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ABSTRACT 
Executive functions (EF) are a set of psychological constructs 

defined as goal-directed cognitive processes. Traditional EF tests 

are reliable, but they are not able to detect EF in real-time. They 

cause a test effect if implemented multiple times. In contrast, 

learning games have the potential to obtain a real-time, unobtrusive 

measurement of EF. In this study, we analyzed log data collected 

from a game designed to train the EF sub-skill of shifting. We 

engineered theory-based game-level and level-specific features 

from log data. Using these features, we built prediction models with 

students’ accuracy and reaction time during play to predict their 

standard measure of the EF shifting skill during the post-test and 

delayed post-test as well as to predict learning gains. Our model 

that predicts the post score has a correlation of 0.322 and that for 

the delayed post score is 0.303. The findings suggest that theory-

based feature engineering and varying levels of granularity are two 

promising directions for cognitive skills prediction under the goal 

of game-based assessment. Also, accuracy, reaction time, and 

player progression are important features. 
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1. INTRODUCTION 
Executive functions (EF) are defined as “cognitive processes used 

for effortful, controlled, and goal-directed thinking and behavior” 

[29, 3, 4]. The unity/diversity model [24] views EF as consisting of 

related yet separable skills, which include updating, shifting (also 

termed cognitive flexibility), and inhibition. EF plays an important 

role in cognitive development and is associated with academic 

success [6], metacognitive skills [7], science learning [15], and 

language acquisition skills [10]. 

Game-based assessments allow educators to assess students’ 

learning while they are playing a game and thus in a manner that 

can be highly efficient, fast, and entirely unobtrusive. Using games 

as assessments creates a context in which learners are likely to be 

highly engaged, which may optimally reflect their abilities [16, 28]. 

Using log data from digital games to evaluate learning is sometimes 

referred to as a “stealth assessment” [20] and has been used in the 

past decade to assess complex skills, such as creativity [33] and 

problem-solving, [34] based on log data. Log data collected during 

gameplay provides a record of student behaviors associated with 

EF and can be used for the prediction of EF [25]; however, is it 

possible to use log data collected from a game designed to train EF 

to measure EF and to develop a framework for game-based 

assessment?  

Past studies of game-based assessments have focused on complex 

thinking skills, such as problem-solving [34]; however, there are 

constraints of game-based assessments of EF. First, it is necessary 

to determine the granularity or time scale for which we can detect 

students’ EF in log data. Second, we need to separate log data 

related to EF training from log data related to other aspects of play 

to achieve a high performance of models. Third, we need to 

generate theory-based features relevant to EF skills. Accuracy and 

reaction time have been identified as indicators of EF [8].  

This paper aims to provide proof of the concept for game-based 

assessments of the EF sub-skill of shifting. Shifting is one 

dimension of EF defined as the ability to switch attention between 

different “tasks, operations, or mental sets” [21]. The research 

questions include:  

1. How do students’ gameplay data predict their executive 

functions during a post-test and a delayed post-test? 

2. Which features, including accuracy or reaction time, are 

important for predicting EF in games? 

2. RELATED WORK 

2.1   Games for EF Training and 

Measurement 
Sustained and active engagement is widely thought to be critical for 

cognitive skills training games to be effective [2]. Incorporating 

gamified design features is one well-established mechanism for 

promoting meaningful engagement [9]. 

Digital training games can not only enhance EF [22, 27] but can 

also be used as a reliable means for measuring EF and other 

cognitive skills. For example, past work has examined the design 

and validation of computerized tools for measuring working 

memory capacity [21]. Previous research has also examined the use 

of a digital game for the detection of executive functions validated 

by a task for medical purposes in older adults using computational 

modeling [12]. Further work is needed to validate game-based 

measures of cognitive skills [35], especially those that are sensitive 

enough to detect variations among neurotypical individuals and that 

are appropriate for child and adolescent populations. 
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2.2   Game-Based Assessment 

In previous research, the analysis of log data as a means of a 

formative assessment has yielded promising findings [11] and has 

been used for predicting a variety of cognitive and behavioral 

constructs, including quitting [19], knowledge [1], computational 

thinking [30], persistence [26], and implicit learning [31].  

Evidence-Centered Design (ECD) [23] has been used effectively to 

develop game-based assessments in contexts that teach specific 

knowledge domains [14]. According to ECD, an assessment 

framework should take these models into account: 

● Task model: Which actions is the learner taking within 

the system? 

● Evidence model: Which features (e.g., from log data) can 

be used as evidence of learner actions? 

● Competency model: How are these features associated 

with a set of standards or criteria that demonstrate 

effective learning has taken place? 

Accounting for these three ECD models is helpful for feature 

engineering and predictive modeling. In game-based learning 

contexts that teach knowledge and skills, connecting a task model 

to an evidence model should be relatively straightforward given 

that the log data provides a detailed record of the learner’s action 

sequence. Unlike game-based assessments of knowledge domains, 

where standards are clearly defined and may be validated by an 

expert review of content, in cognitive skills training game-based 

contexts, further work must be done to align an evidence model 

with a competency model. Accuracy and reaction time have been 

identified as two major aspects of an EF measurement [24], with 

evidence suggesting they each contributes uniquely to EF 

performance among children [8] and adolescents [5]. Yet, the way 

to distinguish the nuanced forms of accuracy and reaction time at 

varying levels of granularity and the way to combine them for 

predictive modeling within a game are currently unclear. 

3. DATASET 

3.1   Game Design 
All You Can E.T. (AYCET) [17] is a game that trains the EF sub-

skill of shifting. Its early prototype, The Alien Game, has been 

shown to improve EF after 1.5 hours of play for high school 

students [16] and two hours for college students [27]. In the current 

study, we used the “hot” version of AYCET, a version that 

maximizes the playfulness of the game. As Figure 1 shows, a player 

is asked to feed aliens with the appropriate food based on a certain 

rule. The rule changes multiple times at each level, thereby 

requiring the player to shift. As the player progresses in the game, 

the rule becomes more complicated. 

     

Figure 1. Feeding aliens and instructions for a rule. 

3.2   Participants 
Participants were recruited from three middle schools and two high 

schools in urban school districts in the Northeastern United States. 

They completed the study during non-instructional time at their 

schools. Among the 448 students who consented, 137 students were 

strategically randomly assigned to one of the three conditions to 

play AYCET throughout the study. Of those, 56 were removed 

because they demonstrated off-task behaviors, and thus the log data 

could not reflect their true ability. This resulted in an analytic 

sample of 81. Details of participant removal are discussed in the 

Data Cleaning subsection. 

The 81 participants (Mage = 13.9 years, SDage = 1.6, 46.1% female) 

included 39 in grade 7, 18 in grade 8, and 21 in grade 9. They 

reported a culturally and linguistically diverse background. Among 

them, 51.3% reported speaking Spanish at home, while 47.4% 

reported English and 1.3% Mandarin. As for ethnicity, 78.2% were 

Hispanic/Latino, 1.3% were Asian, 17.8% reported two or more 

ethnicities, 1.3% reported another ethnicity but did not specify, and 

1.3% did not know. A few participants did not report their 

demographic information. 

3.3   Study Procedure and Data Collection 
The four-week intervention was conducted at the participating 

schools. Before gameplay, students completed a pretest. Then, they 

played the game for four sessions, each of which took about 30-40 

minutes. The cumulative amount of time of play was 2-3 hours. 

After play, students completed a post-test, and an additional 4-8 

weeks later, they completed a delayed post-test. The EF sub-skill 

of shifting was measured by the Dimensional Change Card Sorting 

(DCCS) task [36] in the pretest, post-test, and delayed post-test. 

The log data consisted of 144,187 data points or actions, recording 

whether students fed each target (“alien”) correctly or not and the 

reaction time for each target. This means that each alien required 

one action from the student. In this study, students played levels 1-

30. There are 30-80 aliens per level. 

In this study, each session began a few levels back from the last 

level played. After a few sessions, students were mandatorily 

pushed to level 11 to ensure they had enough time to play more 

difficult levels. This affected 72% of the students who were at level 

9 or lower at the moment. On average, they were pushed by 4.3 

levels. 

3.4   DCCS Test and Score 
The DCCS task [36] was used to measure the EF sub-skill of 

shifting in the pretest, post-test, and delayed post-test. Scoring was 

based on the National Institute for Health (NIH) scoring procedure 

[37]. This is a combination of the accuracy score and the reaction 

time score. The score ranges from 0 to 10. Floor or ceiling effects 

were not observed with our participants, as the top 25% of pretest 

scores ranged between 7.78 and 9.36. 

4. METHOD 

4.1   Data Cleaning 
Based on the researchers’ observations, we removed 33 participants 

for the following reasons: (1) did not complete one of the DCCS 

tests, (2) were off-task during the DCCS test, or (3) experienced 

technical difficulties that would affect their performance in the 

DCCS test. Furthermore, 23 participants were removed due to off-

task behaviors (e.g., sleeping, non-stop talking, etc.) or an absence 

for at least one intervention session. 

Eighty-one students remained in the analytic sample. The retention 

rate was 59.1%, which is acceptable for two reasons. First, data 

collected in the classroom setting are usually messier than that in 

the lab setting. During the study, a few participants went to the 

bathroom for a long time, which would be less likely to happen in 

a lab setting. Second, the game’s focus on training EF required a 
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degree of attention that some students were not willing to invest. 

Some students found it difficult to remain attentive for an extended 

period of time. 

4.2   Labels 
Table 1 lists the labels for prediction. The post score and delayed 

post score were directly measured by the DCCS test. We next 

calculated the post-learning gain and delayed post-learning gain. 

Table 1. Labels 

Name Description 

post score The EF score for the post-test. 

post-learning 

gain 

Relative gain of the EF score for the post-test 

compared with the pretest. Based on Hake’s 

formula of learning gain [13], it is calculated 

as (post score - pre score)/(10 - pre score) 

because the EF score ranges from 0 to 10. 

delayed post 

score 

The EF score for the delayed post-test. 

delayed post- 

learning gain 

Relative gain of the EF score in the delayed 

post-test compared with the pretest. 

4.3   Feature Engineering 
We generated 20 game-level features and five level-specific 

features for each level that indicated student performance and 

progress. They capture information related to accuracy and reaction 

time in various mathematical formats and granularities. 

Level-specific features were features for a single level. They 

included the average reaction time, the standard deviation of 

reaction time, accuracy, the number of correct hits (i.e., an action 

of feeding an alien with the correct food), and the number of wrong 

hits (i.e., an action of feeding an alien with the wrong food) across 

all aliens in a single level. Accuracy was calculated as the number 

of correct hits divided by the total number of aliens in a level.  

Game-level features were aggregated features across all levels. 

They included: (1) the average, maximum, minimum, range, and 

standard deviation of a student’s accuracy across all levels after 

calculating the accuracy for a single level across all aliens in that 

level; (2) the average, maximum, minimum, range, and standard 

deviation of a student’s reaction time across all levels after taking 

the average reaction time for a single level across all aliens in that 

level; (3) the total number of correct hits (82% of all aliens among 

all students), wrong hits (16%), and missed hits (i.e., an action that 

the student did not feed an alien) (1%); (4) the highest number of 

stars a student received across all levels and the total number of 

stars a student received in the game; (5) the number of levels a 

student skipped by choice (which only happened before level 10) 

and due to the mandatory push; and (6) the highest level and the 

total number of levels a student played (as a student may skip a few 

levels).  

4.4   Model Training 
We used the linear regression for predictive modelling in 

RapidMiner 9.3. We evaluated the model’s performance using ten-

fold cross-validation at the student level to ensure the model would 

be generalizable to a new student population. During this process, 

students were randomly split into 10 groups. For each possible 

combination, we used forward selection to select features and then 

built the model based on the training data. Forward selection was 

an iterative process. First, a single-feature model that would 

achieve the highest Pearson correlation was chosen. Next, the 

remaining features were subsequently added one-by-one to the 

model if they could appreciably improve the model goodness of fit. 

In addition, to avoid collinearity, we set the minimum tolerance for 

eliminating collinear features as 0.05 and set “eliminate collinear 

features” as true in the linear regression operator. 

In addition, we explored different combinations of features for 

feature selection. Missing values existed for many level-specific 

features. Thus, we began with the first feature set containing all 

game-level features and level-specific features of the level with the 

smallest missing value rate. After that, in each round, we added 

level-specific features of another level based on the ranking of the 

missing value rate. We stopped doing so at a level that contained 

missing data for 16% of students. The last model contained 65 

features. In this way, we controlled for over-fitting and ensured the 

models were trained on representative levels. 

5. RESULTS 

5.1  Intervention Effect 
The paired samples t-test show that the post score (mean = 6.98, 

SD = 1.56) is significantly higher than the pretest score (mean = 

6.31, SD = 2.12) (t(80) = 3.01, p < 0.01, Cohen’s d = 0.34). Also, 

the delayed post score (mean = 7.16, SD = 1.33) is significantly 

higher than the pretest score (t(80) = 3.90, p < 0.001, Cohen’s d = 

0.43). The boxplot of three EF scores is shown in Figure 2. 

 
Figure 2. Boxplot of three EF shifting scores. 

5.2   Correlation between Features and Labels 
Among the 65 features for modeling training, five features had an 

absolute value of correlation with the post score between 0.3 to 0.42. 

Eight features had an absolute value of correlation with the delayed 

post score between 0.3 to 0.45. Features were weakly correlated 

with two learning gain labels as the absolute values of all 

correlation coefficients are below 0.25. Missing values for each 

feature were replaced with the average value of that feature. 

5.3   Findings from Predictive Models 
Cross-validated metrics for the best models of each label and their 

features are summarized in Table 2. 

Table 2. Summary of the predictive models 

 Post Score Post-Learning Gain 
RMSE 1.586 0.682 
Correlation 0.322 0.294 
Selected 

Features 

- 2.087 * 

numLevelsSkippedByChoice 

- 0.008 * numWrongLevel11 

- 0.028 * numWrongLevel12 

 

0.414 * avgLevelAvgRT 

+ 0.065 * 

numLevelsSkippedByPush 

- 0.001 * numCorrectLevel3 

+ 0.004 * numCorrectLevel4 

+ 0.493 * 

avgReactionTimeLevel2 

- 0.428 * 

avgReactionTimeLevel13 
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Table 2 (continued). Summary of the predictive models 

 Delayed Post Score Delayed Post- 

Learning Gain 

RMSE 1.540 0.470 

Correlation 0.303 0.260 

Selected 

Features 

2.189 * avgLevelAvgRT 

- 0.268 * 

numLevelsSkippedByPush 

- 0.012 * numWrongLevel3 

+ 0.006 * numCorrectLevel12 

- 2.154 * 

avgReactionTimeLevel3 

+ 1.693 * 

stdReactionTimeLevel3 

- 2.306 * 

stdReactionTimeLevel12 

- 0.528 * 

avgReactionTimeLevel12 

0.841 * avgLevelAvgRT 

- 0.262 * highestLevelAvgRT 

+ 0.001 * totalWrongHits 

+ 1.434 * avgCorrectLevel1 

- 0.003 * numWrongLevel3 

+ 0.007 * numCorrectLevel12 

- 0.009 * numWrongLevel12 

- 0.611 * 

stdReactionTimeLevel12 

The models that only used game-level features had a low 

performance. Excluding level-specific features only did not 

greatly affect model goodness when predicting the post score, 

with a correlation of 0.308 and RMSE of 1.589. Features included 

numLevelsSkippedByChoice, totalWrongHits, and 

numLevelsPlayed. 

6. DISCUSSION AND CONCLUSIONS 
Playing AYCET significantly improved students’ EF. The effect 

sizes of EF gains were medium, and that for the delayed post-test 

4-6 weeks later was larger than that for the post-test. This difference 

in effect sizes may be attributed to either the long-term intervention 

effect by the EF game or students’ natural development of EF. 

Though more evidence is needed, long-term effects of cognitive 

skills training have been found [18, 32]. 

We explored the possibility of a game-based assessment of EF 

using a game originally designed to train EF. We present four linear 

regression models that use the log data to predict students’ EF score 

of shifting in the post-test, delayed post-test, and the relevant 

learning gain scores. With correlations around 0.3, these models 

achieved good performance for preliminary work. This corresponds 

to the second challenge of this study, which is to separate log data 

related to EF training from log data related to play in the game 

context. Good performance of predictive models indicates that a 

learning game is a promising tool to measure EF.  

We generated an extensive list of game-level and level-specific 

features consisting of accuracy and reaction time indicators. Both 

accuracy and reaction time features are important in predicting EF 

but are two potentially distinct dimensions of EF. Generally, at the 

game level, a moderately higher reaction time and a more consistent 

reaction time (while controlling for other factors) are positively 

associated with EF. In addition, a lower reaction time and perhaps 

a more consistent reaction time are positively associated with EF. 

As for accuracy features, both correct hits and wrong hits are 

important for predicting EF. 

In addition to accuracy and reaction time features, the number of 

levels skipped, particularly by the player, was indicative of EF. This 

means that player progression and player performance are both 

important for predicting EF.  

Most selected features are from level 3 and level 12. This may 

suggest the key time window, which is the moment after students 

become familiar with the game mechanics and the moment after a 

drastic change in difficulty (recall the mandatory push; see section 

3.3) may best demonstrate their ability to perform shifting. Varying 

the difficulty of levels or allowing for some time for students to 

achieve level 12 may contribute to a better game-based assessment 

of EF. 

Responding to the first challenge, namely, the granularity and time 

scale for prediction, we found that level-specific features provide 

more promising results than game-level features only. It is worth 

further exploring variables at the action-level. 

7. IMPLICATIONS AND FUTURE WORK 
We explored the techniques of feature engineering and model 

training to investigate the game-based assessment of EF. The model 

performance is promising among studies that relate log data with a 

post-test measure in learning games [33, 34]. Another implication 

of this work is it sets the foundation for the real-time detection of 

EF and may provide the basis for dynamic interventions.  

Limitations in the current work inspire us to explore more 

possibilities of game-based assessments for EF. First, a level may 

be played multiple times by a student. In the current study, all 

attempts of the same level were aggregated. In the future, we will 

distinguish multiple attempts of the same level by generating 

features such as the number of attempts and performance change 

over attempts. Second, we found that students’ performance one or 

two levels after a challenging level is important. This game 

mechanic of difficulty change may not apply to other games. We 

have tried to interpret the model in the context of the specific game 

design. Third, students experienced a mandatory push in this study 

(see section 3.3). This is perhaps why features for level 12 were 

selected. To examine the generalizability of our findings, we will 

compare the prediction models built under two conditions, one of 

which replicates the push, while one does not; however, for 

practical reasons, it is also of interest to determine whether features 

that only cover earlier levels can predict the post-test and delayed 

post-test scores as this would require less game play for the 

assessment. Fourth, we filled the missing data with the average 

value of a feature. We did so by assuming data were missing at 

random. More robust methods, such as multiple imputations, could 

be used moving forward. 

In the future, we are interested in generating theory-based features 

at the action-level (i.e., alien-level) per student, hoping to allow for 

the real-time detection of EF and for an even better model. An 

action-level feature may be a student’s change in accuracy and 

reaction time within the first three aliens when the rule changes 

within a level. Another action-level feature may be the performance 

curve under different rules within a level. Both features align with 

the definition of the EF sub-skill of shifting and are not tied to 

specific levels, so they may produce more generalizable results. 

Methodologically, we are also interested in comparing the linear 

regression with other models, such as Support Vector Machines or 

the Random Forest. Substantively, it may be worth considering 

accuracy and reaction time as separate outcomes given research 

suggesting each contribute uniquely to performance on EF tasks in 

young children [9]. Further work may also apply methods of 

student modeling to other EF sub-skills, such as inhibition and 

updating in games that target these skills. 
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