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ABSTRACT
Predicting academic performance using trace data from learn-
ing management systems is a primary research topic in edu-
cational data mining. An important application is the iden-
tification of students at risk of failing the course or dropping
out. However, most approaches utilise past grades, which
are not always available and capture little of the student’s
learning strategy. The end-to-end models we implement pre-
dict whether a student will pass a course using only naviga-
tional patterns in a multimedia system, with the advantage
of not requiring past grades. We experiment on a dataset
containing coarse-grained action logs of more than 100,000
students participating in hundreds of short course. We pro-
pose two approaches to improve the performance: a novel
encoding scheme for trace data, which reflects the course
structure while remaining flexible enough to accommodate
previously unseen courses, and unsupervised embeddings ob-
tained with an autoencoder. To provide insight into model
behaviour, we incorporate an attention mechanism. Clus-
tering the vector representations of student behaviour pro-
duced by the proposed methods shows that distinct learning
strategies specific to low- and high- achievers are extracted.
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1. INTRODUCTION
A large amount of trace data about learner behaviour has
recently become available from online learning environments
[30]. Hence, it is now possible to improve the delivery, assess-
ment and intervention quality using data mining techniques,
giving rise to technology-enhanced learning. Educators are
especially interested in receiving early alerts when students
are at risk of failing the course or dropping out. With these
alerts, timely intervention can be organised. To estimate
this risk, machine learning classification models are built to

predict student performance based on their interaction with
the course content. There are several ways to define student
performance: it can be a binary or a multi-level grade on
either the next exercise or the entire course. This study fo-
cuses on a binary grade for the given course (fail or pass),
a common scenario on student performance prediction [15,
28, 27].

Traditionally, the primary source of information for this task
is past academic performance records [31]. They might in-
clude the grades for the previously taken courses or interme-
diate test scores. However, apart from those, online learn-
ing platforms also provide information about other types
of interaction between students and the content. Depend-
ing on the technical implementation and medium, it can be
fine-grained click-stream video data, the text of discussion
forum messages, or more coarse-grained information such
as whether a person liked a video or performed a search
query. Our models operate on such coarse-grained sequen-
tial records of interacting with different content types on
the online learning platform and does not rely on previous
grades. The motivation for it is three-fold. First, the past
scores might not be available, or it can be time- and effort-
consuming to provide them. For example, grading an es-
say usually requires a specialist, which is not scalable for
MOOCs. Second, by focusing on interaction with the con-
tent, such as video views, we obtain the representation of
student behaviour that is more likely to capture their learn-
ing strategies. In other words, we can discover whether they
prefer a specific medium or actively interact with other stu-
dents in online discussions. Third, if we work with naviga-
tion patterns, the resulting model has the potential to inform
a recommendation system that would nudge a struggling
student in the right direction. For instance, when students
explore the platform, we can automatically recommend the
next learning item to interact with (e.g., a video or a reading
material they might find useful or interesting).

This study applies recurrent neural networks for academic
performance prediction in short online courses. The ap-
proach we describe works without manual feature engineer-
ing or information about previous scores. In contrast to most
works in the area of course grade prediction, our models op-
erate instead on raw sequences of multiple-type interactions
with the content (video view/like, discussion message, search
request, exercise attempt). We propose several encoding
schemes for action logs and demonstrate that they can in-
crease classification performance. Among them, we intro-



duce a flexible scheme that reflects relative progress within
the course while being independent of its length. We also
use autoencoders to extract student representation in an un-
supervised way. Vector representations of student behaviour
produced by different methods are clustered to compare how
well they indicate (un)successful learning strategies. In or-
der to illuminate the inner workings of the model, we pro-
vide cluster visualisations and experiment with an attention
mechanism.

Thus, our research questions are the following. RQ1: Can
we capture the information about course structure in the
action sequences in a flexible way (that can be extended dy-
namically when new exercises or longer courses are added)?
RQ2: Can we improve predictive performance by pretrain-
ing unsupervised embeddings (using autoencoder models)?
RQ3: Can we improve predictive performance further by
adding attention to an autoencoder?

2. RELATED WORK
While working with educational trace data, there are vari-
ous ways to extract features from the raw sequences. The
easiest and perhaps the most popular approach is to count
the number of actions – despite its simplicity, it is a solid
baseline, used even in the most recent studies [27], [28], [21].

Unfortunately, by aggregating the data in such a way, we
ignore the time delay between actions and the information
about their order. A common way to engineer additional,
more time-sensitive features from trace data is to represent
student behaviour in chunks, called studying sessions. For
instance, we can define the sequence of actions as a session
if less than 15 minutes passed between actions. The thresh-
old is usually determined heuristically [20]. However, the
need to choose this threshold manually is a clear drawback.
Moreover, additional manual feature engineering is often re-
quired to aggregate features over sessions (e.g., experts have
to define what qualifies as session intensity).

Furthermore, even though the described measures are sound
and easy to use, their high volume does not necessarily con-
tribute to the high quality of learning. Neither does it allow
actionable insight beyond relatively trivial advice to spend
more time in the system. As justly noted by the learn-
ing analytics community, it is the specific learning strategies
adopted by individual students that are important [12].

Therefore, various approaches based on deep learning were
proposed to overcome these limitations. The sequential na-
ture of the data lends itself well to the use of recurrent neu-
ral networks (RNNs) [37]. The pioneering Deep Knowledge
Tracing (DKT) model applied RNNs and its variations to
the history of students’ answers to predict whether they will
answer the next exercise correctly [26]. One of the benefits
of such neural architectures is that they can complement
the educational theories proposed by human experts with
insights obtained in the bottom-up, data-driven way [23].
Another benefit is that end-to-end models adapt to new do-
mains easier and are more cost-efficient.

The success of DKT led to a new strand of research. Aiming
to get rid of its simplifying assumptions, such as disregard to
skill interaction or exercise text, researchers developed more

advanced neural models for knowledge tracing [8].

In contrast to many grade prediction approaches such as
[18], our approach does not require knowing previous aca-
demic performance or past grades. Instead, we investigate
whether a binary course grade can be predicted from the
trace data alone, with no intermediate exercise scores. Thus,
an advantage of our approach is that we can detect low- and
high-achievers without assessing the correctness of students’
answers. The benefit is especially important for courses that
include open-answer questions since those usually require
costly human experts to be graded reliably (for example,
essays in humanities subjects).

Our models work on raw sequences actions without aggre-
gation of count or session variables. Recent studies on using
RNNs on click-stream data [22], [17], [7], [16] and [18] are
conceptually close to our approach in terms of using RNNs
to work with sequences of actions. However, all of them
but [18] operate only on video interaction and exercise an-
swer features, whereas we also include search queries and
discussion messages. [18] does not explore the autoencoders
or attention and does not investigate the extracted student
representation. Moreover, in most of them, aggregation still
happens: [17] uses cumulative counts, [16] – weekly snap-
shots and in [22] interaction features are binary per item,
while we feed the raw sequences as an input to predictive
models. Besides, their task is to predict the next exercise
response while we predict the overall course success.

Concerning the use of deep learning for unsupervised feature
extraction, only a few recent publications have explored it
[7]. For example, autoencoders, a popular approach in nat-
ural language processing [35], have only recently entered the
educational data mining field [36]. Motivated by this, we ex-
tend recent end-to-end approaches to feature engineering on
trace data by using autoencoders (including an attentional
one) to embed student behaviour.

Regarding the character of the trace data used, we operate
on short courses which contain multimedia content (such as
videos and discussion messages; details are provided in sec-
tion 3). The dataset also addresses the variability across a
range of subjects [24]. Moreover, it allows us to showcase
the methods in a real-life scenario, as the data is collected
from a commercial educational platform. It should be noted
that only coarse-grained trace data is available, i.e. there
are no details of interaction with videos, such as replays. To
enrich the data representation without changes to the orig-
inal platform, we introduce several encoding schemes that
capture the relative progress within the course.

Despite their promising results, the state-of-the-art deep
learning methods are black-box models, which renders the
interpretation of the prediction making process and incor-
poration of domain knowledge far from straightforward [10].
Such lack of interpretability can seriously hinder the adop-
tion of otherwise efficient models in decision-critical domains
such as education, as stakeholders cannot control or assess
the fairness of the process. In order to illuminate how the
model makes a decision, we can cluster the produced student
behaviour representations or investigate attention heatmaps.
In spite of the apparent success of attention mechanisms in



Table 1: An example data entry for student behaviour in a
course.

user id 77
course id 60
avg session duration 584
num sessions 5
avg session intensity 2.6
session frequency 0.24
actions [(‘video view’ ‘2015-11-13 15:33’), ...]
views 4
searches 0
messages 0
video likes 3

natural language processing [2], few researchers have utilised
them for academic performance prediction so far [25].

While our primary focus is on predicting academic perfor-
mance, it is also necessary to provide an insight into the
learning strategies of students [12]. While this concept is
reminiscent of learning styles [9], it avoids their heavily crit-
icised assumptions [29] by performing analysis bottom-up
based on raw data, instead of fitting the students in a rigid
framework. One way to investigate different learning strate-
gies is to cluster students based on their trace data. The
resulting clusters implicitly classify students according to
how they receive and process information or whether they
are high- versus low-achievers. The obtained cluster assign-
ment allows us to improve personalisation mechanisms since
we can now use the student’s preferred mode of interaction
(for example, adjust the proportion of videos versus readings
based on how much of a visual learner the student is). Pre-
vious research in this field relied on Hidden Markov Models,
pattern mining, or Levenshtein distance between sequences
[6, 13]; on numerical features, Partitioning Around Medoids
[11] or k-Means are used. This study clusters the embed-
dings produced by predictive models and autoencoders. We
expect students with similar learning strategies to appear in
the same clusters. By aligning these clusters with academic
performance scores, we could distinguish strategies typical
for low- and high- achievers.

3. DATA & FEATURES
3.1 Data
The dataset for this study consists of student trace data ex-
tracted from an online educational platform for secondary
school students (12-18 years old), with a focus on mathe-
matics and Dutch language courses. The dataset contains
interaction logs for 44 333 students and 467 short courses
(177 873 students-course tuples) from 20 September 2012 to
8 August 2020. Each course includes several lessons with
associated videos, discussion threads and exercises (mostly
multiple choice).

The target variable is the score that the student obtains for
the course. We converted the original score (from 0 to 100)
into a binary variable (I(score > 50)), as we are interested
in patterns corresponding to general success or failure in the
course. Thus, for a given student-course tuple, we need to
predict 0 if the student is likely to fail the course and 1
otherwise.

For this binary classification case, there is a noticeable class
imbalance: there are 124 248 (70%) instances in class 1 and
53 625 (30%) in class 0. It is also important to note that
the courses on the platform are rather short compared to
most datasets in the field: the median number of actions
per student-course tuple is 8, and the median duration of
a course is approximately 14 minutes. In comparison, [7]
use information about 44 920 students participating in a 4-
month course focused on a single subject, with 20 interaction
features.

3.2 Features
We distinguish three ways to engineer features (see Table 1
for the example data entry). Count and session features are
traditional predictors. Sequences of actions are also often
aggregated per timestep (e.g. a chapter in the course) in-
stead of being used as-is. In contrast, we use the sequences
in their raw, original format as input for neural models. Such
a general data format can be applied in any online course
with minimal technical requirements for tracking student
behaviour, which benefits smaller learning platforms. More
precisely, the features we use are as follows:

1. counts of actions Xc. For example, the student with id
77 watched four videos in a course with id 60. These
features include the number of: video views, video
likes, messages posted in forums, search queries, ques-
tions attempted (without making a distinction between
correct or incorrect answer).

2. manually engineered session features Xs. We experi-
mented with multiple threshold timeout values (as we
did not have access to login and logout timestamps
for students), settling on 15 minutes. We then ag-
gregated statistics about individual studying sessions,
resulting in 4 features: average session duration in sec-
onds, number of sessions, session frequency (the ratio
of number of sessions to the course duration in hours)
and session intensity (average number of actions per
session). This is a typical set of features engineered in
similar studies [32], which we use as a benchmark.

3. raw action sequences Xa. There are five possible ac-
tions: a video view, a video like, a discussion forum
message post, a search request for a term, and an at-
tempt to answer an exercise (without the indicator of
whether the answer was correct).

Due to the short duration of courses, encoding with just five
types of actions without any additional information leads
to low variability in data: out of 177 873 sequences, only
10 058 are unique. As a consequence, the same behaviour
pattern could correspond to both passing and failing the
course. To overcome this issue, we consider several ways to
encode additional information in elements of the sequence.
We list them by their generalisability, from least to most.

Concatenating global content item id and the corresponding
actions. For instance, for a video with id 12, we would en-
code the action as “video view 12” (we give examples for
videos, but the idea transfers directly to other content items
as well). We can also encode items associated with the video:



answering the exercise about this video would be encoded
as “exercise answer 12”. The downside is that both these
approaches do not generalise to new courses: we have to
assume that the number of either courses or content items
is fixed. Otherwise, a model needs to be retrained. It is
a common problem also found in such popular approaches
as DKT [33]. Besides, this approach quickly leads to an
inflated vocabulary, making it computationally inefficient if
one would use the bag-of-words approach (hence it is not
featured in Table 2 for machine learning models, only for
recurrent networks).

Encoding actions using local content item ids, preserving their
relative order in the course. In other words, if the video
with id 12 is the first video in a given course, then we en-
code the action as “video view 1”. This scheme has the po-
tential for interesting insights into student behaviour. For
example, we can see whether consequently watching the
videos contributes a lot to better performance. Besides,
we can gauge the engagement and background knowledge
by checking whether the student immediately watched later
videos. Regarding the disadvantages, the applicability to
new courses is still limited: the number of videos should be
the same or less than in the courses we have seen before.
Using the out-of-vocabulary token or setting the maximum
possible number of videos high is the simple workaround.
However, a more flexible solution might be required – for
which we suggest the progress percentage encoding.

Encoding the rounded percentage of the total number of videos
in the course. For instance, if there are five videos in to-
tal, then the view of the second one will be represented as
“video view 40” (40%). Even though we can no longer focus
on the exact content item as if the case with the other encod-
ing schemes, we can still potentially recommend the section
of the course to revise. This is the most flexible way, as it
scales to new courses (of arbitrary length, with previously
unseen exercises) as well.

We provide experimental results using the four proposed en-
coding schemes (raw Xa, global content id Xa−gid, local
content id Xa−lid and progress percentage id Xa−pid, re-
spectively) in section 5. To each of the above schemes, we
can also add the difference in seconds with the previous ac-
tion if the timestamps are available.

4. MODELS
We trained three types of classification models on numeri-
cal count features Xc and session features Xs: Logistic Re-
gression, Decision Tree and Random Forest. For sequence
data Xa, we used two popular variations of RNN – Long-
Short Term Memory (LSTM) [14] and Gated Recurrent Unit
(GRU) [4]. We have experimented with convolutional neu-
ral networks, but their performance was lower than that of
recurrent ones. As such, for the sake of brevity, we do not
focus on them in this study.

On a general level, neural classification models embed ac-
tion sequences and pass them through recurrent layers to
the final feed-forward layer(s) with sigmoid activation. It
produces a probability of success which is then converted
into a classification prediction score. A recurrent neural net-
work takes a sequence of vectors {xt}Tt=1 (T is the number

of timesteps) as an input and maps them to an output se-
quence {yt}Tt=1 by calculating hidden states {ht}Tt=1 which
encode past information that is relevant for future predic-
tions. LSTM uses a more elaborate structure in each of the
repeating cells, allowing it to learn long-term dependencies.
It includes so-called forget, input and output gates, which
control what information to retain and pass to the next step.
GRU simplifies the cell by combining the forget and input
gates into a single update gate and merges the cell state and
hidden state.

An encoder-decoder framework uses an RNN to read a se-
quence of vectors {xt}Tt=1 into another, context vector c in
an auto-regressive fashion. If we set the desired output se-
quence equal to the input one – so that the goal becomes
the reconstruction of the original data – we obtain an au-
toencoder. Then, the context vector, if its dimensionality
is chosen to be lower than that of the input, will contain
a denoised representation of the data that can be used in
other models. This way, an autoencoder allows us to learn
efficient data representation in an unsupervised manner.

Bahdanau attention mechanism allows the network to focus
on certain parts of the input [2]. It is achieved by computing
the context vector as a weighted sum of vectors produced by
the encoder. The weights are learnt by a feed-forward neural
network jointly with the rest of the model. Transformer
model is a recent competitive alternative to the encoder-
decoder framework [34] which foregoes the recurrent cells in
favour of stacked self-attention and feed-forward layers.

5. EXPERIMENTS
We apply machine learning models on count and session
features and compare them with deep learning ones on se-
quences of actions (with different encoding schemes used, as
outlined above). Besides, we embed action sequences using
an LSTM autoencoder and use its output Xauto as input for
the classification models.

Neural network models were implemented using Keras [5]
with Tensorflow backend [1] and machine learning ones with
sklearn [3]. The parameters were optimised using the grid-
search with stratified 10-fold cross-validation (5-fold for neu-
ral models). For recurrent neural networks, we checked
the following parameter values: 32/64/128 recurrent units,
32/64/128 hidden units in feed-forward layers, 32/64/128
embedding dimensions. The maximum sequence length was
set to 50. The models were trained with binary cross-entropy
loss, using the Adam optimiser [19], early stopping and
learning rate reduction on a plateau.

5.1 Classification
For the binary classification task, the cross-validation ROC
AUC scores are presented in Table 2. Inspecting the table,
we can conclude that end-to-end models perform at least
as well as the ones using manually engineered features, even
when the length and variability of actions sequences are lim-
ited.

Concerning RQ1, the contribution of different encoding schemes,
we can see that global content id encoding performs the best.
However, as mentioned above, it does not scale to new con-
tent items. However, using the percentage encoding scheme



Table 2: Cross-validation ROC AUC scores for classification models. Input features: count features Xc, session features Xs,
action sequences Xa with encoding scheme variations (no id Xa, global content id Xa−gid, local content id Xa−lid, progress
percentage id Xa−pid), actions embeddings by LSTM autoencoder Xauto, actions embeddings by an attentive (Bahdanau)
LSTM autoencoder XautoB .

Xc Xs Xa−lid Xa−pid Xauto Xauto B

Logistic Regression 0.62 0.62 0.69 0.67 0.77 0.76
Random Forest 0.73 0.81 0.81 0.81 0.82 0.81
Decision Tree 0.73 0.80 0.79 0.80 0.80 0.80

Xa Xa−gid Xa−lid Xa−pid Xauto Xauto B

LSTM 0.73 0.88 0.82 0.81 0.82 0.83
GRU 0.73 0.87 0.81 0.81 0.83 0.82

(a) Xc (count features) (b) Xs (session features)

(c) Xa (LSTM embeddings on action data)
(d) Xa−pid (LSTM embeddings on action data with progress
percentage id)

Figure 1: Distribution of target variable (pass/fail score) over the K-Means clusters based on different data representations
(with Euclidean distance; K of 3, 5, 10 and 20 were tried). LSTM embeddings distinguish better between high- and low-
achievers, producing clusters that clearly correspond to one class more than the other, while for traditional count (a) and
session (b) data, most of the clusters contain a mix of both classes. For LSTM embeddings on action data (c), clusters appear
that contain more failing students than passing – and are thus more useful for early warning systems. The effect is even more
pronounced if we use progress percentage encoding (d).



also gives a steady increase in ROC AUC score: from 0.73 to
0.81 for Random Forest, where we use count features, and
similarly for recurrent networks, where we use sequences.
Using unsupervised embeddings obtained with an autoen-
coder (the focus of RQ2), we gain an improvement as well:
from 0.73 to 0.82 for both machine and deep learning mod-
els.

Contrary to our expectations for RQ3, adding attention did
not significantly improve the results. We experimented with
including an attention mechanism directly into the classifi-
cation models, both Bahdanau and Transformer. It can be
done, for example, by training a simple Transformer, then
using the average of its encoder’s hidden states as an input
to a classification model on top. Unfortunately, those mod-
ifications did not influence performance in our experiments,
in contrast to [25]. We hypothesise that the features might
be too coarse-grained and the sequences too short to take
full advantage of the technique; there are also no skill labels
that would provide the hierarchical structure that attention
mechanisms can reflect. However, using attention allows us
to produce visualisations that a first step to understanding
the decision-making process of the neural network. Thus,
we provide the attention scores from a Bahdanau-attention
classification model below for illustration purposes.

To gain more actionable insight from our models, we also
investigated the predictive performance on partial action se-
quences. Being able to predict early that a student will fail
the course would allow sending a timely alert to the educa-
tor, signalling the need for intervention. Hence, we explored
how the performance of the models changes when only the
first N actions are available. For these experiments, to en-
sure that the model does not have full information, we only
used courses with more than five questions and more than
eight actions. As depicted in Figure 2, sequential data lead
to higher scores than count features and proposed encoding
schemes outperform raw action sequences.

5.2 Clustering & Visualisation
We clustered the student-course tuples based on different
data representations using k-Means and plotted the distri-
bution of the target class over these clusters (see Figure 1d)
to investigate how the models distinguish between learning
strategies of low- and high-achievers. For traditional count
and session data, most of the clusters are not easily inter-
pretable, as they contain a mix of both classes, roughly fol-
lowing the target label distribution. For instance, when us-
ing count features, almost all student-course pairs are in just
three clusters, so there is little distinction between learning
strategies. It should be noted that even though some clus-
ters appear empty, in fact they still contain a very small
number of students.

When we increase the representation’s complexity, the ex-
tracted groups are more distinct. The distribution of high-
and low-achievers in them shifts so that clusters with the
prevalence of a single class emerge. The improvement is
even more noticeable with progress percentage encoding:
more clusters are extracted where one class is prevalent. For
LSTM embeddings on action data, clusters appear that con-
tain more failing students than passing, signalling that this
is an unsuccessful strategy (clusters 4 and 6 on 1). This

information is vital for early warning systems. The effect
is even more pronounced if we use the progress percentage
encoding, which encourages the application of these schemes
for distinguishing between successful and unsuccessful learn-
ing strategies.

Another way to shed light on the prediction process of a neu-
ral network is to visualise attention heatmaps, where higher
scores correspond to actions in the sequence that are more
important for the classification decision (Figure 3).

Limitations & Future work. A wide range of topics covered in
these courses might influence the performance, as different
subjects are likely to demand different behaviour patterns
to successfully pass the course (e.g., humanities versus tech-
nical subjects). We plan to investigate them separately and
include information about exercise content. Finally, we plan
to train a recommendation system informed by the extracted
learning strategies to aid navigation.

6. CONCLUSION
We show that it is possible to predict whether students will
pass the course using only their navigation pattern sequence
in the online learning platform, without information about
past grades. The findings of our study suggest that features
extracted with deep learning are efficient even if the courses
are extremely short, cover multiple different subjects, and
only a limited number of interaction types is available.

We propose a flexible way to increase the classification per-
formance with minimal preprocessing of the raw sequences
of actions extracted from the learning platform required.
A novel and relatively simple percentage progress encod-
ing scheme is introduced which captures the course struc-
ture while scaling well to the new data. It results in an
improvement of almost 10% in ROC AUC score. We also
demonstrate a positive effect of using pre-trained unsuper-
vised embeddings obtained with autoencoders (up to 15%
improvement when using in machine learning models, com-
pared to traditional features). We cluster resulting embed-
dings to show that using action sequences has more potential
for distinguishing between strategies specific to high and low
achievers than simple count or session features. It is possible
to visualise attention heatmaps and see the contribution of
individual actions to the classification decision to interpret
retrieved strategies.

Our research supports decision-makers, as it allows detecting
(un)successful students from their navigation patterns alone,
without having to grade intermediate exercises. The action
sequences corresponding to high achievers can be used to in-
form learning design patterns and recommendation systems
in a more meaningful way than the standard count features.
As the proposed models are shown to outperform several
baselines on extremely short, incomplete action sequences,
they allow us to intervene early if a student begins to follow
a trajectory associated with a lower chance of success.
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APPENDIX

Figure 2: Comparison of validation ROC AUC scores of
an LSTM on encoding schemes in the incomplete sequence
scenario. We can see that percentage and local content id
encoding schemes perform better than raw actions. As such,
we would be able to detect whether a student is likely to fail
from the first two actions already.

Figure 3: An attention heatmap of the RNN model with
Bahdanau attention mechanism on action data (multiple se-
quences view). Higher scores (brighter colours) correspond
to actions in the sequence that are more important for clas-
sifying the student as passing or not. If we use an encoding
scheme which includes content id (such as the global content
id here), we see which content items contribute more to the
classification decision: for example, in the bottom row, the
viewing of the video with id 264231 is more important for
the network than the others.


