191 0.7290± 0.0150
DKT-M 0.1927± 0.0194 0.6372± 0.0120 0.8885± 0.0048 0.8652± 0.0069

DKVMN-M 0.2251± 0.0128 0.6343± 0.0074 0.8948± 0.0054 0.8513± 0.0059
SAKT-M 0.2084± 0.0272 0.6323± 0.0109 0.8305± 0.0071 0.7911± 0.0107
SAINT-M 0.1977± 0.0055 0.5491± 0.0068 0.8454± 0.0096 0.7741± 0.0139
AKT-M 0.2239± 0.0151 0.6404± 0.0067 0.8296± 0.0093 0.8099± 0.0098
DMKT 0.1369± 0.0195 0.6675± 0.0082 0.9440± 0.0061 0.8714± 0.0069
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Figure 2: An Example of Student Knowledge State Visualization on MORF Dataset.
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Figure 3: Concepts Matrix of Video Lectures in MORF Dataset.

in their first attempt on Assignment A7 to have a score of
0.3. Once the student’s first attempt on A7 is done, this stu-
dent quickly masters concept 7 again and their knowledge
on all concepts continues to grow along different activities.
In this example, it seems the assessed learning material im-
proves student knowledge more than watching video lectures,
which is inline with the previous literature [10, 13]. Another
observation is that this student skips watching video lec-
tures in weeks 1, 2, and 3 before working on assignment A3.
Similarly, they did not watch videos in week 5 and 6 before
trying A5 and A6. This may explain that this student is not
interested in watching video lectures and may not be fully
present during watching video lectures which results in tiny

knowledge growth over watching them.

4.6 Concept Discovery
In addition to tracing student knowledge over various types
of learning activities, DMKT can provide a feasible solution
to discovering underlying patterns or concepts for both as-
sessed and non-assessed learning resources. In other words,
the correlation weights w and wl, can be interpreted as the
importance of latent concepts in each assessed, and non-
assessed learning activity respectively. Meaning that, since
the key matrix Mk is used to model the knowledge con-
cepts on the full course, the correlation weight between the
learning resources and the concepts implies the strength of
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Figure 4: Cluster Graph of Non-gradable Learning Materials (Hints) in Junyi1564 Dataset Using t-SNE. The question name
corresponding to each hint is shown in the right table. (Best viewed in color)
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Figure 5: Cluster Graph of Video Lectures using t-SNE and Titles of Video Lecture of MORF Dataset. Lectures under the same
concept are labeled in the same color in the left picture and also are put in the same block in the right table. (Best viewed in
color)

their inner relationship. Not only we can use the correla-
tion weight as latent concepts, we can also use them to find
similar learning resources by clustering them over these cor-
relation weights.

For example, in Figure 3, we visualize the importance of
each concept in each of the MORF dataset video lectures.
The X-axis ticks show the video lecture weeks and numbers
and the Y-axis shows the latent concepts. As we can see, the
concept matrix is relatively sparse, showing that most video
lectures strongly belong to 2-3 concepts, while they do have

a soft memberships in other concepts too. Many video lec-
tures in the same week have similar concept structures. For
example videos 3, 4, and 5 of week 5 all have a strong rep-
resentation of concept 0 and videos 0, 1, and 2 of week 1 all
are having high correlation weights with concept 2. Given
that the course schedule is designed by the instructor, such
similarities between the concepts in videos of the same week
are expected. Another interesting observation is the strong
appearance of some concepts in videos of different weeks. For
example, concept 1 can be seen in both video 4 of week 8
and video 4 of week 6. This shows that these two video lec-



tures share some similarities that are not represented in class
schedule. Looking at the video titles from this course (right-
hand side of Figure 5) we can see that the video titles are
State Space Diagrams and Hidden Markov Models, respec-
tively, which are two very closely-related topics To better
understand such similarities, we look at grouping of videos
according to their discovered concepts in the following.

To this end, we follow the clustering procedures as in [23]
to group the learning materials according to the discovered
latent concepts. At the same time, we compare these group-
ings by looking at the problem name associated with each
hints and lecture titles for Junyi1564 and MORF datasets in
Figures 4 and 5, respectively. To do the clustering, we first
assign each learning resource with the concept ID that con-
tains the largest correlation weight as the cluster label. Since
there are 8 concepts in total, it results in 8 clusters. Then,
we use t-SNE to visualize the clusters, which are shown in
the left sides of Figures 4 and 5 for Junyi1564 and MORF
datasets, respectively.

As we can see, the resulting t-SNE clusters are more dis-
tinct in the Junyi1564 dataset compared to MORF. In other
words, most of clusters in Junyi1564 dataset could be easily
separated and distinguished. This implies that the discov-
ered concept matrix of the Junyi1564 dataset is more sparse
than the one from the MORF dataset, leading to more out-
standing clusters than in MORF, as shown in Figure 4. In-
deed we have seen from Figure 3 that each video lecture
in MORF is associated with two to three latent concepts
rather than having only one distinct concept. This finding
matches these datasets’ properties: in the MORF dataset,
each assessed learning material is a full complex course prob-
lem set which is assigned to students every week, and each
non-assessed learning resource is a video lecture that cov-
ers multiple knowledge concepts. On the contrary, the as-
sessed learning materials in Junyi1564 dataset are simple
math problems, with close-to atomic concept coverage, and
the non-assessed resources are hints associated with these
problems.

As another result of this clustering, and similar to our find-
ings in Figure 3, we can see that the more similar or re-
lated non-assessed learning materials are clustered together.
For example, in Figure 5, video lectures from week 5 are
clustered together, showcasing the similarity between latent
concepts in video lectures that are scheduled to be presented
together in week 5 of the course. Additionally, video lectures
that are conceptually similar to each other can be found
grouped together. For example, video lectures from week
6 (V4 - State Space Diagrams) and week 8 (V4 - Hidden
Markov Models), from week 1 (V2 - Regressors) and week 7
(V5 - Factor Analysis), and from week 1 (V6 - Case Study
- San Pedro) and week 8 (V2 - Case Study - Discovery with
models) are grouped together which are conceptually simi-
lar.

These findings are also in accordance with the previous find-
ings in the literature on the MORF dataset [25] and show
that DMKT can efficiently discover the underlying concepts
presented in the non-assessed learning materials, even though
student performance on them is not observable.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed DMKT, the first deep learning
based knowledge tracing model that can model and trace
student knowledge in both assessed and non-assessed learn-
ing resources, find the underlying connects and similarities
between learning resources, and predict student performance
in the assessed ones. We evaluated DMKT extensively, on
four real world datasets and demonstrated that because of
its explicit modeling of non-assessed learning materials, its
ability in representing non-linear relationships and its ca-
pacity in handling larger amounts of data, it outperforms all
the baselines, in accurately predicting student performance.
We further showcased DMKT’s ability in meaningfully trac-
ing student knowledge over assessed and non-assessed learn-
ing resources, and the potential effect that each of them
can have on student knowledge. In our particular example,
we showed that solving problems is a more effective way to
learn for our selected student, compared to watching video
lectures. Finally, we presented that DMKT can find inter-
pretable latent concepts of non-assessed learning materials,
that can be used to group them into meaningful clusters.
In the future work, we would like to explore this model on
various of learning activities to learn hidden patterns on dif-
ferent learning resources so as to provide tailored learning
resource recommendations.
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