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ABSTRACT 
Recent work describes methods for systematic, data-driven 
improvement to instructional content and calls for diverse teams 
of learning engineers to implement and evaluate such 
improvements. Focusing on an approach called “design-loop 
adaptivity,” we consider the problem of how developers might use 
data to target or prioritize particular instructional content for 
improvement processes when faced with large portfolios of 
content and limited engineering resources to implement 
improvements. To do so, we consider two data-driven metrics that 
may capture different facets of how instructional content is 
“working.” The first is a measure of the extent to which learners 
struggle to master target skills, and the second is a metric based 
on the difference in prediction performance between deep learning 
and more “traditional” approaches to knowledge tracing. This 
second metric may point learning engineers to workspaces that 
are, effectively, “too easy.” We illustrate aspects of the diversity 
of learning content and variability in learner performance often 
represented by large educational datasets. We suggest that 
“monolithic” treatment of such datasets in prediction tasks and 
other research endeavors may be missing out on important 
opportunities to drive improved learning within target systems. 

Keywords 

Design-loop adaptivity, deep knowledge tracing, Bayesian 
knowledge tracing, mastery learning, learning engineering. 

1. INTRODUCTION 
Recent work calls on researchers and developers, including teams 
of learning engineers [14, 26], to focus on “explanatory” models 
of learners [25] and “design-loop adaptivity” processes [1, 15] to 
practically improve learning systems. While researchers describe 
specific examples of how explanatory learner models and design-
loop adaptivity can be used to drive improvements to instruction, 
less (if any) attention has been paid in the literature to the 
practical problem of how content developers and learning 
engineers target and prioritize content for improvement.  

We focus on cases in which a target system has a large portfolio 

of content, elements of which must be prioritized and targeted for 
improvement given finite learning engineering and software 
development resources. We present a case study using a data set 
that is among the largest considered in the literature on knowledge 
tracing and related methods [9, 18, 22], comprised of middle 
school and high school student work over an academic year on 
several hundred mathematics topics, each generally completed by 
thousands of students, generating several hundred million data 
points tracking student actions. We motivate, describe, and 
illustrate two approaches to targeting content for improvement 
within this portfolio, focusing primarily on what Aleven et al. [1] 
call “design-loop adaptation to student knowledge,” relying on 
large-scale data to find similarities amongst learners we might 
leverage to redesign instructional content for better learning.  

One targeting method is based on a measure of the extent to which 
learners tend to struggle with particular pieces of content, and we 
contrast it with an approach based on the relative prediction 
performance of deep learning models (i.e., Deep Knowledge 
Tracing; DKT [18, 22]) compared to traditional Bayesian 
Knowledge Tracing (BKT; [9]) models.  

The first method targets content students struggle to learn, relying 
on measures of knowledge component (KC [19]; or skill) mastery 
that are internal to the target intelligent tutoring system (ITS). In 
contrast, the second method is roughly motivated by the idea that 
identifying content in which there is a large difference in 
performance between deep learning and traditional Bayesian 
approaches may suggest areas in which deep learning can 
leverage statistical regularities in students’ performance that could 
point to improvements in the KC models that are used to drive 
adaptation with BKT. Such performance differences may suggest 
a particular focus area for KC model improvements. Relative 
DKT performance versus BKT performance also provides an 
instance of a metric that is perhaps less dependent on how the run-
time ITS has “set the bar” for success in terms of KC mastery. 

In exploring these two approaches, we illustrate the variability in 
learning content and experiences within widely deployed systems 
like Carnegie Learning’s MATHia (formerly Cognitive Tutor) 
[23]. While different facets of variation may at times call for 
different approaches to content improvement (e.g., variation in 
student motivation could call for redesigns that discourage 
“gaming the system” [3]), our present work explores how to guide 
learning engineers’ “attention” to particular pieces of content to 
then consider specific improvements via processes for design-loop 
adaptivity [1, 15]. 

Original contributions of this work are two-fold: (1) We describe 
a novel problem in the literature related to how to target 

 

 



instructional content improvement or design-loop adaptivity and 
explore two targeting approaches, and (2) we shed light on 
opportunities in treating large-scale educational datasets that may 
be missed by treating such datasets as “monolithic” targets for 
data-intensive approaches. Treating datasets in a “monolithic” 
way, though not a universal practice (e.g., [4-5, 10]) may inhibit 
practical progress in learning engineering.  

In addition to considering one of the largest-scale applications of 
DKT (and BKT) modeling in the literature, we illuminate avenues 
for research at the intersection of educational data science and 
learning engineering at scale in a widely-deployed adaptive 
learning platform for K-12 mathematics. We seek to amplify 
extant calls for a more nuanced approach to work on performance 
prediction [15, 25] while illustrating solutions to practical 
problems in learning engineering and product improvement. 

2. DESIGN-LOOP ADAPTIVITY 
2.1 Background 
A recent survey of adaptive instructional technologies [1] 
describes three categories along which learners’ experience can be 
varied, including “step-loop adaptivity,” “task-loop adaptivity,” 
and “design-loop adaptivity.” Step-loop adaptivity and task-loop 
adaptivity roughly correspond to “inner” and “outer” loop 
adaptive functionality in ITSs distinguished by VanLehn (e.g., 
[28]), respectively. We briefly describe step-loop and task-loop 
adaptivity before considering design-look adaptivity.  

Step-loop or inner-loop adaptivity enables an adaptive 
instructional system or ITS to provide support to learners within a 
particular learning task based on their performance (e.g., 
providing context-sensitive hints or just-in-time feedback within a 
math problem based on learner responses). Task-loop or outer-
loop adaptivity enable an instructional system to choose the next 
appropriate task for a learner based on a model of student 
learning and evolving estimates of a learner’s mastery of 
underlying competencies, skills, or KCs [19] based on a learner’s 
performance. Extensive educational data mining (EDM) literature 
considers, for example, variants of and data-driven parameter 
optimizations for BKT (e.g., [18]), which can be used to select 
tasks for learners as their mastery of KCs evolves. 

In their recent survey, Aleven and colleagues describe design-loop 
adaptivity as involving 

data-driven decisions made by course designers before 
and between iterations of system design, in which a… 
system is updated based on data about student learning, 
specifically, data collected with the same system… [1]. 

They go on to describe goals toward which design-loop 
adaptations might be made, including adaptations to student 
knowledge, affect and motivation, student strategies and errors, 
and self-regulated learning, providing examples of each. 
Canonical examples of design-loop adaptivity or adaptation to 
student knowledge, the goal of our present targeting and 
prioritization endeavor, generally involve situations in which 
content within tutoring systems or online courses are improved by 
refining the fine-grained KC models that drive the adaptive 
experience of learners using a combination of data and human 
expertise [17, 20, 27].  

Design-loop adaptivity for motivation and affect might drive 
content or system design and redesign to discourage off-task 
behavior [4] and “gaming the system” [3], wherein students 

attempt to make progress in a system by taking advantage of 
system features like hints, rather than making genuine attempts to 
master content. Aleven et al. [1] suggest that an approach to 
modeling gaming the system behavior based on a large-scale 
survey of the extent to which gaming the system [3] manifests 
across topics (what we will refer to as “workspaces”) in an 
intelligent tutoring system like MATHia provides a foundation for 
future design-loop adaptivity investigations. One important facet 
of this work (and related work on off-task behavior [4]) is its 
appreciation of the extent to which there is variability in how 
learning occurs across different (types of) content within adaptive 
instructional systems. Appreciating and surveying this variability 
is vital to ascertaining where, within large portfolios of content, to 
target design-loop adaptivity efforts and related data-driven, 
instructional improvement efforts. 

2.2 A Process for Design-Loop Adaptivity 
Huang et al. [15] describe a systematic approach to design-loop 
adaptivity or data-driven instructional redesign and improvement. 
They suggest three general goals for such redesign efforts. For a 
particular piece of content in an ITS or similar adaptive 
instructional system with a KC model, the goals are: (1) refine the 
KC model for the target content, (2) redesign the content, and (3) 
optimize individualized learning within the content. Existing 
EDM methods and novel analyses are then described to achieve 
each of these goals, targeting an “Algebraic Expressions” unit of 
content within the Mathtutor ITS [2]. For example, KC models 
can be refined using data-driven, computationally intensive 
methods like Learning Factors Analysis (LFA; [8]) or a simpler 
approximation of such an approach that uses regression 
techniques called “difficulty factor effect analysis” by Huang et 
al. [15]. Human expertise also plays an important role in such 
refinements, including in setting up data-driven analyses to 
produce meaningful results, interpreting these results for inclusion 
in potential task redesigns, and often in providing suggested 
refinements for target tasks.  
Huang et al. [15] demonstrate that redesigned content improves 
learning as measured by pre-tests and post-tests. Broadly, these 
goals align with on-going, data-driven content improvement 
efforts pursued by learning engineers working with MATHia. 
Nevertheless, the process of design-loop adaptivity generally 
requires extensive human and computational resources to be 
carried out in ways that will drive improved instructional 
effectiveness. The present work seeks to illustrate how EDM 
techniques might help improve targeting this process. 

3. MATHia 
3.1 Learning Platform 
Carnegie Learning’s MATHia [23] is an ITS used by hundreds of 
thousands of learners each year, mostly in middle and high school 
classrooms as a part of a blended math curriculum that combines 
collaborative work guided by instructors and Carnegie Learning’s 
MATHbook worktexts (60% of instructional time in recommended 
implementations) with individual work in MATHia (40% of 
instructional time). Nevertheless, usage of MATHia, contexts in 
which it is used, and other implementation details vary across a 
diverse, nationwide user-base. 

Grade levels of content in MATHia (e.g., Grade 7, Algebra I) are 
organized into a series of “modules,” each of which is comprised 
of a series of “units.” Units are composed of a series of 
“workspaces.” Workspaces represent the underlying unit of 
learner progress to mastery in MATHia.  Each workspace presents 



a set of problems associated with a set of KCs; student progress 
within the system is determined by students’ achievement of 
mastery of all of the KCs associated with a particular workspace, 
estimated by MATHia using BKT (see §3.2). Learning 
experiences vary substantially between workspaces with respect 
to design patterns, content areas, types of practice and instruction 
provided, (quality of) KC models intended to practice such 
content (e.g., some the result of years of iterative refinements, 
others introduced more recently), BKT parameters, and other 
parameters that drive task selection and mastery judgment.  

Consider the problem solving task illustrated in Figures 1 and 2. 
Figure 1 illustrates the workspace “Modeling the Constant of 
Proportionality.” In this workspace, students are provided with a 
word problem and several associated questions (left pane; Figure 
1). On the right-hand side of Figure 1, tools are presented to solve 
the problem’s “steps.” There is a worksheet or table in which they 
can provide units of measurement, responses to questions, and 
fields in which to write expressions to model the problem’s 
scenario. After they have completed entries in the worksheet, 
students work with a graphing tool. Each problem-step in the ITS 
can provide context-sensitive hints upon request as well as just-in-
time feedback that tracks errors that students often make. Most 
problem-steps are mapped to KCs, for which MATHia provides 
an evolving mastery estimate to adapt problem selection to the 
individual student’s needs (see §3.2). 

Contrast the learning experience of the problem in Figure 1 with 
that of Figure 2. “Modeling the Constant of Proportionality” 
(Figure 1) involves substantive reading, modeling the problem 
scenario via algebraic expressions, working through concrete 
instances of these expressions, and using a graphing tool. Figure 2 
illustrates problem-solving in a menu-based equation “solver” 
workspace, “Solving with the Distributive Property Over 
Multiplication.” Here the student is tasked with solving for x in 
the equation 65 = 10 (x + 6). There is little reading and no context 
provided for the equation, but hints and just-in-time feedback are 
available. Learners’ progress toward mastery is tracked for a 
different set of KCs. The menu-based solver constrains possible 
student actions at various points in the equation-solving process 
compared to the typed-in input that students provide in the 
worksheet in Figure 1. Far from an exhaustive list, we seek to 
illustrate a few from among substantial differences in types of 
content provided, design patterns, interaction modalities, 
underlying KC models, and tools available, even within the 
relatively constrained domain of math, any of which may have 
important impacts on inferences that might be drawn from data or 
the ability of different methods to predict performance and 
learning within such content. While any of the features in these 
examples might reasonably be refined as a part of the design-loop 
adaptivity or content improvement process, we leave to future 
work the data-driven targeting of specific improvements within a 
workspace. We consider how to target specific “workspaces” for 
design-loop adaptivity improvements. 

3.2 Knowledge Tracing & Mastery Learning 
BKT [9] posits a binary (i.e., “mastered” or “unmastered”) 
knowledge state for each independently modeled KC and can be 
formalized as a four-parameter hidden Markov model. One 
parameter represents the probability that a learner has already 
mastered a KC before their first opportunity to practice it. A 
second parameter represents the probability that a learner 
transitions from the unmastered to the mastered state at any 
particular KC practice opportunity. Two parameters link the  

knowledge state to observable outcomes at any KC practice 
opportunity: the probability that a student is in the unmastered 
state and responds correctly (“guessing”) and the probability that 
a student is in the mastered state and answers incorrectly 
(“slipping”). Extensive EDM literature has explored the data-
driven fitting of BKT parameters as well as individualized (e.g., 
[30]) and more sophisticated variants of this approach (e.g., [18]). 

 
Figure 1. Problem-solving screenshot from a MATHia 
workspace called “Modeling the Constant of Proportionality.” 

 
Figure 2. Screenshot from the MATHia workspace “Solving 
with the Distributive Property Over Multiplication.”  
Based on parameter settings and performance data collected as a 
student practices each KC, the system can use BKT to infer and 
update estimates of the probability that a student is in the 
“mastered” state for any particular KC. Typically, systems set a 
threshold for mastery (often 0.95, as in MATHia); if the system’s 
estimate that the probability a student has mastered a particular 
KC is above the threshold, then the system considers the KC 
mastered for that student.  
Relying on evolving estimates of learner KC mastery, 
instructional systems can use knowledge tracing frameworks like 
BKT to drive “task-loop” (or “outer loop”) adaptivity [1, 28] and 
mastery learning [7, 24]. After a student completes a problem (or 
task; like the problems illustrated in Figures 1-2), the system can 
select the next problem based on KCs that a student has yet to 
master. In this way, systems can adapt to the student’s evolving 
mastery of KCs, providing (ideally) just enough practice for 
students to master KCs and avoiding cases in which the system 
provides too little or too much practice.  
Implementing self-paced mastery learning [7, 24], MATHia 
provides practice to a student until they have either mastered all 
KCs associated with a particular workspace or they have reached 
the maximum number of problems that designers have specified 
for a particular workspace. Once the student masters all of the 
KCs in a particular workspace (or reaches the max number of 
problems), they are moved on to the next workspace in an 



assigned content sequence. Teachers are alerted when students 
reach the max number of problems in a workspace without 
reaching mastery. Setting a max number of problems ensures that 
students do not endlessly struggle unproductively within a piece 
of content [11]. 

3.3 Data 
We consider data from 252,036 learners who used MATHia 
during the 2018-19 academic year and completed at least one of 
308 workspaces that track KC mastery across math content for 
Grades 6-8, Algebra I, Algebra II, and Geometry. These data 
account for approximately 3.8 million workspace completions. 
Models are learned over subsets of 267,419,999 student actions 
(i.e., first-attempts, including hint requests) at problem-steps 
mapped to KCs. Over the 308 workspaces, MATHia tracks 2,152 
KCs. Table 1 provides summary statistics. 

Table 1. Summary statistics for 308 MATHia workspaces in 
2018-2019; “KCs” = # KCs tracked; “Comps.” = # student-
workspace-completions; “Actions” = sum across all students 
completing workspace of count of first attempts (including 
hint requests) at problem-steps within workspace problems. 

 Min. Q1 Med. Q3 Max. 

KCs 2 5 6 9 15 

Comps. 167 4275 9414 18801 51097 

Actions 5530 197757 489159 1278325 7191034 

When working with large, complex datasets, it is essential to 
focus learning engineering efforts on the portions of the system 
for which improvements can be most impactful. Rather than 
consider such a broad dataset as a single monolithic target, 
especially for performance prediction modeling in §4.2, we learn 
models for each workspace within the dataset; input data are 
sequences of correctness labels for learner actions (e.g., binary 
correct or incorrect, where incorrect includes both errors and hint 
requests) and labels for KCs mapped to each action. 

4. METRICS FOR TARGETING 
IMPROVEMENTS 
As illustrated in Figures 1 and 2, workspace-to-workspace 
variability in learning experiences is substantial. Types of practice 
vary (e.g., equation solving, graphing, etc.), and developers make 
a plethora of design choices in creating content. Some workspaces 
require more reading; KC models vary in complexity, and some 
have been iteratively refined over the course of nearly two 
decades while others are newly deployed in a given year. Given 
this variation and the nature of grade-level content standards, 
there is also variability in the extent to which learners find 
particular content difficult.  

Learner difficulties manifest at the problem-step level in the form 
of problem-solving errors and hint requests and at the workspace 
level in at least two ways: (1) that some learners require a greater 
number of problems to achieve mastery of all KCs, and (2) that 
some learners reach the maximum number of problems set by 
designers without having achieved mastery of all KCs. These 
latter students are moved along within their curriculum sequence 
without mastery. Teachers are alerted of this failure to reach 
mastery via reporting analytics available to them as well as in the 
LiveLab teacher companion app to MATHia. Some students fail 
to reach mastery in a workspace because of genuine difficulty 
with presented math content, but relatively frequent instances of 

such failure to reach mastery often indicate that content 
improvements (i.e., design-loop adaptivity) is called for to 
enhance experiences for learners.  

Prior research considers MATHia’s workspace level as a unit of 
analysis. Researchers have focused on associations between 
characteristics of Cognitive Tutor “lessons” (MATHia’s 
workspaces) and learners’ affective states like confusion and 
frustration [10] as well as the extent to which students go off-task 
[4] and game the system [5]. In what follows, we adopt an 
approach similar in spirit to this literature by considering a large 
corpus of MATHia data as broken down into workspaces rather 
than treating the entire dataset in a monolithic fashion.  

The first metric we consider helps identify content that is 
instructionally ineffective in ways that manifest as difficulty for 
learners to successfully complete the content. In considering the 
second metric, we explore one example where the metric may be 
providing some insights into places where content is not 
“difficult” (i.e., measures of difficulty do not “raise flags” about 
improvement needs) but where design-loop adaptivity 
improvements might drastically improve student learning. 

4.1 Proportion of Failures to Reach Mastery 
The first design-loop adaptivity targeting metric we consider is 
the proportion of learners who fail to reach mastery of at least one 
of the KCs associated with a workspace before reaching the 
maximum number of problems set by content designers. Figure 3 
provides a histogram showing the overall distribution of this 
proportion across workspaces. The median workspace has 4.3% of 
students fail to reach mastery of all its KCs (minimum = 0%; Q1 
= .7%; Q3 = 12.1%; maximum = 77.7%). 

 
Figure 3. Histogram illustrating the distribution of the 
proportion of students failing to reach mastery of all KCs 
associated with 308 workspaces in the 2018-19 academic year. 
Fancsali et al. [11] argue that students’ failure to achieve mastery 
at a level of aggregation like that of a workspace is an important 
outcome for predictive modeling, mostly overlooked in the 
literature on so-called “wheel spinning” (e.g., [6]), which tends to 
develop models to predict whether students will master particular 
KCs in a tutoring system, ignoring other elements of how 
instructional content is presented. Fancsali et al. argue that, given 
the clustering of KCs within problems, the clustering of problems 
within workspaces, and the fact that workspaces are the unit at 
which learners make progress in ITSs like MATHia, reporting 
outcomes like the count and percentage of KCs that student fail to 
master (a la Beck and Gong [6]) is of dubious practical value.  



Since design-loop adaptivity improvements are likely to often 
involve redesign of instructional content, we similarly contend 
that measures closely aligned to instructional delivery are likely to 
be helpful in targeting this process. Large proportions of students 
failing to master instructional content are likely to be important in 
determining what learning content to improve with limited 
resources. This metric serves as a foil to a second approach. 

4.2 DKT vs. BKT Prediction Performance 
Extensive recent literature (e.g., [12, 18, 22]) considers deep 
learning approaches to the problem of predicting student 
performance at fine-grained opportunities to demonstrate mastery 
of KCs in learning systems like ASSISTments [13]. DKT [22] has 
been compared (e.g., [12, 18] to BKT and logistic regression 
approaches to the same type of prediction task [21]. Early work 
demonstrated that DKT generally had superior prediction 
performance compared to BKT [22], but subsequent literature also 
suggests that variations of BKT (e.g., modeling “forgetting”) and 
logistic regression approaches can bridge some, if not most, of the 
gap in prediction performance (e.g., [18, 29]).  
Nevertheless, we seek to better understand the extent to which 
DKT out-performs BKT when considered workspace-by-
workspace across a large dataset from MATHia, which presents a 
wide variety of learning experiences. We find that, for a variety of 
workspaces, classic BKT’s performance is often comparable to 
DKT even without accoutrements added in the work of Khajah et 
al. [18]. Further, in keeping with our primary concern in the 
present work, we explore the extent to which observed differences 
in performance between the two approaches, especially examples 
of DKT’s far superior prediction performance, might serve as a 
metric for targeting improvement work for MATHia workspaces, 
possibly indicating an especially flawed KC model. 

4.2.1 Modeling Approach 
We rely on the Khajah et al. [18] implementation of DKT with 
long short-term memory (LSTM) recurrent units.1 We use 
Yudelson’s hmm-scalable2 implementation of classic BKT 
parameter fitting using expectation maximization [30]. We learn 
DKT and BKT models for each of the 308 workspaces, splitting 
the data for each workspace into training and test sets with a 80%-
20% student-level split and calculate the AUC (area under the 
receiver-operating characteristic curve) on the test set following 
methods in Khajah et al. [18]. BKT and DKT models are trained 
and tested on the same datasets. AUC is a measure of the extent to 
which a model can “discriminate” between or predict students’ 
correct and incorrect responses in the held-out test set. An AUC 
value of 0.5 indicates “chance” ability to discriminate between 
two classes; a value of 1.0 indicates perfect discrimination. 

4.2.2 Results 
Table 2 provides summary statistics for AUC performance for 
DKT, BKT, and AUC differences of these methods over all 
workspaces. As expected, DKT generally provides superior 
prediction performance to classic BKT over the 308 workspaces. 
However, there is substantial variability, with classic BKT in 
some cases, albeit many (but not all) with relatively small sample 
sizes, even out-performing DKT. While there is a modest, 
statistically significant positive correlation between the AUC 
difference in DKT and BKT and sample size (i.e., the number of 

 
1 https://github.com/mmkhajah/dkt 
2 https://github.com/myudelson/hmm-scalable  

student-sequences available for training and testing) (r = .2; p < 
.001), BKT performs comparably to DKT on a number of 
workspaces with tens of thousands of students’ data, and BKT 
only underperforms DKT by approximately .07 AUC units for the 
median workspace. The Q1 value for this difference (the greatest 
difference over 77 workspaces) is approximately in line, in terms 
of AUC units, with a value (.03 AUC units) declared comparable 
by Khajah et al. [18] for BKT “variants” compared to DKT. 
The difference in AUC between DKT and BKT is uncorrelated 
with the proportion of students who fail to reach mastery (r = -.05; 
p = .4) and is thus not an indicator of the relative difficulty of 
particular workspaces, regardless of the source of difficulty. 
Table 2. Summary statistics for AUC performance over 308 
workspaces of DKT and BKT models and of the difference 
between DKT and BKT performance (∆); negative minimum 
value indicates better BKT performance for some workspaces. 

AUC Min. Q1 Med. Q3 Max. 

DKT .5852 .7839 .8331 .8783 .9763 

BKT .5150 .7045 .7456 .7854 .9563 

∆ -.0802 .0361 .0676 .1281 .3073 

4.2.3 Practical Promise 
We consider two observations relating to workspace design 
patterns that emerge from considering workspaces with the largest 
differences in terms of DKT’s (generally better) prediction 
performance compared to BKT. First, we consider the design of a 
particular workspace as a prime target for design-loop adaptivity 
to student knowledge, motivation, and affect. Second, we consider 
more general design patterns in workspaces on which DKT and 
BKT performance differences are greatest, suggesting more 
“macro-level” design-loop adaptivity that may affect broader 
categories of workspaces. 

4.2.3.1 Example Workspace 
The second greatest observed difference in AUC occurred for the 
workspace “Checking Solutions to Linear Equations” (DKT AUC 
= .968; BKT AUC = .684). A mere 0.2% of students fail to master 
all KCs in this workspace, suggesting that it may not be “flagged” 
for design-loop adaptivity improvements based on difficulty. 
Nevertheless, careful inspection of the workspace yields several 
areas for improvement. 
This workspace presents students with problems (See Figure 4) 
like: “Jordan solved the equation -3u – 8 = 10. She calculated u = 
-6. Use the Solver to check Jordan’s solution.” The student is then 
presented with a menu-based equation solver. Work with the 
equation solver should involve the student substituting in the 
solution value from the problem presentation and checking 
whether the result is a balanced equation. After choosing 
“Substitute for variable” from the menu, the student then must 
input a value on the left-hand side of the equation (see Figure 5). 
Problems in this workspace present both correct and incorrect 
cases, but the KC model does not distinguish between correct and 
incorrect cases, making problems with a correct solution targets 
for possible gaming the system. For example, in the problem in 
Figure 5, the student might enter 10 to complete “10 = 10.” This 
response may not reflect having correctly carried out the variable 
substitution to arrive at this solution. KCs in this workspace are 
also not currently mapped to work in the solver; the solver 
provides hints and just-in-time feedback on errors, but it is not 
instrumented to track KC mastery. Once the student has entered 



the appropriate value, two questions appear on the left of the 
screen (see Figure 6), and student responses to these questions 
trigger updates to two KCs at a time. 

 
Figure 4. Screenshot in the MATHia workspace “Checking 
Solutions to Linear Equations.” 

 
Figure 5. Screenshot after the student has selected “Substitute 
for variable” from the equation solving menu (see Figure 4). 

 
Figure 6. Screenshot after the student has entered the value 10 
on the left-hand side of the equation (see Figure 5).  
Following design-loop adaptivity steps laid out by Huang et al. 
[15], we have identified (1) where the KC model can be refined, 
and (2) areas for task redesign. The third step would involve 
fitting a BKT model using the hypothetical re-mapping of KCs to 
steps within problems in existing data to determine whether the 
hypothesized, refined KC model fits the data better than the 
existing KC model. Future work will experimentally test 
workspace redesigns to “close the loop” (cf. [16, 25]) between this 
data-driven approach and empirical learning outcomes.  

4.2.3.2 Prominent Design Patterns 
Patterns emerge in comparing the performance of DKT to BKT 
over 308 workspaces. In the top twenty workspaces in which 
DKT outperforms BKT, differences in AUC units range from .307 
to .212, and all provide constrained input mechanisms relative to 

broader MATHia content. Fourteen workspaces (70%) involve 
equation solving, and the others are split between those that 
involve placing values on a number line and those in which 
problem input is provided via drop-down menus.  
Gervet et al. raise questions about explanations for observed 
properties of DKT in predicting student performance. Can DKT, 
for example, “better pick up on local patterns of student behavior 
like gaming the systems” [12]? While far from conclusive, DKT’s 
performance for the workspace “Checking Solutions to Linear 
Equations” could exemplify this phenomenon. Workspaces with 
more constrained inputs may provide examples where DKT 
“picks up” on local patterns that BKT does not. Future work ought 
to investigate whether these particular types of relatively 
constrained input mechanisms are easy to “game” or whether and 
how DKT learns local performance patterns. 
Equation solver and number line workspaces are widespread in 
the top workspaces in which DKT outperforms BKT. “Checking 
Solutions to Linear Equations” has readily apparent flaws, 
suggesting that our approach may be promising in targeting 
instructional improvement work. Systematic review of these 
results remains future work. 

5. DISCUSSION 
There are numerous questions for future research. That 
differences in AUC between DKT and BKT are uncorrelated with 
an important measure of instructional ineffectiveness, combined 
with DKT’s ability to find regularities in data that are not found 
by BKT suggests that this difference may be signaling important 
workspace characteristics. Analysis of a particular workspace 
(§4.2.3.1) suggests that DKT-BKT differences may signal 
inadequacies in the KC model. These findings can be compared to 
the results of data-driven search for better KC models [8]. 
Improvements can be made to the workspace, and A/B tests can 
“close the loop” and establish more effective approaches. 
Systematic analysis of instructional content and prediction 
performance differences in DKT and BKT might follow work that 
explores a space of properties and features of particular tutor 
“lessons” to determine which predict students’ affect, gaming the 
system, and off-task behavior [4-5, 10]. Comparisons to logistic 
regression methods (e.g., [12]) are also needed. 
Naïve learning engineering may focus on reducing students’ 
mastery failures. Such an approach could lead to “over-
simplified” tasks that don’t produce failure because they don’t 
require much knowledge. Large differences between DKT and 
BKT may help identify over-simplified workspaces that provide 
opportunities for students to game the system [3, 12]. To what 
extent do gaps in modeling techniques’ performance indicate 
unproductive patterns of “local” behavior in particular 
workspaces? What else drives differences? What other behavior 
patterns indicate ways to target improvement? 
Methodologically, our “non-monolithic” analysis of a large 
educational data set treats component instructional experiences as 
units for analysis. Such analytical decomposition is vital to 
practical learning engineering to improve instructional systems 
and large portfolios of content used by learners every day. 
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