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ABSTRACT
We investigate encoder-decoder GRU networks with atten-
tion mechanism for solving a diverse array of elementary
math problems with mathematical symbolic structures. We
quantitatively measure performances of recurrent models on
a given question type using a test set of unseen problems with
a binary scoring and partial credit system. From our find-
ings, we propose the use of encoder-decoder recurrent neural
networks for the generation of mathematical multiple-choice
question distractors. We introduce a computationally inex-
pensive decoding schema called character offsetting, which
qualitatively and quantitatively shows promise for doing so
for several question types. Character offsetting involves freez-
ing the hidden state and top k probabilities of a decoder’s
initial probability outputs given the input of an encoder,
then performing k basic greedy decodings given each of the
frozen outputs as the initialization for decoded sequence.

Keywords
Math Question Solving, Distractor Generation, Math Multi-
ple Choice Questions, Mathematical Language, Math Educa-
tion

1. INTRODUCTION
1.1 Problem Statement
Here we focus on the needs of mathematics educators in high
school and early university education, One of the most tedious
jobs for a teacher is to create exams and quizzes and grade
them. The more time they spend on these tasks, the less
time they spend teaching students. An automated system
capable of creating reliable math questions of consistent
difficulty level, creating solutions, generating distractors for
them, and finally be able to grade them is the holy grail of
educational automation. In this paper we focus on solving
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the math questions and generating distractors for Multiple
Choice Questions.

Questions in mathematics are different from other subjects
such as English, History, or Economics. In mathematics and
by extension in all STEM fields, questions and answers not
only are composed of natural text but are often accompanied
by symbolic equations, expressions, inequalities or relational
information. Ganeslingam [6] postulates in his work that
these non-textual objects not only augment the context of
the textual part but also derive their context from it. These
non-textual objects are not part of the natural language and
hence require special treatment. On the semantic level, math-
ematical questions require an underlying understanding of
rules before a question can be solved. A mere comprehension
is not sufficient. To solve a simple problem in arithmetic, the
fundamental understanding of the four operators is necessary.

In this work we experiment with a network which has had
historical success on natural language processing problems
and test its ability to generalize mathematical knowledge
from an open source data set contributed by [22] consisting
of elementary focused question types. Alternatively as a
second problem, for some question types, we examine whether
models which fail to generalize to the test set may have their
incorrect solutions leveraged as ‘good’ distractor options for
multiple choice questions like those seen in multiple choice
questions on a math quiz. As following with the precedent
of the data set contributor [22], mathematical expressions
are presented using Python’s operator syntax.

In summary we show the following:

• Insight in the ability of an encoder decoder attentional
GRU to extract semantic and syntactic meaning from
mathematical expressions.

• Simultaneously test whether these model’s incorrect
predictions may be leveraged to auto generate multi-
ple choice question distractors commonly seen in lower
education exams. Continuing with this potential ap-
plication, experiment with the practice of character
offsetting–a modified greedy decoding schema which
pushes the networks to predict four separate sequences
instead of a single output thus providing a complete
set of distractors.



• Qualitatively measure which question types show the
highest potential for leveraging character offsetting for
the purpose of multiple choice distractor generation.

2. RELATED WORK
Math Word Problems

Early applications of machine learning and deep learning
based methods in math questions attempted to convert math
word problems into equations [10]. Here we rely on the
capability of neural network to identify the textual and
equation parts from the question and model them correctly
in order to solve them. Much of the work in math word
problems relied on extracting equations from text and then
solving them using symbolic solver libraries such as Sympy.

Subhro Roy and Dan Roth created expansion trees [20] and
Unit Dependency Graphs [21] from arithmetic word prob-
lems. Kushman et. al. [11] mapped word problems to
equations using canonical templates and handled ambiguity
using probabilistic models. Tencent AI Lab [29] first used
deep neural networks for solving math word problems. They
used the Seq2Seq model with LSTM units for mapping math
word problems to the equations. MathDQN [27] proposed
using Deep Q-Learning to map math word problems to solv-
able equations. Deepmind [15] attempted to solve math
word problems using the program induction technique, which
would also generate a rationale for choosing an answer. This
method did not involve mapping problems to equations but
the reasoning in text form. Recent work focused on using
recursive neural networks for evaluating equations [30] [28]
mapped from word problems.

Polozov et. al. [19] and Liu et. al [16] proposed methods for
generating math word problems. Liu et. al. [16] used Gated
Graph Neural Networks with Variational Autoencoders to
generate questions from knowledge graphs of mathematical
concepts and symbolic expressions. [19] take programming
approach for encoding requirements from tutors and students
to create logical graphs with the help of ontology. This logical
graph is then used to create expressions and sentences with
the help of primitive templates.

Lample et. al. [12] showed solutions for questions in differen-
tial equations, differential calculus, and integral calculus and
used transformer networks [26] to solve calculus questions
and compared their results with traditional solvers like Math-
ematica and Matlab. In contrast, Saxton et. al. [22] created
a codebase to generate math problems across fifty-six classes
and solve them using deep neural networks. Saxton et. al.
compared problem solving abilities of Seq2seq networks with
transformers. Though transformers showed better results
than the the recurrent models, but Saxton et. al. commented
that the improvement in performance was largely due to the
higher capacity of transformer networks to remember rather
than their ability to solve.

Here we use the codebase created by Saxton et. al. [22] to
generate math questions. Even though the codebase in its
original form cannot generate distractors, it can be modified
to create distractors using simple rules. In comparison to
other datasets [15] which contain distractors, we chose to
use the codebase since it provided more control over the

generation of questions and also the templates used have a
simpler language and an equation with each question.

In a classroom and tutoring settings math questions are
more open ended. Erikson et. al [5] tested the capability of
XGBoost, Random Forests and LSTMs in analyzing the open
ended answers in mathematics. These models were created to
assist the teacher rather than complete automated grading.
Michalenko et. al [17] used LSTMs to solve polynomial
factorization problems. They created their dataset from
Wolfram Alpha. They use the trained network for automated
grading and personalized feedback system.

Distractor Generation (DG)

In multiple choice questions, the options which are not the
answer are called distractors, because their job is to distract
a student from a given correct answer. Distractor generation
has been studied for non-mathematical subjects, especially
English (Susanti et. al. [23]) and other domain-specific tasks
(Aldabe et. al. [2]). Distractor generation for scientific
subjects like physics, chemistry, biology, and economics was
explored by Linag et. al. [13]. They [13] used a two-stage
model with a classifier and a ranker to filter out the relevant
distractors. Linag et. al. [14] explored distractors for fill in
the blank type questions using GAN networks.

Partial Credit Scoring

Similar in spirit to our partial credit scoring system, Pho
et. al. [18] attempt to automatically score the quality of
manually created English multiple choice distractors using
various semantic and syntactic criteria including WordNet.
This is fundamentally different from our problem however
as we seek to automate the generation of the distractors
themselves and simultaneously sought out a metric to help
measure the fundamental reasonableness of those distractors.

3. EXPERIMENTS
3.1 Training Data
The data set used in this paper [22] had the express pur-
pose of being a large scale training and testing framework
for benchmarking models on mathematical reasoning. The
framework consists of both training and testing sets. The
training set consists of 39 different math problem types and
variants of 17 of those add the element of mathematical
composition to the problem’s statements for a total of 56
question types organized into 8 different domains–probability,
polynomials, numbers, measurement, comparison, calculus,
arithmetic, and algebra. Each question type within a do-
main is split into three training sets, easy, medium and hard
of 666,666 question answer pairs, for a total of 2 million
examples per question type.

Difficulty measures the relative complexity of coefficients in
the expressions generated. As an example compare from
the polynomial evaluation set the easy: ‘Let u(q) = q**2
- 6*q - 10. Calculate u(8).’, medium: ‘Let s(v) = v**3 +
47*v**2 +471*v + 142. Give s(-33)’, hard: ‘Let h(a) =
-177071*a - 4957992. What is h(-28)?’ and an actual related
college algebra exam question [25]: ‘Evaluate the function
f(x) = 3 + (x-5)**(1/2) at x = 9.’. It is relatively clear that



examples from medium and hard are unlikely to appear on a
low level math examination. For this reason the majority of
experiments rely on the easy train set variants. It was our
hypothesis that as the curriculum provided by these sets are
much more in line with the expected complexity of questions
appearing on actual low level exams that the models would
thus be more likely to generate better distractors (or even
the correct answer) when provided such an exam’s questions
as input.

The primary test method within the framework proposed by
[22] is a data set referred to as interpolation. Every question
type has an associated interpolation test set. The set consists
of 105 question answer pairs likely unseen in either the easy,
medium and hard train sets of the associated question. The
guarantee of lack of repeated questions comes from a lower
bound on the probability of a questions repeated generation.
A training question at most has a 10−8 chance of reappearing
in the test set. [22] also release a secondary test set referred
to as extrapolation, which measures generalization of core
concepts across multiple question types. However, as we
specifically were interested in single question trained models
for the express purpose of multiple choice question distractor
generation this test set was unused.

3.2 Rule Based Distractor Generation
Evaluation of distractors is not an exact process. For a given
question there can be any number of distractors, some good,
other bad. There is usually a very loose concensus on what
constitutes a good distractor. Also no algorithm exists that
can gauge the ”goodness” of distractor. However, expert
educators have a keen sense of judging the distractor by
their teaching and research experience. Educators usually
know where students make mistakes, and leverage that to
generate good distractors. For simple high school questions,
we can simulate this process by creating rules that mimic
the mistakes made by students. These rules then can be
embedded with a mathematical solver to produce distractors
for given question. A simple set of rules can be created to
modify the solution steps to generate distractors for questions
containing mathematical equality or inequality. Commonly
used rules are:

• Change One Sign : Randomly pick one coefficient or
constant in equality/ inequality and multiply by −1.

• Change Two Signs : Randomly pick two coefficients or
constants of equality/inequality and multiply by −1.

• Most Frequent Number : Use the most frequent number
in the equality/inequality as a distractor

• Nearest Multiple : Randomly pick a coefficient or a
constant in equality/inequality and change it to the
nearest multiple of 2, 3 or 5.

• Random Drop : Randomly drop one of the coefficients
or constant in equality/inequality

• Invert Range : Invert the solution range of the inequal-
ity, e.g. change [0, 1] to (−∞, 0) ∪ (1,∞)

• Trivial Solution : For inequality problems, one of the
distractors can be chosen from {φ}, (−∞,∞), or No
Solution. For equations, choices are from 0, −1 or 1

• Flip brackets : Change an open bracket in answer to
closed and vice and versa. In the question, order of
operations can be changed by changing the position of
brackets.

These rules can be coded as python functions and then
selected one or two rules at random to modify the steps
involved in solving the question. Symbolic library like sympy
can be used for generating and solving the math questions.
The library developed by deepmind [22] can create math
questions across various domains with varying difficulty level.
We modify their codebase to extend its capability to generate
the distractors based on the stated rules. Table 1 shows few
examples of rule based distractor generation.

Question Answer Distractors

Let − 2p
3
− 2

3
≥ 2p

5
− 4

5
.

What is p?
−∞ < p ≤ 1

8

11
2
≤ p <∞

3 ≤ p <∞
4
23
≤ p <∞

Find all solutions to
3
2
− w

6
≥ − 2w

11
− 14

11
.

−183 ≤ w <∞
− 61

4
≤ w <∞

−∞ < w ≤ 61
4

−∞ < w ≤ 47
2

Solve the polynomial
inequality:

51− 3f 6= −f − 1
6

f 6= 307
12

f 6= − 305
24

f 6= − 305
18

f 6= − 46
3

Table 1: Distractors generated using rules

Distractors generated using rules act as a form of reference
distractors. For qualitative evaluation of distractors gener-
ated by neural networks, we will look at both the distractors
side by side in table 3.

3.3 Experiment Detail
Two principle experiments can be identified. An attentional
[3] encoder decoder GRU [4] is trained on a single question
type for the entire 666,666 easy train set. Keeping with the
spirit of the framework released by [22] we after training
a model on a specific question set test the models on their
respective question’s interpolate test rather than a subset of
the train set.

Simultaneously, during the second round of data collection
with the GRU, when the model is scored on the interpolate
set we perform character offsetting (see 3.3.1) and ask the
model to predict 3 distractors in addition to a primary so-
lution sequence. Two different scores were calculated for a
model’s performance on the test set–the first, a complete
binary accuracy where credit is assigned if and only if the
entire primary greedy decoded sequence matches the true
solution sequence. And second, a partial credit score which is
calculated by subtracting from 1 the normalized Levenshtein
edit distance between the predicted and true solution. Nor-
malized in this context means the ratio of the edit distance
to the max sequence length of either the true or predicted
solution sequence. Thus for a given Levenshtein distance d
for solution sequence S and prediction sequence P we have
partial credit defined as

partial credit = 1− d(P, S)

max(len(P, S))
(1)



Figure 1: Example of character offsetting given an encoder’s
context embedding from the input question ‘-2 + 1’. Note
decoder hidden states not shown in diagram. <SOS> signifies
the start of sequence character.

It is important to acknowledge the widely different possible
interpretations for what partial credit could mean in this
context and why we choose the definition we did. In a
typical educational setting, partial credit is assigned when
the student demonstrates sufficient understanding of the
problem albeit fail to arrive at the final correct solution.
This is difficult to measure in model outputs–consider a
correct sequence being −2 and a predicted sequence of 2,
the partial credit score would be 1− 1

2
= 50%. In real life

a teacher may realize a student failed to report a final sign
change and assign significant credit. Such thorough review
is impossible given the 100, 000 examples within a single
question type’s test set (and also impossible considering the
model’s inability to provide secondary and tertiary decision
making steps)–and so we formulate the above definition as
an attempt to empirically measure the ability for a model to
predict similar expressions to the correct one. We emphasize
this is not any attempt to measure the models comprehension
of the mathematics it is predicting on. As for why this is
important; the ultimate goal is to generate multiple choice
question distractors which generally exhibit some form of
similarity to the correct solution. We discuss defining a good
distractor more fully in section 3.3.2.

3.3.1 Character Offsetting
We propose a modified greedy decoding schema called char-
acter offsetting for generating multiple choice question dis-
tractors. In a typical greedy decoding scheme for an encoder
decoder sequence to sequence model an input sequence (in
our case, a string literal representation of a math problem)
is given to the encoder which generates a context embedding
[24]. Then character by character the decoder outputs a
response sequence based on this context. At every time step
of the output sequence’s prediction, the previously predicted
character and hidden states, as well as the encoder’s context
output, are re-fed into the decoder. The actual output of
the decoder at any step is a probability array the size of the
model’s vocabulary [8]. The highest value corresponds to the
most likely next character in the sequence, at least according
to the model’s weightings. In a greedy decoding at every
step we simply take the most probable character and append
it to the final output. Prediction is halted once the model
outputs the end of sequence character as the most probable
next step [8].

In character offsetting we freeze the initial decoder returned
probability array and hidden states. We now ask the decoder
to generate four total prediction sequences–one being your
expected greedily decoded output, a second with the second
most likely character from the frozen initial probability array
as the sequence’s starting character, and similarly a third
and fourth. Each time a new sequence is attempted, we reset
the hidden state to the saved initial hidden tensor. This
was found for several question types to generate diverse and
reasonable incorrect outputs. Table 4 provides a qualitative
ranking based on question type for this task.

3.3.2 Difficulty in Defining a Good Distractor
Defining a good distractor is a non-trivial endeavor, and
we make no claim to have accomplished this in this paper.
Rather we discuss qualities typically considered when trying
to formulate distractors for a multiple choice assessment.

Some qualities are readily apparent–general reasonability of
a distractor as a possible solution to the question posed is
perhaps the most fundamental requirement [7]. Measuring
reasonability may be accomplished in several ways. Differ-
ence in value between a distractor and the true solution are
potentially a good baseline–a distractor should be within a
context specific similar magnitude as the true solution to
avoid immediate exclusion. For lower level maths such as the
the problem types discussed we believe this to be typically
within a magnitude difference.

3.4 Model Parameters and Training Procedure
The model experimented with was an encoder decoder atten-
tional GRU trained on a single NVIDIA 1080TI GPU for a
single train-easy curriculum question type from the [22] data
set. The models encoder and decoders had an embedding
layer of size 512, with the decoder having 16 attentional
heads. Initially what was attempted for a given training
question type was an encoder decoder hidden size of 2048
on a batch size of 256. If the 1080TI GPU memory was
insufficient given a training question type then we alternated
between dropping encoder size and batch size. The parame-
ters for a given question type are recorded in table 4. 150
training epochs were performed.

We follow most of the parameters used in [22]–the Adam
optimizer [9] was selected for minimizing the sum of the
log probabilities of the correct character with learning rate
lr = 6 ∗ 10−4, and β1 = 0.9, β2 = 0.995, and ε = 10−9

and absolute gradient clipping of 0.1. The model leveraged
teacher forcing during training and used 0.9/0.1 split of
training data into a train and validation set.

4. RESULTS AND ANALYSIS
4.1 Attentional GRU on the Interpolate Set
4.1.1 Performance Considerations

It should be noted that these models have removed from
them the greater context provided by the train-medium and
train-hard data sets, of which interpolate attempts to test
understanding for as well. It is possible as well that the hard
or medium sets better generalize to interpolate for specific
question sets. A small test seems to support this–we let the
model train on the hard variant of algebra linear 1d and
scores improved from 3.9% to 44.3%.



Metric Mean Score
Binary 0.065
Partial Credit 0.679

Table 2: Comparison of attentional GRU partial credit and
binary scoring performance averaged across all questions not
disqualified in 4.2.1. This includes low potential questions
excluded in table 4.

Figure 2: Top ten scoring questions when evaluated with the
partial credit (PC) metric and no partial credit (binary) (No
PC) score.

4.1.2 Analysis: GRU Performance Binary Scoring
Performance when scored with no partial credit varied widely.
Of the top ten scoring question types 5 are from the com-
parison module type. Based on overall poor performance
we are skeptical that the models extrapolate true mathe-
matical semantic meaning–rather they likely just determine
meta solution strategies. For example, one hypothesis for the
comparison task success is that the notion of magnitude is
readily apparent based on the length of the input sequence.
Two observations about this–the first is that this requires the
model to have gained the ability to isolate critical numeric
subsequences within a larger question prompt. Secondly,
providing contrary evidence to this hypothesis of sequence
length metagaming, is that even for examples comparing
long decimal sequences of lesser magnitude to short whole
integers of greater magnitude we observe successful predic-
tions. Lastly, the implication of signage in comparison was
understood well by the models.

Generally it would appear that magnitude is an easier concept
for statistical pattern recognition to abstract. Most difficult
for the network was the evaluation of polynomials and other
algebraic expressions, and arithmetic. Binary scores in all
these categories were low–even given the considerations pro-
vided in section 4.1.1.

4.1.3 GRU Performance Partial Credit Scoring
Measurement with the partial credit metric (table 2, figure 2)
demonstrates greater consistency and performance and shows
promise for the ability of the attentional GRU to capture
the essence of a reasonable response and work as a distractor
generator for multiple choice questions–especially for types
of problems the model performed poorly on using a binary
scoring metric. However we note some flaws in the mea-
surement. An example: in algebra linear 2d composed the

model would frequently predict a single negative sign, a safe
prediction and given the length of correct outputs is typically
only one or two characters this led to a significant boost in
score while answers remained meaningless. Interestingly in
the question set’s non-composed variant algebra linear 2d
the model’s outputs are mostly meaningful and the partial
credit score seemingly justified. To supplement the partial
credit score, a qualitative examination of the reasonability
of model’s outputs compared to their empirical partial credit
scoring is provided in table 4.

4.2 Multiple Choice Question DG
4.2.1 Considerations

The [22] framework releases a wide range of question types
posed in diverse formats. Not discussed until now is that
several formats are not conducive towards training models.
Take for example questions from the comparison closest set
which are themselves posed as multiple choice questions–

‘Which is the nearest to -955? (a) -3/4 (b) 0.2 (c) 17/3 (d)
3/5 (e) 0.5’

A model is supposed to predict either a, b, c, d, or e. Of the
data sets released only four were found to use such a format
for some or all questions within the set. A similar problem;
six sets were either partially or fully posed as simple true
and false questions. Naturally such questions are removed
from consideration from our goal of distractor generation.

Partial credit was found to be an effective indication for
many question types of whether a model’s principle predicted
sequence captures what a reasonable response should look
like. Some faults exist however–consider the question type
comparison sort. An example: ‘Sort -1, 0.3, -6, -24/11, 3, 5, 1
in descending order.’ with primary prediction ‘5, 3, 1, -0.3, -1,
-24/11, -6’. Observe the −0.3 in the prediction output–a value
which is not even an option given in the problem statement!
Such an example would not make a worthwhile distractor
as it fails to test for the mathematical notion this question
fails to over a high partial credit score. In table 4 we provide
a qualitative review per question type of character offset
predictions for multiple choice question distractor generation.
By comparing to their respective partial credit score we find
that generally a high score is an indicator for character offset
predictions to also be reasonable.

4.2.2 Character Offset DG: Interpolate Sampling
The following are a couple of curated model responses–the
order of the distractors matches the ordering of the probabil-
ity of the initial character offset. So the first value listed is
the model’s primary greedily decoded prediction, the second
is the sequence generated when we force the initial character
to be the second most probable, and so on. If the model
predicts the correct solution it is bolded.

‘solve -2*s - 40 = -2*j, 53*j - 62*j + 245 = 4*s for s.’
output: 5, -5, 4, 1

‘let i(a) = -a**2 + 1319*a - 22130. calculate i(17).’
output: 4, -4, 5, 14



Here we see a pair of ideal outputs from the algebra linear 2d
and polynomials evaluate sets respectively. Not only did the
model successfully predict the correct solution sequences of
5 and 4, but also produced noteworthy distractors. Observe
the similar magnitude and the prediction of -5 and -4–sign
changes of the true solutions and a powerful arithmetic skills
check.

Quantitative measurement of the potential for character off-
setting in generating multiple choice question distractors is
a difficult endeavor due to the lack of formal definition of
the problem. However, we observe general groupings of ques-
tions which seem to have potential for the use of character
offsetting as a computationally cheap method of doing so.
Table 4 is a qualitative ranking when given a random subset
of outputs for each interpolate question type, whether offset
predictions are not reasonable (low, not reported), whether at
least one offset sequence is reasonable (medium), or whether
most offset sequence predictions are reasonable (high). We
view a prediction as unreasonable if it is mathematically
meaningless or as mentioned in 4.2.1 either unreasonable
given the problem’s context or disqualified due to format.
We find a higher partial credit score of the primary predic-
tions frequently but not always aligns with whether offset
predictions would also be reasonable.

Table 3 shows the comparison of the model generated dis-
tractors and rule based distractors for five questions. We
generated four distractors for each question from the model
and generated ten distractors from the rule based system.
In the given table we show the most matching distractors.
As we can see we get two matches each for questions (1), (4)
and (5). There are three matching distractors for question
(3) while there is no matching distractor for question (2).
Despite being no matching distractor, our model gets the
form of the distractors correct, and the predicted distractors
at a glance can be used on a real quiz. In question (4), we
can see that the model gets the multiplicity of 120 right and
tries to stay around it. From the above examples we can
see that our model first tries to get the form of the answer
correct and then aims for computational compositionality.

4.2.3 Character Offset DG: Standard Exam Sampling
We sample several actual standardized exam questions from
the SAT, ACT, and a college algebra midterm. Questions
are altered before being fed to a model so that mathemati-
cal syntax matches Python’s. Interestingly models appear
resilient to significant changes in the question’s formulation.
Correct exam solutions are bolded, and generated options are
in order of the probability of the initial character offsetting.
The exam distractors are provided for comparison below but
are removed before the question is fed to a model.

‘What is the greatest common factor of 42, 126, and 210?
A) 2 B) 6 C) 14 D) 21 E) 42’

output: 42, 6, 21, 12

An interesting example [1] as the numbers gcd data set only
ever presents two values to find the gcd of, while the above
presents three. Not only does the model predict the correct
solution, but two distractors also used in the actual exam.

‘Evaluate the function f(x) = 3 + (x-5)**(1/2) at x = 9. A)
1 B) 5 C) 6 D) 7’

output: 5, 49, -5, 9

Again we observe relatively reasonable responses given ques-
tion formulations which diverge significantly from the tem-
plates trained on. This question [25] is similar to a polyno-
mials evaluate type. However, the difference is no fractional
powers exist in the train-easy set–yet even with the power
symbol being replaced by the unknown character the model
still generates valid distractors (and the correct solution, but
this is clearly by chance as the model has no knowledge of
roots).

5. CONCLUSION
5.1 Summary
Two experiments quantitatively showed that a GRU has
mixed results when attempting to solve elementary math
problems. Our alternative goal of multiple choice distrac-
tor generation for several question types typically found in
pre-undergraduate education by applying a modified greedy
decoding schema referred to as character offsetting was suc-
cessful. Evaluation using an edit distance based partial
credit scoring metric as opposed to a binary one demon-
strates greatly increased consistency and performance for
capturing a reasonable response. We found the following:

• Generally the easiest math problem types for a GRU
is comparison tasks which is not surprisingly since
this is a fundamental problem encountered early in
education. It would appear the ability for GRUs to
abstract mathematical knowledge is minimal.

• The ability for networks to capture the essence of a
reasonable response for several question types is shown.
Leveraging the proposed practice of character offset-
ting we show that these networks can cheaply generate
distractor options for multiple choice questions.

5.2 Future Work
It would be interesting to compare a beam search decoding’s
non principle predicted sequences to those produced by char-
acter offsetting and whether for certain question types more
worthwhile distractors are produced. The general capability
for character offsetting to produce at least one worthwhile
distractor for the medium potential questions listed in table
4 hint that with some refinements to the decoding schema or
training parameters could potentially become high potential
question types.
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Supplementary Material - Appendix

S.No. Question Answer
Distractors
(Model)

Distractors
(Rule Based)

1
express −105c2 − 5c3 + 7c− 50c + 41c + 332c2

in the form rc3 + ic2 + b + uc and give u.
−2

−1
0
3
2

−9
0

−16
2

2
let k(w) = 2w2 − 4w2 + 3w2. let z = −29 + 33.
let r(o) = −4 − 39o2 + 84o2 + z. give r(k(s)).

45s4

−s4

8s4

9s4

18s4

−45s4

45s4 − 4
135s4

0

3
let u be 1/(114/56 − 2).
suppose −3d = −3p + 24, −16d− u = −4p− 13d.
solve c− 3z + 2 = −c, 0 = −4c− pz − 4 for c.

−1

1
4
2
0

1
−2
2
0

4
let v be 4/(−14) + −1 ∗ (−596)/28. let a = v − 15. what is the third
derivative of −6b2 − 9b6 + 23ba − 8b6 wrt b?

720b3

−120b3

120b3

60b3

240b3

−120b3

120b3

−720b3

360b3

5
let a(h) = 2h2 − 9h + 4. suppose −26w − 20w = −55w + 126.
what is the remainder when a(−7) is divided by w?

11

18
8
21
9

7
8
3
9

Table 3: Qualitative Comparison of Distractors Generated using Neural Network Model and Rule Based System

Potential Question Encoder Hidden Size Batch Size Partial Credit Score Mean Score
algebra linear 2d composed 2048 128 0.837

High algebra linear 2d 2048 256 0.811 0.766
algebra linear 1d composed 2048 128 0.887
algebra linear 1d 2048 256 0.694
algebra sequence next term 2048 128 0.774
arithmetic mul div multiple 2048 256 0.772
arithmetic nearest integer root 2048 256 0.730
polynomials evaluate composed 2048 128 0.754
polynomials evaluate 2048 128 0.709
polynomials expand 512 128 0.642
polynomials coefficient named 2048 128 0.733
numbers gcd composed 2048 128 0.760
numbers gcd 2048 256 0.762
numbers lcm composed 2048 128 0.737
numbers div remainder composed 2048 128 0.800
numbers div remainder 2048 256 0.762
numbers place value composed 2048 128 0.859
algebra sequence nth term 1024 128 0.507

Medium arithmetic add or sub 2048 256 0.501 0.624
arithmetic mul 2048 256 0.451
arithmetic div 2048 256 0.559
arithmetic mixed 2048 256 0.688
arithmetic add sub multiple 2048 256 0.755
arithmetic add or sub in base 2048 256 0.682
calculus differentiate composed 1024 128 0.589
calculus differentiate 512 128 0.730
measurement time 2048 256 0.838
numbers lcm 2048 256 0.564

Table 4: Qualitative ranking of the potential for models to use character offsetting for generating distractors based on observed
predictions on interpolate. Questions not listed are those whose predictions were generally unreasonable as defined in 4.2.2 or
disqualified due to formatting mentioned in 4.2.1. Model specifications are included as well. Decoder hidden size was 2048 for
all models. Encoder/Decoder embedding dimension and number of attentional heads was 512/512 and 16 respectively.
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