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ABSTRACT
Knowledge Tracing (KT) is a task to model students’ knowl-
edge based on their coursework interactions within an Intel-
ligent Tutoring System (ITS). Recently, Deep Neural Net-
works (DNN) showed superb performance over classical meth-
ods on multiple dataset benchmarks. While most Deep
Learning based Knowledge Tracing (DLKT) models are op-
timized for general objective metrics such as accuracy or
AUC on benchmark data, proper deployment of the service
requires additional qualities. Moreover, the black-box na-
ture of DNN models makes them particularly difficult to
diagnose or improve when unexpected behaviors are encoun-
tered. In this context, we adopt the idea of black-box test-
ing / behavioral testing from Software Engineering and (1)
define desirable KT model behaviors to (2) propose a KT
model analysis framework to diagnose the model’s behav-
ioral quality. We test-run the framework using three state-
of-the-art DLKT models on seven datasets based on the
proposed framework. The result highlights the impact of
dataset size and model architecture upon the model’s be-
havioral quality. The assessment results from the proposed
framework can be used as an auxiliary measure of the model
performance by itself, but can also be utilized in model im-
provements via data-augmentation, architecture design, and
loss formulation.
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1. INTRODUCTION
Assessment is a central task in Education, as it is involved in
meta-cognition [17], tracing the skill trajectory, recommen-
dation of contents [36], adjustment of tutoring strategy [14],

and grading [3, 24, 33, 35]. With the advent of online edu-
cational platforms, there is an increasing demand in build-
ing assessment models using the interaction history data of
users. One approach to track the skill of users is Knowledge
Tracing (KT), which is the task to model students knowledge
based on their coursework interactions within an Intelligent
Tutoring System (ITS) [7].

To tackle the KT problem, the recent EdNet Challenge in
Kaggle has gathered a total of 3,406 teams, 4,412 partici-
pants, to submit 64,678 models. Participants trained KT
models on the EdNet KT dataset [6], and the models were
evaluated by the Area Under the Receiver Operating Char-
acteristic Curve (AUC). The AUC of the top 5 models were
0.820, 0.818, 0.818, 0.817, 0.817, which are very similar, and
all models were based on the Transformer Neural Network
structure [38]. While neural network structures are usu-
ally designed to appropriate human intuitions, most models
lack interpretability compared to classical models. There-
fore, when evaluation results for black-box models do not
vary significantly, it becomes unclear how to choose the best
model for deployment. Also, while small quantitative differ-
ence in the objective function or model AUC might not hurt
the users’ perception of the model reliability, few adversar-
ial decisions of the black-box model can dissuade the user’s
faith. [34] also note that the performances of black-box mod-
els that are trained for general metrics such as classification
accuracy or AUC(Area Under receiving operator character-
istic Curve) can be overestimated.

As a result, Deep Learning based Knowledge Tracing (DLKT)
models are not frequently implemented in the education
community due to potential risks arising from the lack of
model interpretability. In this study, we propose behavioral
testing as an approach to alleviate this problem. The con-
tribution of this work are summarized as follows:

• We propose a novel testing framework to validate DLKT
models using a test on behaviors. The idea is to define
consistent and convincing behaviors to be desired on
DLKT models.

• As an example of applying the framework, we bench-
mark three state-of-the-art DLKT models from the



proposed validation framework. Positive results high-
light the reliability of DLKT models and encourages
the model’s adoption, while negative results point out
the limitations of DLKT models and show spaces for
improvement.

• We introduce methods to utilize evaluations from the
framework to design and improve DLKT models.

2. RELATED WORKS
2.1 Knowledge Tracing
Knowledge Tracing (KT) is the task to predict the expected
correctness of an interaction of a student to a question by
modeling the student’s knowledge from past interactions [7].
In this study, we formulate the KT task as follows: the inter-
action sequence of a user is denoted asXu = {xu1 , xu2 , · · · , xuT }
where u ∈ U is the user index. To simplify the notations, we
omit the user index u unless specified. Each interaction xt =
(qit , ct) at step t is defined by the pair of question qit ∈ Q
and correctness ct ∈ {0, 1} where Q = {q1, q2, · · · , qn} de-
notes the set of all questions and it denotes the question
index of step t. A KT model predicts the correctness proba-
bility P (ct = 1|x1, x2, · · · , xt−1, qit) of an unseen interaction
Xt at step t, where Xt = x1, x2, · · · , xt is the first t interac-
tions of an interaction sequence X.

Notation Description
u ∈ U User index
X Interaction sequence of a single user(= Xu)
xt Interaction at time step t
qj ∈ Q Question
it Question index at time step t
ct Correctness at time step t for question qit
c
(qj)
t Correctness at time step t for question qj
Xt Interaction sequence of X up to time step t

Many KT models utilize domain specific tags such as skill
components of questions [27, 8, 31, 43, 42], difficulty of
questions [32, 10, 37], or knowledge graphs [4]. Item Re-
sponse Theory (IRT) [32] models the correctness probability
of a student responding to a question using custom designed
models, and fits the model parameters using maximum likeli-
hood. For instance, the 4-PL model predicts the correctness
probability of a user with skill level θ solving item i by

pi(θ) = ci +
di − ci

1 + e−ai(θ−bi)
,

where ai, bi, ci, di are parameters that model discrimination,
difficulty, pseudo-guessing, and slip of item i [23].

Another prominent approach is Bayesian Knowledge Tracing
(BKT) [27, 42], which uses Markov process to model diffi-
culty of the question items and learning capability of the
students. Another well known approach is Deep Knowledge
Tracing (DKT) [31], which is the first Deep Learning based
KT model (DLKT). Since the introduction of DKT, many
researchers have worked on different network structures to
capture the complex aspects of the knowledge state. There
are a variety of models based on different structures such as
DKVMN [43], DKT+ [41], SKVMN [1], SAKT [30], GKT

[28], EKT [21], KTM [39], DHKT [40], SAINT [5], AKT
[13], and PEBG [22].

While there exist a variety of different KT models, [12] per-
formed a major experiment on the accuracy of three groups
of KT models (Markov process, Logistic Regression, Deep
Learning) on nine real-world datasets. While deep learning
models do show better AUC and RMSE on some datasets,
other linear models including the authors’ proposed BestLR
approach yielded comparable or superior performances on
most datasets, which also provided better model interpretabil-
ity as well.

2.2 Behavioral Testing in Other Applications
To alleviate unexpected behaviors of black-box models, [2]
introduces behavioral testing (also known as black-box test-
ing) to test different capabilities of a system in the software
engineering perspective. Many studies work on effectively
designing test cases [18, 25, 26]. [29] gives a detailed re-
view on the behavioral testing method applied in various
software testing domains. In Natural Language Processing,
[34] apply the behavioral testing framework to validate the
behaviors of general NLP models. They introduce Check-
List, which is a task agnostic methodology for testing NLP
models. CheckList is a list of general linguistic capabilities
and test type baselines for NLP tasks. It is also a software
tool to generate test cases for NLP models.

2.3 Behavioral Studies in Knowledge Tracing
The expected behaviors of the KT models have been dis-
cussed in some studies, which point out the adversarial be-
haviors of KT models and propose new models to alleviate
the problem. DKT+ [41] raises two problems of the Deep
Knowledge Tracing (DKT) model [31], which are increas-
ing correctness probabilities from false responses, and wavy
prediction transition by time. However, these behaviors can
naturally occur from the educational effects embedded in the
interaction, which we discuss in detail in Section 3.1. The
authors add three regularization terms in DKT+ to enhance
the consistency of the predictions of DKT, and introduce ex-
tra performance measures.

The authors of [19] lists some desirable behaviors based on
the monotonicity of the KT models to improve the general
ability of the models. Then, they perform three types of
novel data augmentation techniques(replacement, insertion,
and deletion) and apply them to the training of KT models.

As examined in these relevant studies, the adversarial be-
haviors and low interpretability of DL models hinders the
AIEd society to adopt Deep Learning based KT (DLKT)
models and sustain on adopting interpretable models based
on BKT, IRT, or Cognitive Diagnosis Models [9]. In this
study, we provide a validation framework of DLKT models
and conduct an extensive set of experiments on the desired
behaviors of DLKT models. Good results highlight the relia-
bility of DLKT models and encourages the model’s adoption
on most datsets. On the other hand, bad results point out
the limitations of DLKT models on some datasets and show
spaces for improvement.



3. BEHAVIORAL TESTING FOR
KNOWLEDGE TRACING

We propose a black-box behavioral testing framework for
knowledge tracing task. First we define the knowledge state
(KS), and then elaborate on desirable behaviors of KT mod-
els’ KS representation. Finally, in Subsection 3.2, we intro-
duce specific experiment setups to assess whether DLKT
models satisfy those behaviors.

We define the knowledge state to be a vector representa-
tion of a user’s correctness probability on a set of questions
Q′ at a specific time point. Given the first t interactions
Xt = x1, x2, · · · , xt of a user, we define the user’s knowledge
state as:

KSt =
[
P (c

(qj)
t = 1|Xt−1, qj)

]
qj∈Q′

(1)

c
(qj)
t represents the Bernoulli indicator for the event when

the user answers correctly to question qj at time step t,
as defined in Table in Section 2.1, which is updated along
the provision of the user interaction sequence. Note that a
KS is the collection of prediction values of questions, which
either is responded or not. We describe the desired aspects
of DLKT models in the following section.

3.1 Expected Behaviors of
Traced Knowledge State

First we introduce two properties on the change ∆KS of
the knowledge state KS with respect to an atomic change
∆X of the interaction sequence X, which is an insertion or
a deletion of single interaction record.

First, monotonicity insists that the model’s knowledge state
should be updated to a more knowledgeable state when the
student adds another correctly answered question (positive
interaction) or when an interaction record with incorrect
response (negative interaction) of the student is deleted. If
the ∆ is applied in the middle of the interaction record, all
changes after the perturbation should hold the property as
well. Second, robustness insists that a little perturbation in
the interaction history should not yield a dramatic change
in future knowledge states. The details of the two properties
are introduced below.

• Monotonicity: If ∆X is a correctly responded inter-
action (qitp , 1) at perturbation time tp, then we can

track the relation of P (c
(qj)
t = 1|X ∪ ∆X, qj) and

P (c
(qj)
t = 1|X, qj) depending on how qj and ∆X are

correlated. In many cases, a positive correlation in
correctness probabilities is desired due to the relation
of knowledge states:

P (c
(qj)
t = 1|X ∪∆X, qj) > P (c

(qj)
t = 1|X, qj)

for t > tp and qj ∈ Q.

However, there can also be negatively correlated ques-
tions which could be consequences of factors such as
limited learning resource. For instance, a college stu-
dent might sacrifice her studying time on one sub-
ject over another when both subjects’ examinations
are scheduled too closely with each other. This type

of circumstance might cause the model to fit a non-
monotonic relationship between the two fundamentally
unrelated subjects. In most ITS’s, however, the target
study domain is usually restricted to a single subject,
or a set of knowledge components where the student’s
comprehension on the components is usually positively
correlated. Another case is when a negative response
increases the correctness probability of a problem as
described as an adversarial behavior in [41]. However,
the educational effect of consuming a question can give
positive feedback on the knowledge state even if the in-
teraction response was wrong. Therefore, we assume
the described monotonic behavior in general knowl-
edge tracing environments while simultaneously keep-
ing track of the opposite case in the experiments of
Section 4.

• Robustness: For any black-box system, it is gener-
ally desirable that insignificant change in the system’s
input leads to limited change in the output. For a
knowledge tracing model in an ITS, the input refers to
the student’s interaction record and the output refers
to the model prediction on correctness probability for
an encountered question or a set of questions. There-
fore, we formulate the robustness of knowledge tracing
model as below in a general sense, adopting the ∆X
previously defined:

|P (c
(qj)
t = 1|X ∪∆X, qj)− P (c

(qj)
t = 1|X, qj)| < εt

for some εt, a single interaction ∆X, t > tp, and
qj ∈ Q. If we impose the inequality to always hold
on t = tp + 1 and fixed ε1, then it is equivalent to im-
posing continuity on the knowledge state in terms of
time-steps. We treat continuity as a specific case of ro-
bustness and introduce customized test for continuity
separately from the test for robustness.

However, consider a case when qj and qitp in ∆X assess
similar concepts, or when the educational effect from
the interaction with one question affects the student’s
correctness probability on the other question. Then an
insertion or deletion of one question is prone to have a
significant impact upon the predicted correctness prob-
ability value of the other for t > tp. Therefore, the
defined robustness / continuity need not be univer-
sally desirable for all pairs of questions. The impact of
this property would eventually depend on the degree
of dependency among the questions. Therefore, in the
experiments, while assuming robustness for most ques-
tion pairs, we also carefully track where some questions
affect the prediction values of other questions in a no-
table amount.

Next we discuss what constitutes an expected value of knowl-
edge state. Testing whether the knowledge state has accu-
rately captured the user’s interaction history is in line with
the existing quantitative metrics (AUC, ACC) adopted in
KT literature. However, the existing test methods focus
only on a single actual question data provided per each time
step whereas we propose to assess knowledge tracing model
via its knowledge state on a virtual question set in order
to provide a more holistic assessment via knowledge state
representation.



Although tracing knowledge state on a set of questions would
provide a more comprehensive picture of how the user’s
knowledge is traced, it lacks actual label of correctness on
unseen questions at each time step, as discussed in Section
3.1. Therefore, we describe below novel measures to assess
correctness of knowledge state under a few purposefully de-
signed circumstances.

• Approximate Label of User-Independent Initial Knowl-
edge State: At first prediction step, we approximate
correctness label for all questions via their ’global dif-
ficulty’. The initial knowledge state for all users should
represent the model’s prior belief of question difficulty
before encountering any user-specific interaction record
data. It is reasonable to assess the quality of this value
in terms of correlation of model’s prediction on each
question and the question’s global difficulty. However,
this is an approximation at best since the question’s
difficulty might not be accurately captured by simple
average over its occurrences. If the actual interaction
data generated from the ITS provides a very difficult
question only after user’s knowledge is significantly ac-
cumulated, simple average of question correctness la-
bels would not be representative of the question’s in-
herent difficulty. Model’s prediction would be high.

• Ideal Value of Knowledge State after Converged In-
teraction Data: We generate obvious edge-case test
cases where user’s knowledge state on a set of ques-
tion has converged to a value. We create this virtual
dataset by simply repeating an identical interaction
record on each question consecutively. The model’s
prediction value for the question in the repeated in-
teraction should converge to the repeatedly provided
label value.

• Approximate Label of Knowledge State in General:
It’s also possible to approximate a pseudo-label for
unseen questions using rolling/expanding averages or
IRT-like algorithms which demonstrate more stable
and monotonic behavior by design. Although we con-
jecture such training methodology of DLKT models us-
ing pseudo-labels might provide regularization effect,
we do not include this case in the scope of this work.

Table 1: Behavioral Test Summary

Behavior Analysis Method

Monotonicity Perturbation Test: Percentage of interac-
tion samples of which model prediction
changed in expected direction.

Robustness Perturbation Test: Degree of impact from
perturbation across time-steps.

Continuity Continuity Test: Avgerage and maximum
change in knowledge state score per step
and throughout entire sequence.

Initial Value Initial Value Test: Correlation between
question correctness rate and initial
knowledge state.

Convergence Convergence Test: Convergence speed as
in model AUC and average model output
at different time-steps.

3.2 Behavioral Test Setups
Below we describe four behavioral testing setups for DLKT
models. First, perturbation tests aim to test model’s mono-
tonicity and robustness given an atomic perturbation to the
original interaction sequence data. Second, continuity test
aims to check whether model’s knowledge state represen-
tation is continuous along the interaction sequence. Third,
initial knowledge state test checks whether the initial knowl-
edge state reflects each question’s corresponding difficulty
measure. Fourth, convergence test checks whether the knowl-
edge state converges to the expected value and how fast it
converges. Following subsections elaborate each of the test
setup in further detail. Table 1 provides summary of the
tests.

3.2.1 Perturbation Tests
We examine monotonicity and robustness of the model by
perturbation tests. We experiment three types of pertur-
bations: insertion, deletion, and flip. For each original in-
teraction sequence, we determine tp, which is the index of
interaction to be perturbed. For the insertion case, we add
a new interaction between xtp−1 and xtp . For the deletion
case, we remove the interaction xtp . For the flip case, we
flip the correctness of xtp from 1 to 0 and from 1 to 0.

In order to check monotonicity, we assess whether the model’s
predicted correctness probability in the following interaction
sequence X[tp:] changes towards the expected direction. For
insertion / deletion / flip of an interaction to which user re-
sponded correctly, we examine whether the following future
correctness probability P (ct′+1 = 1|Xt′), ∀t′ > tp increases
/ decreases / decreases, respectively. In the experiments, we
fix the perturbation point to be located halfway in the user’s
original interaction sequence, then measure the proportion
of interactions which the model’s predicted correctness prob-
ability changes towards the expected direction.

To assess the model’s robustness, we visualize how the de-
gree of impact from perturbation changes along the time
steps from tp. We expect the degree of impact from per-
turbation upon the model’s prediction to decay gradually as
more interactions are fed into the model after the perturba-
tion point tp.

3.2.2 Continuity Test
We test whether the knowledge state is continuous, in the
manner described in the previous section 3.1. For every
time-step, we provide the model with not only the origi-
nal interaction at the corresponding time-step, but also a
set of questions Q′ simultaneously to construct knowledge
state KSt at the time-step. Although we don’t have actual
correctness label for those virtual interactions, we only in-
quire how the knowledge state or the model prediction on
Q′ evolves along the time-steps.

In the experiments, we approximate a score on the user’s
knowledge state by averaging the model-predicted correct-
ness probability over the sample set of questions Q′ to re-
port: (1) average and maximum student score change per
single time-step and (2) average student score change and
range across 100 time-steps.

3.2.3 Initial Knowledge State Test



Table 2: Dataset Statistics
Dataset Users Items Skills #Intr. %Crct.

ASSIST15 14228 100 100 656K 73
ASSIST17 1708 3162 411 935K 37
STATICS 282 1223 98 189K 77
Spanish 182 409 221 579K 77
EdNet-small 5000 13156 118 518K 65
EdNet-med 100000 13518 118 11M 64
EdNet 605763 13528 118 138M 66

We assess the quality of the prior knowledge state embedded
by the model by the initial knowledge state test. Without
any user-specific record, the prior knowledge state embedded
in the model should accurately reflect the average difficulty
of the question to all users. Thus, we check Spearman rank
correlation and Pearson correlation between the question’s
average difficulty and the model-predicted prior belief for
each question.

In detail, a trained DLKT model M ’s initial knowledge state
for a question qj can be represented as PM (c = 1|·, qj). We
compare this with the question correctness rate over the
entire dataset as in Eq 2 which is equivalent to the number
of correctly responded qj-interactions over the number of
occurrences of qj based on all user data.

gcqj =

∑
u∈U |{x

(u)
t |qit = qj , ct = 1}|∑

u∈U |{x
(u)
t |qit = qj}|

(2)

Consequently, we measure:

Corr
([
PM (c = 1|·, qj)

]
qj∈Q

,
[
gcqj

]
qj∈Q

)
(3)

This initial knowledge state test pinpoints on whether the
learned question embedding in the DLKT model alone has
captured any information about the corresponding ques-
tion’s difficulty. Moreover, we emphasize the importance
of the initial knowledge state since the state assumed by the
model would likely affect the user’s first impression on the
system to make decisions.

3.2.4 Convergence Test
In convergence test, we assess whether the model’s knowl-
edge state value converges to a target value in a desired
manner. We generate simple virtual interaction sequence
data by repeating an identical interaction for 50 time-steps
for each question for both correctness cases. Therefore, the
virtual dataset would consist of virtual user interaction se-
quences of size twice of the number of questions.

In the experiments, we report the model’s standard AUC
metric at time-steps 5, 10, and 50. We expect significantly
high figures as the inquired interaction sequence is extremely
simple. We also visualize how the average model prediction
value across the questions evolves throughout the 50 time-
steps for each of the correctness case. We expect the values
to quickly converge to 1 / 0 for interaction sequences of
which correctness label is all correct / incorrect, respectively.

4. EXPERIMENTS
In this section, we benchmark three Deep Learning based
Knowledge Tracing models DKT, SAKT, and SAINT on the
proposed behavioral tests. First, we train optimized mod-
els for each architecture-dataset pair by searching hyper-
parameters on the train and validation data split. Second,
we report the classification accuracy and the AUC met-
ric, which are commonly used for model assessments in the
Knowledge Tracing literature. Third, we present the pro-
posed behavioral test results of model instances on well-
known datasets for Knowledge Tracing.

4.1 Datasets
We describe the datasets used in our experiments. All datasets
are open to the public.

ASSISTments[11] is a dataset containing student interac-
tions from an online tutoring system for solving Massachusetts
Comprehensive Assessment System (MCAS) 8th Math test
questions. We use the datasets ASSISTments 2015 (Assist-
ments15) and ASSISTments Challenge 2017 (Assistments17).

STATICS is a dataset containing college student interactions
on a one-semester Statics course. This dataset is available
in the PSLC DataShop web site [16].

Spanish[20] is a dataset containing middle-school student in-
teraction data for Spanish exercises.

EdNet[6] is the largest public benchmark education dataset
containing user interaction data of an online tutoring sys-
tem, for preparing TOEIC (Test of English for Interna-
tional Communication®). For ablation studies on the size
of the dataset, we randomly choose 100,000 users for EdNet-
medium, and 5,000 users for EdNet-small.

Table 3: Model Hyper-parameters
Model Parameter Tuning Details

Common Adam learning rate 0.001, 0.003, 0.01
Dropout rate 0, 0.25, 0.5
Embedding dimension 64, 128, 256
Maximum Seq.Length 100, 200, 400

DKT # Recurrent Layers 1, 2, 4
SAKT # Attention Layers 1, 2, 4
SAINT Warm-up Steps 200, 400, 4000

# Attention Head 1,4,8

4.2 Models and Algorithms
We perform hyper-parameter tuning on the training of mod-
els. For each configuration of hyper-parameters, we choose
the model weights with the best validation AUC. In the
training step, an early-stopping policy is applied with pa-
tience 30, which means that we stop the training process
and save the best weights if there is no AUC improvement
in the recent 30 validation steps. Among the best weights
for each configuration, we choose the weight with the best
validation AUC for each dataset, and evaluate the weights
with an independent test set for test metrics.

4.2.1 Training Details



In this study, we use DKT, SAKT, SAINT in the experi-
ments . DKT models the student’s knowledge state using
a Recurrent Neural Network (RNN) by compressing the in-
teraction history in a hidden layer. SAKT is the first KT
model that used self-attention layers, where in each layer
the question embeddings are queries and interactions em-
beddings are key and values. SAINT is the first KT model
based on Transformers. The sequence of questions is fed into
the encoder, and the sequence of responses are fed into the
decoder with the encoder output.

Our model hyper-parameters are shown in Table 3. We
use the Adam optimizer [15] with default parameters. For
SAKT and SAINT, we used the Noam scheme for scheduling
the learning rate, and tune the number of warmup-steps.

The original SAKT implementation does not include resid-
ual connection from the query. This enforces the first pre-
diction to a same number every time, regardless of the first
question provided to the model. Since 3.2.3 becomes redun-
dant, we use the modified SAKT architecture with residual
connection. For SAINT and SAKT, the dimension of the
feedforward network is set to 4×(model dimension). For
SAINT, we use the same number of attention layers for the
encoder and the decoder.

4.3 Results: Traditional Assessment
AUC and accuracy results are shown in Tables 4 and 5. The
difference of these standard metrics is generally less than
0.01. For KT-based tutoring systems, this difference would
be less important than behavioral performance. AUC shows
the monotonicity of interactions by all users, and accuracy
does not focus on the exact model prediction. On the other
hand, behavioral tests can check the performance of model
prediction for a single user, and analyze the impact of a
single interaction.

Table 4: Standard AUC metric
Model DKT SAKT SAINT

Assistments15 0.7242 0.7226 0.7179
Assistments17 0.7742 0.7650 0.7680

STATICS 0.8269 0.8248 0.8275
Spanish 0.8336 0.8456 0.8364

EdNet-small 0.7332 0.7380 0.7328
EdNet-medium 0.7717 0.7760 0.7722

EdNet 0.7810 0.7905 0.7863
Average 0.7778 0.7804 0.7773

Table 5: Standard Classification Accuracy(%)
Model DKT SAKT SAINT

Assistments15 74.2 74.6 74.4
Assistments17 72.1 71.0 71.8

STATICS 81.4 81.2 81.1
Spanish 81.9 82.6 82.0

EdNet-small 68.2 70.2 69.8
EdNet-medium 72.5 72.6 72.4

EdNet 73.5 74.1 73.9
Average 74.8 75.2 75.1

4.4 Results: Behavioral Testing
4.4.1 Perturbation Tests

We report the test pass rate for insertion, deletion, and flip.
The results are shown in Table 6, 7, and 8, respectively.
Figure 1 describes the average impact on model prediction
from insertion perturbation on each dataset (column) and
correctness label of the inserted interaction (row). Figure 2
describes the degree of maximum impact over user sequences
from insertion perturbation.

Table 6: Insertion Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 70.9 70.3 65.3
Assistments17 69.6 55.7 56.7

STATICS 71.1 61.0 58.2
Spanish 80.1 75.6 60.7

EdNet-small 66.3 78.0 75.9
EdNet-medium 83.2 80.6 77.3

EdNet 72.7 71.6 71.2
Average 73.4 70.4 66.5

Table 7: Deletion Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 69.0 66.3 62.1
Assistments17 63.7 54.4 54.6

STATICS 60.7 55.9 49.2
Spanish 81.6 81.9 59.7

EdNet-small 65.6 75.3 71.9
EdNet-medium 80.3 76.8 73.5

EdNet 72.3 68.3 69.5
Average 70.4 68.4 62.9

Table 8: Flip Test Pass Rates(%)
Model DKT SAKT SAINT

Assistments15 77.1 96.3 94.7
Assistments17 69.5 86.1 66.4

STATICS 93.4 92.9 84.7
Spanish 87.5 89.1 83.9

EdNet-small 75.2 95.0 95.8
EdNet-medium 87.8 94.8 95.5

EdNet 79.5 83.6 86.0
Average 81.4 91.1 86.7

• In general, deletion and insertion pass rates range from
60% to 80%, and flip pass rates range from 80% to
90%. Note that a flip can be interpreted as a com-
bination of deletion and insertion. Therefore, the im-
pact of perturbation is supposed to be larger, leading
to higher pass rates as compared to insertion/deletion
cases. From Figure 1, Figure 6 (Appendix), and Figure
7 (Appendix), we note that the degree of impact from
replacement is twice of that from insertion or deletion.

• Robustness: From Figure 1, we observe that the de-
gree of average impact from perturbation gradually de-
creases along the time-steps in general, and that the
average impact is limited by only about 2%. There-
fore, the desired robustness holds in terms of average
impact.

• Monotonicity: From Figure 1, the average impact from
positive/negative perturbation tends to remain posi-



Figure 1: Perturbation Test: Average Impact on Model Prediction from Insertion.

Figure 2: Perturbation Test: Maximum Degree of Impact on Model Prediction from Insertion.

tive/negative, respectively, for Assistments15, EdNet-
small, EdNet-medium, and EdNet datasets. On Span-
ish dataset, such trend is more noisy for SAINT net-
work.

• On Assistments17 and Statics dataset, the expected
monotonic behavior from SAKT and SAINT is not
observed as the average impact oscillates across zero.
This can be also seen from DKT’s significantly higher
pass rates on the two datasets in Table 6.

• From Figure 2, we note that there exists questions
which persist to respond in a larger degree (even up
to 80%) after 40 time-steps. Note that on the EdNet
dataset, both transformer-based architectures SAKT
and SAINT allow larger impacts from perturbations
than DKT. This can be explained by the superior per-
formance of the two models on EdNet data over DKT
in terms of standard evaluation metrics AUC and ACC.

4.4.2 Continuity Test
We report average and maximum step-wise change in KS
score over students in Table 9. Apart from the single-step
change, we also measure final change of score from the first
time-step to the last, and the total range of score explored
throughout the time-steps, averaged over all students in Ta-
ble 10. Sum of absolute change in KS coordinates, or Man-
hattan distance of KS’s along time-steps (averaged over all
students) is shown in Figure 3. EdNet-medium was omitted
due to its similarity with the plot from EdNet-small.

• Except for Assistments17 and Statics, average score
change per single time-step or an interaction remains
reasonably low below 5% for all architectures. This
suggests that the knowledge state is fairly stable across
the time-steps.

• On Assistments17 and Statics, we observe significantly
larger changes, especially in DKT. DKT’s maximum



Figure 3: Continuity Test: Average Change in KS along Time-steps

Table 9: Continuity Test: Average / Maximum Student Score Change(%) per Single Time Step
Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

DKT
Avg 2.45 10.48 6.39 2.93 2.04 2.14 2.27 4.10
Max 16.82 84.97 65.09 20.33 16.98 17.06 33.68 36.42

SAKT
Avg 1.97 3.92 1.15 1.68 1.29 1.19 1.48 1.81
Max 15.65 56.60 20.24 52.92 21.46 19.21 22.53 29.80

SAINT
Avg 4.64 7.99 2.73 3.48 2.02 1.92 1.29 3.44
Max 31.80 53.01 24.18 38.74 16.17 22.12 17.19 29.03

Table 10: Continuity Test: Average Student Score Total Change(%) / Total Range(%) over 100 Interactions
Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

DKT
Diff 10.14 11.50 9.94 18.30 9.23 12.82 10.83 11.82

Range 24.72 63.42 47.54 46.54 22.89 27.41 28.37 37.27

SAKT
Diff 15.96 13.97 15.67 18.36 10.48 13.00 8.95 13.77

Range 30.98 40.16 22.08 53.33 23.70 23.80 20.69 30.68

SAINT
Diff 13.34 11.62 6.97 20.53 11.32 5.30 9.01 11.15

Range 37.98 49.96 26.19 51.51 22.98 24.21 20.59 33.35

score change across a single time-step is as high as 85%
and 65% for Assistments17 and Statics, respectively.

• In general, we observe decreasing marginal impact of
each interaction data as time proceeds.

• From Figure 3 and Table 9, we note that SAKT’s
knowledge state changes significantly less than other
models, consistently throughout all datasets. We also
investigated whether this ’speed’ of change affects to-
tal ’dislocation’ of knowledge state in Table 10. In-
terestingly, SAKT’s knowledge state moved by far-
thest on average (13.77%) while its range explored was
the smallest (30.68%) on average. This suggests that
SAKT’s knowledge state evolution was least volatile.

4.4.3 Initial Knowledge State Test
To assess the validity of initial knowledge states embedded
in the model, we measured the correlation of the predicted
prior knowledge state and the global question difficulty as

described in Section 3.2.3. The results are presented in Table
11. In the scatter plot of Figure 4, we choose the 200 most
frequently answered questions from each data-set to show
how the initial model predictions and question correctness
rates are distributed and correlated.

• We observe from Table 11 that all models’ initial knowl-
edge states are positively correlated with the global
question difficulty with statistical significance.

• The difference in correlation metrics among datasets
is much more significant than that among models.

• Based on the three scatter plots of the first row in the
figure, we note that the correlation becomes stronger
as the size of dataset grows from EdNet Small to full
EdNet data. Table 11 and Table 2 also suggests that
the number of interactions per unique question is pos-
itively correlated with the initial knowledge state test
metric.



• From the scatter plot, we see that the three models
occupy slightly different clustering regions in the plot.
For instance, in EdNet Medium and EdNet dataset,
SAINT’s initial prediction value is consistently larger
than that of the other two models, which suggests en-
semble of the models to reduce bias.

Table 11: Initial Knowledege State Test: Correlation(%)
Model DKT SAKT SAINT

Assistments15 85.6 84.8 82.5
Assistments17 63.2 52.2 58.2

STATICS 56.1 58.1 54.6
Spanish 56.5 49.1 44.0

EdNet-small 39.0 38.5 31.6
EdNet-medium 75.1 74.2 74.4

EdNet 87.6 86.5 88.2
Average 66.1 63.3 61.9

4.4.4 Convergence Test
As the dataset we generate and use for the convergence test
is extremely simple as described in Section 3.2.4, we expect
the KT models’ standard performance metrics to increase
quickly along the time-steps. For instance, at the fifth time-
step, the model would have already received four equivalent
interaction record with the same question and the same cor-
rectness label for the virtual student. We report the model
AUC at time-step 5, 10, and 50 in Table 12. In Figure 3 we
also visualize the model’s average response across different
questions for each correctness label values assumed. We ex-
pect the average response plot to quickly converge to either
1 or 0 based on the assumed correctness label value.

• In general, all models show fairly high performance
from early time-step of 5, except for Assistments17
dataset.

• Both Table 12 and Figure 5 suggest SAKT consistently
achieves fastest convergence to a reasonable value close
enough to either 1 or 0. DKT, however, consistently
converges to a value farther from the two edges, as
compared to the other two models. In particular, for
the incorrect case (second row) of the Figure 5, we
observe DKT converges to a value higher than 50%
(red dotted horizontal line). For the positive case (first
row), DKT converges to a correctness probability level
around only 70% for Assitments17, EdNet-small, and
EdNet-medium.

• DKT’s convergence pattern is fairly monotonic while
SAKT and SAINT’s patterns go through fluctuation
which likely pertains to noise.

• It is noteworthy that increasing dataset size from EdNet-
small to EdNet-medium and EdNet significantly helps
all three models’ convergence behavior on both target
correctness values, especially for DKT. DKT’s conver-
gence value moved signficantly closer to desired values
of 1 and 0. For SAKT and SAINT, larger dataset size
led to more stable response plot, reducing the degree
fluctuation.

• Convergence in the incorrect case and the correct case
is asymmetric. While the latter closely achieves the

target value of 1, the former case converges around
30% level in most datasets. We attribute this to the
tutorial content embedded in each of the interaction,
along with the question item used for assessment in
the dataset.

4.5 Overview of Experimental Results
Based on the proposed DLKT validation framework, we
conducted a comprehensive investigation of three popular
DLKT models on seven benchmark datasets to scrutinize
the models’ behavioral characteristics. The results high-
light strengths and weaknesses of three DLKT models. Al-
though DLKT models demonstrated stable and robust be-
haviors in line with expectation in most datasets, the results
revealed few major disadvantages for each models: DKT
showed better stability in perturbation tests while the other
architectures occasionally presented volatile fluctuation in
the response curve. In the continuity test, SAKT presented
a significantly smoother evolution of knowledge state, but
other models’ knowledge state representations were seem-
ingly volatile in a few datasets which strongly precludes
DLKT’s adoption. On the other hand, this suggests room
for improving DLKT models based on the specific issue pin-
pointed by this framework. For instance, the volatility of KS
could be alleviated by direct regularization of the change in
the KS. On the other hand, the results from the convergence
test showed that DKT was fragile even to simple edge-case
data which undermines generalization capability of DKT, as
compared to other attention-based architectures.

These behavioral characteristics identified from the proposed
framework show that the two popular architectural paradigms,
RNN and Attention-based, possess different strengths and
weaknesses under KT environment. This also hints that an
architectural combination or ensemble approach might al-
leviate the identified issues to improve both standard KT
model evaluation metrics and behavioral characteristic.

5. CONCLUSION
In this work, we introduced the desired properties of knowl-
edge tracing models and proposed a novel model valida-
tion framework for Deep Learning based Knowledge Tracing
(DLKT) models. Using the framework, we conducted a com-
prehensive analysis of three popular DLKT models’ behav-
ioral characteristics and identify their strengths and weak-
nesses of the models in seven different benchmark datasets.
We believe that the analysis on both strengths and weak-
nesses diagnosed by the framework would serve as a useful
guideline for model enhancement. Also based on the find-
ings from the proposed framework, a customized adoption of
DLKT models fitting to the nature of the data and desired
behaviors as well as accuracy would become possible.

We believe potential future work includes: (1) tackling the
weaknesses of DLKT models identified in this work via ar-
chitectural modification or model combination, (2) explor-
ing the benefit of data augmentation using virtual edge-case
data similar to converging interaction data used in the con-
vergence test, and (3) extending the proposed testing frame-
work beyond the task of knowledge tracing (i.e. student
score prediction and item recommendation).



Figure 4: Initial Knowledge State Test Scatter Plot

Figure 5: Convergence Test: Average Model Prediction along Converging Interaction Sequence

Table 12: Convergence Test AUC
Step Model Assist15 Assist17 STATICS Spanish EdNet-small EdNet-med EdNet Average

5
DKT 0.867 0.601 0.829 0.688 0.622 0.790 0.845 0.749
SAKT 0.885 0.615 0.903 0.805 0.869 0.853 0.861 0.827
SAINT 0.866 0.609 0.936 0.731 0.628 0.881 0.854 0.786

10
DKT 0.932 0.634 0.924 0.745 0.679 0.874 0.932 0.817
SAKT 0.961 0.782 0.928 0.923 0.953 0.928 0.951 0.918
SAINT 0.947 0.763 0.979 0.856 0.757 0.958 0.954 0.888

50
DKT 0.979 0.695 0.983 0.791 0.744 0.954 0.990 0.876
SAKT 0.998 0.938 0.942 0.993 0.997 0.994 0.995 0.980
SAINT 0.995 0.939 0.999 0.977 0.963 0.997 0.997 0.981
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APPENDIX



Figure 6: Perturbation Test: Average Impact on Model Prediction from Deletion.

Figure 7: Perturbation Test: Average Impact on Model Prediction from Flip.


