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ABSTRACT
With the goal of making vast collections of open educational
resources (YouTube, Khan Academy, etc.) more useful to
learners, we explored how automatically extractable text
representations of math tutorial videos can help to cate-
gorize the videos, search through them for specific content,
and predict the individual learning gains of students who
watch them. In particular, (1) we devised novel text rep-
resentations, based on the output of an automatic speech
recognition system, that consider the frequency of different
tokens (symbols, equations, etc.) as well as their proximity
from each other in the transcript. Unsupervised learning
experiments, conducted on 208 videos that explain 18 math
problems about logarithms show that the clustering accu-
racy of our proposed methods reaches 85%, surpassing that
of standard TF-IDF features (78% using log normalization).
(2) In a video search setting, the proposed text features can
significantly reduce the number of videos (up to 88% reduc-
tion on our dataset) and amount of video time (up to 82%)
that users need to spend looking for desired content in large
video collections. Finally, (3) in an experiment on Mechani-
cal Turk with n = 541 participants who watched a randomly
assigned tutorial video between a pretest & posttest, the text
features and their multiplicative interactions with students’
prior knowledge provide a statistically significant benefit to
predicting individual learning gains.

Keywords: Open educational resources (OER), Crowdsourc-
ing, Information Retrieval

1. INTRODUCTION
Consider a large repository (Khan Academy, edX, etc.) of
open educational resources (OERs) such as tutorial videos,
and a scenario in which the ultimate goal is to help learners
to learn by recommending relevant and high-quality con-
tent that matches the students’ needs. Knowing what the
learner needs and providing the right content that suits them
is crucial. We could estimate automatically the most bene-
ficial content by analyzing their performance on prior exam-

Figure 1: Example videos in our study. Right: Google’s
Speech-to-Text extracts the text “solve for x ok our problem
is log base 3 of x minus 1 equals 4. . . ”.

inations. However, a current challenge with contemporary
OER repositories is that the content within each resource
is typically poorly annotated, with tags that are too gen-
eral, e.g., “algebra” or “linear equations” rather than “Sim-
plify log10 1000.”. Given the high labor and time involved
in manual annotation, it is desirable to devise methods of
automatically analyzing OER content and devising represen-
tations that can facilitate efficient search and categorization.

While optimal character recognition and handwriting recog-
nition are both mature fields, they are typically evaluated
in much more constrained settings than math tutorials, in
which math is mixed with natural language, and extrane-
ous lines and other graphics can exist (see Figure 1). In
full-fledged tutorial videos, this segmentation can be very
challenging. Our research focuses instead on analyzing the
speech transcript of the video (while ignoring other potential
audio characteristics such as background noise, pitch, etc.).
When a particular expression or equation is presented in a
video, there is a high chance that the speaker will also say
that expression/equation out-loud to the learners (Figure 1).
Rather than manually transcribing the text from the video,
we consider only fully automatic approaches based on auto-
matic speech recognition (ASR; we used the Google Speech-
to-Text API in our work, more detailed about the pilot test
in Appendix B). Hence, the text representations we explore
must contend with imperfect transcripts. We then assess
the utility of the proposed representations for three tasks:
(1) cluster the videos automatically into the specific math
problems that they explain; (2) search through a library
of videos for one that explains a particular math problem;
and (3) predict the individual learning gains of students who



watch the videos in a pretest/treatment/posttest paradigm.
In these ways, we hope to make available to students the
right content that is already available, but not easily find-
able, among large-scale OER repositories.

We conduct our investigation on a collection [14] of math
tutorial videos about logarithms, and another dataset from
YouTube on basic algebra. Our goal is not just to make
coarse distinctions between videos about “algebra” versus
“geometry”, but rather fine-grained distinctions about spe-
cific math problems. Mirroring our goals from the previous
paragraph, our research questions are the following: RQ1:
How accurately can the devised text features cluster videos
into fine-grained categories about the specific problem they
are solving, and which aspects of these representations are
most important? RQ2: By how much can we reduce the
search time to find a relevant video? RQ3: Are the text fea-
tures predictive of the individual learning gains of students
who watch these videos in a pretest/posttest setting?

2. RELATED WORK
Text Representations: There are several prominent text rep-
resentations used for language modeling: (1) Term frequency
and Inverse document frequency (TF-IDF) [12]: TF-IDF
features typically do not require training and are thus suit-
able for unsupervised settings. (2) Word embedding mod-
els [8, 7] based on neural networks trained using supervised
learning. (3) Sentence-level models such as BERT [8] that
capture higher semantics compared to word embeddings.

Video Categorization & Clustering: For categorizing video
content automatically, much of the prior work has focused on
other fields than math tutorial such as films, sport videos [2],
[4], [11]. Most prior methods on video categorization focus
on visual aspects such as frame transitions, object detection
and segmentation. Some as them use the audio (e.g. [2])
such as the audio frequency and amplitude statistics. We
are unaware of any previous research that clustered video
content at the low-level tags of individual math problems.

Video Retrieval in OERs: There has been increasing in-
terest in the task of video retrieval of OERs. Many works
in have pursued combined feature representations with both
textual and visual information [13, 15, 3]. Hürst [3] found
that the lecture slides are more useful than the corrected
transcriptions. In our work, while we focus solely on text
representations, the features we devise could be easily com-
bined with visual features.

Estimating the Effectiveness of OERs: For the task of es-
timating the effectiveness (e.g., associated learning gains)
of viewing tutorial videos, researchers have pursued various
approaches, including estimating their effectiveness through
correlated measures such as engagement while watching the
video [10, 6, 1]. For estimating the effectiveness of OERs
in general, one can also use a combined experimental and
reinforcement learning-based approach such as bandit algo-
rithms [9]. While Rafferty et al. [9] suggested the potential
use of context (for example, features of the OERs as well
as of the students’ prior knowledge) for predicting learning
gains, they did not actually pursue that approach.

3. TEXT REPRESENTATIONS

In this paper we explore unsupervised representations of the
transcripts of math tutorial videos. When designing the rep-
resentations, we considered the following characteristics: (1)
Similar content should involve similar tokens. A math video
whose transcript consists of just “two plus three”, for exam-
ple, is unlikely to be similar to a video whose transcript is
“four times x”. (2) The most important tokens tend to re-
cur within a video transcript. Conversely, tokens that are
uttered only once are often less important or even be tran-
scription errors. (3) The relative order of nearby tokens is
important for deciphering the math content. For example,
“four over two” and “two over four” are different fractions,
but the difference is reflected only in the relative order of
tokens, not in their frequencies. For characteristics (1) and
(2) above, we created several variations of “1D” text repre-
sentations that capture which tokens occur more frequently
in each video. With the additional characteristic (3), we
also explored “2D” text representations that can capture the
relative order within a fixed radius from token i w.r.t. token
j for each (i, j) pair. We note that extracting the precise
mathematical expression from the transcript is inherently
ambiguous. For example, the two distinct expressions 2x+2

and 2x + 2 would likely both be spoken as “two to the x
plus two”. Fortunately, our objective is not to capture the
math content perfectly, but to capture enough of it to en-
able effective clustering, search, and prediction of learning
gains. Below we describe different kinds of unsupervised
text representations that vary in terms of token type, order
dependency, and summarization method.

3.1 Token Types
3.1.1 Individual Token

As our simplest representation, we call each word (sepa-
rated by space) a token, and then we count the number of
math-related tokens, defined as: (1) numbers (digit-only),
(2) operations (e.g. +,−,×), or (3) variables (an alphabet).
For the operations, we map synonyms to the same token,
e.g., ‘plus’ to ‘+’, ‘to the [power]’ to ‘^’. Additionally, we
add the words corresponding to each digit 0 to 9 (i.e. ‘zero’,
. . . , ‘nine’) as math-related tokens. For variables, we used
a restricted alphabet consisting of {b, c, n,m,w, x, y, z} (we
omitted ’a’ since it is also a common English word).

3.1.2 Expression Token
To infer which math problem in video, it might be useful to
extract the entire expression.For example,“2 plus 3”could be
considered as one token “2+3” not ‘2’, ‘+’, and ‘3’. Specif-
ically: (1) We mark all tokens in the transcript as either
math-related or non-math-related. Tokens that are labeled
as math-related are literals (LIT) and operators (OP) such
as plus (+),

√
, etc. (2) For each contiguous sequence

of math-related tokens, we read the tokens one-by-one and
concatenate them into one expression according to the rule:
starting with LIT followed by OP, LIT, . . . (alternately).

3.2 Token Count Vector
Given the sequence of tokens in each video, we then com-
pute either a 1D vector or 2D matrix of frequency statistics
(which are finally summarized as described in Section 3.3).
In the subsections below we let T be the set of all tokens
that appear in any of the videos.



1D (No Order Dependencies): The count vector of each
video contains |T | components, each of which records the
frequency of token occurs in video.

2D (First-Order Dependencies): With the goal of encoding
the relative order of tokens, we computed a 2D matrix M ,
of size |T | × |T |, such that Mij is the number of times that
token i appears before token j in the transcript. In this
approach, we introduced a “radius” parameter k to limit the
distance of token pairs (i, j) that need to be considered. For
example, if k = 4, all token pairs (i, j) such that the distance
between i and j is ≤ 4 will be counted, otherwise, ignored.

3.3 Token Summarization Methods
Given the token count vector computed in Section 3.2, we
then summarize each count x using a summarization func-
tion f . We considered the following functions: (1) Raw Fre-
quencies: We let f(x) = x. (2) Binarized Frequencies: Bina-
rizing the counts x might be less susceptible to noise; hence,
we tried setting: f(x) = 1 if x ≥ 1 and f(x) = 0 if x = 0. (3)
Weighted Frequencies: It might be beneficial to weight down
tokens which appears once because it might be noise from
the extraction process; important tokens should be men-
tioned multiple times in video; token found only once (we
call it t=1) are either insignificant or incorrectly extracted.
Instead of removing t=1, we introduced the parameter r to
downweight t=1. In this case, instead of having the raw
frequencies, We fixed the weight of t>1 (appear more than
once) as 1; however, we downweight t=1 by r. We thus let
f(x) = 1/r if x = 1, f(x) = 0 if x = 0, and f(x) = 1 if x > 1.
Note that r = 1 is equivalent to Binarized Frequencies.

4. DATASET
We applied the text representations to two sets of tutorial
videos: (1) Logarithms and (2) Algebra, see Appendix A.

5. CLUSTERING
Given the different feature types, we test whether they serve
as an effective basis for clustering the videos. In this section,
as ground-truth cluster labels, we took the math problem
(there were K = 18 unique problems in total) that each
video explained as its label. Note, however, that we could
also cluster the videos by the category of problems that they
explain (see Section 4); we do so in Section 7.

Methods: For each of the different text representations, we
applied K-means clustering to group the videos into K = 18
clusters, followed by the Hungarian algorithm [5] to opti-
mally match the estimated cluster to the ground-truth in-
dices. Since K-means converges to different local minima
depending on the random initialization, we executed the al-
gorithm 512 times and then reported the average of accuracy
for the clustering with lowest sum of squared distance.

Results: Table 1 shows the clustering accuracy results. All
three methods yield accuracies that are much greater than
the random baseline, which achieved only 18.27% accuracy.

Weighted Frequencies: We tried multiple values of r (r = 1
is equivalent to the Binarized Token Counts). We also added
r = 0.5, 0.25; this contrasts with our intuition for when it
weights t=1 more; we added this as a sanity check that the

accuracy should be getting worse. Table 1 shows that the
weighted frequencies increase the accuracy significantly up
by 10% on average. r = 2 performs the best among r =
2, 4, 8. As r gets larger, we see a slight decrease in accuracy.

1D vs. 2D: Table 1 (right) shows clustering accuracy with the
2D approach. For the radius k = 2 on the Expression token
(and using weighted frequencies with r = 2), the accuracy
increases around 2% compared to with 1D. However, we can
see lots of variance in the accuracy over the different k, and
hence the advantage may not be statistically reliable.

Comparison to TF-IDF: Our token summarization methods
can be seen as variations of TF-IDF, where only the TF
term f(x) is used; in other words, we used a constant 1 for
the IDF term. (We experimented with several IDF func-
tions but found that they all worked worse than just 1.)
The weighted frequency scheme we tried can be seen as a
coarse (piecewise-constant) approximation to the (smooth)
log function commonly used as the TF function in TF-IDF.
Using TF-IDF (with log for TF and 1 for IDF) and Expres-
sion Tokens, the clustering achieved 78.67% for the Expres-
sion Token (down about 5% from our weighted frequency
method). For the Individual Tokens, it performed similarily
in accuracy compared to the weighted frequency methods.
(See the “log” column in Table 1.) In summary, the results
provide some evidence that our text representations may
yield a worthwhile accuracy advantage over TF-IDF.

6. SEARCHING
Here we explore whether the proposed text representations
could be used to create a simple search engine to reduce
the amount of video time they would need to watch. Us-
ing the text representations, we can build a simple search
engine as follows: (1) From each video i in a collection S,
we transcribe its speech into text (using Google ASR) and
then extract its text representation vi. Then, (2) for any
search query (e.g., “Simplify: log4 16”), we likewise extract
its text representation q using any of the methods presented
in Section 3. Finally, (3) we rank all the videos in S by the
cosine similarity between vi and q.

Experiments: Here we consider a general setting in which
multiple math problems may be explained in a single video.
A search engine that can pinpoint which segment of a video
explains the solution could save the user significant time
compared to watching the whole video. For this setting,
there is a trade-off between granularity and accuracy: the
search engine may be more accurate if the segment length
is longer, but the user can save more time if the segment
returned to them by the search engine is shorter. Hence,
we introduced a segment length parameter, L. We divided
each video into multiple segments of length L. Each segment
has its own (sub-)transcript and its own problem that it
explains. Hence, we treat each segment as its own “video”.
Our goal is to find any segment in the video that explains
the problem in the user’s query q. As a baseline, we used a
simulation (averaged over 20 runs) to estimate the sum of
the segment lengths (in seconds) that a user would have to
watch before finding a relevant segment.

Results on the Algebra dataset: We analyzed the 234 videos
of the Algebra dataset that contain multiple problems; in



1D 2D

Token Types Raw Weighted: r log Radius k (for Weighted: r = 2)

0.25 0.5 1 2 4 ∞ 1 2 4 8 16 ∞
Individual 54.33 25.48 41.35 67.31 72.11 68.75 64.90 73.56 64.90 63.46 59.13 57.69 62.02 49.04

Expression 50.48 20.67 44.71 70.19 83.65 83.17 80.29 78.67 83.65 85.58 75.96 71.64 73.56 51.44

Table 1: Clustering accuracy on the logarithm videos for 1D text representations with different token types and summarization
methods, and the clustering accuracy for 2D representations and different token types (all with weighted summarization: r = 2).

total, these videos explain 300 algebra problems. We varied
the segment length L over the set {15s, 30s, 1m, 2m, 4m}
(see Figure C.1 in Appendix). The results shows that the
best text representations were 2D Binarized Individual To-
ken (k = 8). In particular, the 2D representations showed
an advantage (compare the pairs of {blue, pink}’s solid and
dashed lines). We found that radius k = 8 for 2D Represen-
tation preforms best across each method. For the Interval
Length, the percent decrease, at L ∈ {30s, 1m}, in watch
time is highest (i.e., the most helpful, see Figure C.1 in Ap-
pendix). As L continues to grow, the results go down and
at L = 15s, the performance drops. This exemplifies the
trade-off between segment length and available information.

Results on the Logarithm dataset: In this dataset, each video
contains one log problem. For each of 18 logarithm prob-
lems, we search for any of the videos that solve that partic-
ular problem. Comparing the results with random baseline,
the results show the same trend as for the Algebra dataset:
The 2D Representation gives the best results. We found,
for instance, Binarized Individual Token yields the results
of 89.96%, and 93.19% for 1D and 2D (k = 8), respectively.
The same holds true for Weighted Expression Token (r = 2)
with the results of 91.25% and 93.20%. For the 1D approach,
the best representation was TF-IDF (with log for TF and
identity for IDF); the reduction was slightly lower (92.85%).

7. LEARNING GAIN PREDICTION
In this section, we investigate whether the text representa-
tion can be used to predict the learning gain of students
who watch the videos as an educational intervention. The
high-level idea is that the effectiveness of each tutorial video
can be estimated by the interaction of the content within
the video and the student’s prior knowledge. In contrast to
some prior work that predicted the average learning gains
of a video over many students, here we tackle the arguably
harder problem of predicting individual learning gains of
each student, measured as the difference in test scores on
the curriculum before and after watching the video.

The Logarithms dataset (Section 4) contains pretest/posttest
scores of students who received a tutorial videos as an inter-
vention. Hence, we use each participant’s pretest score and
the text representation of the video they watched as predic-
tors to estimate their learning gains (posttest minus pretest
score). Rather than use the text representation as a fea-
ture vector itself, we instead use the category label assigned
to the problem (Section 5) by the clustering algorithm as a
0-1 indicator variable with an associated model coefficient;
hence, our models can find interactions between a student’s
prior knowledge and the topic in the video they received.

7.1 Prediction Models
We considered both linear models with mixed effects, as
well as deep non-linear models based on neural networks,
but we found that the latter overfit too easily and gave
unstable results; hence, we present only the linear models.
Let pij , j = 1, 2, 3, be student i’s prior knowledge (pretest
score) within the 3 problem categories (j) on logarithms.
Let cij , j = 1, 2, 3, be 0-1 indicator variables that reflect
whether student i’s assigned video belongs to each category
j. (Note that each video is assigned to exactly one of the
three categories.) We can compute cij using either (a) Man-
ually Labeled Categories (MLC) from human annotators, or
(b) Automatically Labeled Categories (ALC) from the text
representations and clustering algorithm (Section 5).

Prediction Model: We constructed a model that consid-
ers multiplicative interactions between the student’s prior
knowledge pij in each problem category and the cluster la-
bel cij of the student’s assigned video:
yi =

∑3
j=1 (wjpij + vjcij + uj(pij × cij)) + εi. Importantly,

this model contains multiplicative interaction terms pij×cij .

Results: We found that the interaction pij × cij using MLC
has a statistically significant effect on the learning gain (F11, 582 =
5.839, p = 5.11e − 09), and so does this interaction us-
ing ALC (F11, 582 = 6.425, p = 4.125e − 10). The RMSE
is 0.464, which is slightly better (about 3.1% relative de-
crease) compared to prediction model 1. Specifically, we
found that, for example, u3 is negative and statistically sig-
nificant (p = 0.0005) in the ALC model. The negativity of
u3 means that, if pi3 × ci3 is low, then the learning gain is
high (and vice versa). In turn, pi3 × ci3 is low either be-
cause (1) pi3 is low and ci3 = 1, i.e., an individual knows
little about topic 3 and receives a tutorial about topic 3,
yielding high learning gain; or (2) pi3 is high and ci3 = 0,
i.e., an individual already understands topic 3 and receives
on another (more helpful) topic, yielding high learning gain.
Both the MLC and ALC interactions were stat. sig., suggest-
ing that the text representations can group videos in ways
that predict individual learning gains.

8. CONCLUSION AND FUTURE WORK
We have devised novel text representations to represent the
content of math tutorial videos. On a dataset of hundreds of
math videos and hundreds of students who watched them,
we showed that the representation can be used to (1) accu-
rately (around 85%) cluster the videos into the math prob-
lems they solve (RQ1); (2) search for specific video content
in a large repository of videos, thereby saving the user con-
siderable (up to 88%) search time (RQ2); and (3) predict
individual learning gains, in conjunction with features of the
students’ prior knowledge, with stat. significance (RQ3).
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APPENDIX

A. DATASET
Here we described each dataset we use in the experiment in
more detail.

Logarithms: This is the dataset collected by Whitehill &
Seltzer [14], which contains both a repository of 208 math
tutorial videos about logarithms. Most videos are between
1-3 minutes long. In total the collection spans 18 logarithm
problems, with 9 to 17 videos per problem. Relevant only
to Section 7, the dataset also contains students’ pretest and
posttest scores of 541 participants from Amazon Mechan-
ical Turk who watched the videos. There are 226 males,
207 females, and 108 of undefined, with the average age of
33.71 ±9.84. Specifically, each participants were asked to
answer 19 logarithm pretest problems, which was classified
into 3 main categories: (1) the logarithmic term without
variables e.g. log9 1, (2) the logarithmic term with variables
e.g. logw

1
w

, and (3) the logarithmic equation e.g. solve for
x where x log4 16 = 3 (category 1, 2 and 3 contain 102, 61,
and 45 videos, respectively). Then, they were assigned to
one random video among 208 logarithm tutorial videos, and
were asked to complete a posttest (same level of difficulty
as the pretest but slightly different problems).

Algebra: For the search task, we collected another dataset,
containing 234 algebra math tutorials on Youtube As of 234
videos, 213 of them contains one math problem and 21 of
them contains multiple math problems (total of 87 math
equations); total of 300 expressions on entire dataset. We
manually annotated which equation (e.g. 2x2−2x−12 = 0,
x + 7 = 10) each video explains. For videos with multiple
math problems, we marked the start end time of each.

B. SPEECH-TO-TEXT TRANSCRIPTION
All the feature types we explore are based on obtaining an
approximate transcript of the video from an ASR. In par-
ticular, we use Google Speech-to-Text API. As a pilot test
of its accuracy on the OERs in our dataset, we manually
annotated 10 videos (in total of 3044 words in the ground-
truth transcripts). Google’s API achieved a word error rate
(WER) of 5%, which intuitively seemed sufficient, which in-
tuitively seemed sufficient. An example of extracted speech
is shown in Figure 1 (caption). After obtaining the tran-
script for each video in our collection, we then tokenized it
and summarized the token frequencies.

C. ADDITIONAL FIGURES
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Figure C.1: The decrease in time needed to find specific
math content in a set of math tutorial videos. Each line
shows a different text representation over different segment
lengths.


