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ABSTRACT
Computer-based learning environments offer the potential
for automatic adaptive assessments of student knowledge
and personalized instructional policies. In prior work, we
introduced an individualized Bayesian model to dynami-
cally assess student’s knowledge, based on observed response
times and response accuracy. In this paper, we leverage
that model as a stopping instructional policy to determine
when to stop the assessment. We evaluate several criteria
based on the change of performance measures as questions
are presented. These include the mean assessment level and
the Kullback-Leibler divergence. Student performances are
simulated considering their sensitivity to the prior belief for
mastery over different educational cases. Our results indi-
cate which criteria offer an efficient assessment, a confident
assessment, and which can effectively handle wheel-spinning
students.
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1. INTRODUCTION
In adaptive learning systems, mastery is measured as a stu-
dent performs a skill and demonstrates knowledge by solving
a sequence of questions that tap that skill. Learner models
that rely on the mastery learning theory are widely used
in various personalized adaptive learning systems to infer
student mastery sequentially.

In a mastery learning framework, ’under-practicing’ and ’over-
practicing’ are two common pitfalls that cause students to

face a practicing or testing burden rather than focus on the
skill of their level [1, 2]. This might cause demotivation
and low engagement [3, 4, 2, 1, 5, 6]. Particularly, stu-
dents trapped in a mastery assessment cycle are referred to
as wheel-spinning students [7, 3, 8, 9]. They are consis-
tently unable to reach the mastery-success criterion set for
the skill, which triggers the system to present even more
items. In our previous paper, we proposed,Bayesian Adap-
tive Mastery Assessment(BAMA), a framework we created
to assess a student individually on a single skill given an
explicit mean success criterion. From an educational per-
spective, it can be used as a criterion-referenced assessment
to assure mastery [10, 6, 11, 12, 13]. We evaluated the util-
ity function of BAMA as a when-mastery-is-attained policy
and show that it accurately recovers the true mastery effi-
ciently, i.e., with few responses. However, this strategy is
not sufficient as it assumes that all students at some point
will reach that criterion [7, 2, 3, 4, 14, 9].

In this paper, we thereby evaluate the impact of the util-
ity function of BAMA as a stopping policy. We design im-
plicit stopping criteria and we provide an empirical analysis
considering the variance of length practice across simulated
student performances. We demonstrate that the developed
policy delivers meaningful results and identifies any student
profile, including wheel-spinners.

2. RELATED WORK
Student profiles aim to portray the individual performance
of each learner. Based on the response time of student per-
formances, learning sciences distinguish between struggling
fluent from fluent as the latter provide correct responses
with short response times [15]. An individual who has not
yet acquired the skill and will not demonstrate successful
performance is commonly modeled as having a low proba-
bility of a correct response [8, 2, 7, 9, 16]. These students
are termed as wheel-spinning students [7, 3, 8, 9] and have
been linked with long response times [8].

An instructional policy, also known as a stopping policy,
refers to the total length of the assessment when a pre-
specified stopping criterion accompanies the model. The cri-
teria are divided into two categories: (i) an explicit threshold



set to a statistic of the mastery estimator, known as a mas-
tery success criterion, and (ii) an implicit threshold set to the
size of change of a statistic of the mastery estimator. The
former framework is typically referred to as when-mastery-
is-attained policy, and the latter as a when-to-stop policy, as
it stops, independent of whether the student has mastered
the skill [7].

Substantial research efforts have focused on the impact of
a learner model concerning the total number of questions
it administers. Machine learning models were designed to
detect wheel spinner performance [9]. Frameworks of in-
structional policies [7, 14] and metrics [5] were proposed
for an evaluation of well-known prediction models on the fi-
nal proposed length. Other work specified a framework for
a conceptual interpretation over the stopping criterion [3].
Typically, these models assume a homogeneous class of stu-
dents and they consider solely response accuracy. Previous
research has shown that individualized models lead to signif-
icantly different policies [4] and highlighted the importance
of response times in stopping policies [9, 12, 17, 18, 13, 10,
19, 2].

3. MODEL AND STOPPING POLICY
Below we briefly discuss the assessment model, the stopping
criteria we consider, and the steps of our experiment.

3.1 Bayesian Adaptive Mastery Assessment
In the BAMA model, a student has a constant mastery level
Z on a single skill which is the product of two independent
random variables, the response time T ∼ Exponential(λ)
and the accuracy P ∼ Bernoulli(θ). We denote with τ the
maximum response time. The score Z is close to 1 when
a student answers correctly and relatively fast with respect
to τ . The value of Z becomes zero when a student answers
incorrectly, or when the response time exceeds τ . That is

operationalized as follows: Z = P ·
(
1− T

τ

)+
.

To keep the formulation tractable, we adopt a Bayesian ap-
proach to estimate the true unknown parameters θ and λ of
a student. We model θ by a Beta(α, β) distribution, and λ
by a Gamma(n, γ) distribution. This represents the prior
distribution over the unknown parameters (θ, λ), denoted as
p0, as an initial belief over a student’s mastery. The model
updates the belief on a posterior distribution p over these
parameters under the Bayes rule. As more responses be-
come available, the posterior distributions of the accuracy
(the Beta distribution) and the response time (the Gamma
distribution) become more centered and peaked around the
true values of θ and λ. However, this information is not
known in practice and needs to be estimated from the ob-
servations received over the assessment.

3.2 Stopping Criteria
A respective policy is concerned with the nature of the es-
timated Z-score and adopts a different stopping rule. We
employ the change of a point estimate, and the change of the
distribution. These are computed according to the change
observed between consecutive pairs of responses over the se-
quence. For the analysis and the evaluation of a policy, the
following four properties are typically considered [20, 7]: 1)
number of administered items, 2) number of non-stopping

situations, 3) accuracy with regard to the true value, 4) un-
certainty of the experiment and of the model.

The derivative-based stopping rule considers the reduction
of changes observed between consecutive pairs of responses
as measured with a pre-specified sample statistic of the Z
distribution. To put this formally, let ∆fi = fi−1−fi for any
function f . Then, our policy proposes to stop after response
i when the following decision rule holds.

|∆hi−1| < ε ∧ |∆hi| < ε, (1)

where hi denotes the value of a sample statistic of the dis-
tribution Z after the i-th observation, such as the mean,
variance, or any other function. The rule indicates that in a
sequence of three responses so far, two values for that rule
are computed. Similar to all implicit-based stopping rules,
the threshold value denoted as ε will also inevitably affect
the length of the assessment, i.e., as ε gets smaller, the longer
the assessment becomes. That is a special case of the prob-
abilistic stopping rule proposed in [7] which doesn’t directly
generalize to our model.

In our first experiment, we leverage the derivative-based rule
by considering the change of the posterior mean from the
prior mean. Point-based estimates from sample statistics
are all informative metrics that can be employed. However,
other estimated statistics may exist to describe the informa-
tion of a distributional score that may better accommodate
a balanced length assessment. Thereby, a more elegant solu-
tion would be to calculate a metric that considers the whole
distributional information obtained for Z at once.

We compute the second rule based on the reduction of di-
vergence between two consecutive distributions of responses,
the starting prior Zi−1 and the updating posterior Zi, after
item i has been administered. We formulate this with the
Kullback-Leibler (KL) divergence DKL as follows:

DKL(Zi−1 ‖ Zi) =

∫ 1

0

zi−1(x) log

(
zi−1(x)

zi(x)

)
dx. (2)

The quantity zi(x) describes the density of the distribution
Zi at response i evaluated at x.

3.3 Simulated performance profiles
A student is characterized by the pair (θ, λ) for their per-
formance. For the exposition of our purpose, we take four
equidistant intervals of Z defined as: mastered or fluent (Z ∈
[0.75−0.95]), accurate or struggling fluent (Z ∈ [0.5−0.74]),
undetermined or average (Z ∈ [0.2 − 0.49]), wheel-spinning
(Z ∈ [0− 0.19]). Then, we arbitrarily draw a specific pair of
(θ, λ) corresponding to the Z score from each interval. Par-
ticularly, we illustrate the following levels: mastered with
high accuracy and short response times (θ = 0.9, λ = 1) →
Z = 0.85 , accurate with high accuracy and long response
times (θ = 0.9, λ = 0.1) → Z = 0.50, undetermined with
(θ = 0.5, λ = 0.5) → Z = 0.46, and wheel-spinning with
(θ = 0.1, λ = 0.1)→ Z = 0.08.

4. RESULTS
We evaluate our stopping criteria through simulated student
performances. In practice, this translates to n observations
of responses x1, . . . , xn according to the student profile (θ, λ)



Figure 1: The size of the change between consecutive estimated expected values of Z for a prior p−0 = 0.3 and a prior p+0 = 0.7.

Figure 2: The KL divergence between consecutive estimated distributional scores for a prior p−0 = 0.3 and a prior p+0 = 0.7.

and prior p0. We update the prior distribution as observa-
tions arrive, i.e., pi based on pi−1 and xi−1. This allows
us to collect statistics on the Z-score for each administered
question. We repeat this 1,000 times to get accurate results
for the statistics. To ensure that the practice length is not
highly sensitive to the choice of the prior belief p0, we simul-
taneously consider two priors. An optimistic view, denoted
as p+0 , assuming a student who has mastered the skill, and
a pessimistic view denoted as p−0 , assuming a student who
has not yet mastered the skill. Considering a fixed maxi-
mum number of responses n and updating simultaneously
p+0 and p−0 additionally balances the efficiency and certainty
of the assessment.

We perform our experiments according to the above proce-
dure for each student profile (θ, λ) and prior p0 for a se-
quence of length n = 20, similarly to previous research [7,
3, 9]. We set symmetric values of priors as p+0 = 0.7 and
p−0 = 0.3. The value of the maximum permitted response
time is arbitrarily set to τ = 20, and the fastest answer to
λ = 1.

4.1 Change of the posterior predictive mean
Figure 1 shows the derivative rule described in Equation (1)
implemented for the posterior mean µ̂. Particularly, the
magnitude of change ∆µ̂i is depicted over consecutive re-

sponses i across the student profiles (θ, λ). The response
interval at which ∆µ̂i does not change anymore is observed
by the converging lines.

Intuitively, one would expect that the algorithm would pro-
pose more questions to wheel-spinning and undetermined
students compared to mastered students. However, that is
not the case when our starting belief, p−0 = 0.3, is closer
to the true posterior. Instead, the mastered students will
be proposed to provide more responses. The situation is
reversed when we start with an optimistic prior p+0 .

Second, the algorithm adjusts quickly to the student’s prac-
tice despite the presence of a non-representative prior. To
illustrate this, take the mastered student. Also, take the
same length of items, e.g., the first three questions. When
we start with a representative prior for the student, in this
case p+0 , the reduction of the change will be twice smaller
compared to the reduction of the change observed when we
start with the non-representative prior, p−0 .

4.2 Statistical divergence between consecutive
distributional scores

Figure 2 shows the divergence of the estimated distribution
DKL(i) described in (2). Wheel-spinners have DKL(i) ≥ 0,



Table 1: Analysis and evaluation of stopping policies per profile, criterion, prior and threshold.

Assessment length: ( SE, σ̂, |µ−µ̂
µ
|% )

Stopping rule Mastered Accurate Undetermined Wheel-spin

∆µ̂
p+0
.01 5: (0.0, 0.2, 2.84) 7: (0.0, 0.33, 8.67) 8: (0.01, 0.4, 16.76) 12: (0.0, 0.27, 135.04)

∆µ̂
p+
0
.02 4: (0.0, 0.19, 3.49) 5: (0.0, 0.32, 9.99) 4:(0.01, 0.36, 26.62) 7: (0.0, 0.3, 217.43)

∆µ̂
p−0
.01 11: (0.0, 0.31, 11.04) 7: (0.0, 0.35, 5.43) 8: (0.01, 0.4, 6.93) 8:(0.0, 0.23, 81.34)

∆µ̂
p−0
.02 9: (0.0, 032, 12.66) 4: (0.01, 0.35, 9.55) 3: (0.01, 0.36, 14.4) 5:(0.0, 0.25, 119.89)

∆DKL
p+0
.02 6: (0.0, 0.2, 1.92) 12: (0.0, 0.34, 5.76) 8: (0.01, 0.4, 16.76) 7: (0, 0.3, 217.43)

∆DKL
p+
0
.05 4: (0.0, 0.19, 3.49) 8: (0.0, 0.33, 7.11) 5: (0.01, 0.38, 21.53) 6: (0.0, 0.31, 242.25)

∆DKL
p−0
.02 12: (0.0, 0.31, 10.39) 14: (0.0, 0.35, 4.1) 19: (0.0, 0.43, 2.56) 6: (0.0, 0.24, 95.95)

∆DKL
p−
0
.05 7: (0.0, 0.32, 15.77) 8: (0.0, 0.35, 4.94) 4: (0.01, 0.38, 11.09) 6: (0.0, 0.24, 95.95)

in contrast to the mastered students, who have DKL(i) ≤ 0.
This can be attributed to the prior under- or overestimating
the Z score.

The results of DKL(i) are consistent to the posterior mean
µ̂. We observe a shorter length between two responses when
the prior is representative for the posterior.

4.3 Analysis and evaluation of the policies
Table 1 reports the results of the implemented stopping poli-
cies. For each student profile and stopping rule, as presented
by the columns and rows, we find the number of items at
which each rule proposes to stop and the variance of the
assessment length for different profiles. For each stopping
criterion, the prior distribution p0 is depicted as a super-
script and the threshold ε as a subscript.

For ∆µ̂ and the optimistic prior, the simulated students need
to solve at most 5-12 questions; whereas for ∆µ̂ and the pes-
simistic prior, the simulated students need to solve at most
3-11 questions, depending on the chosen threshold. Con-
sidering a single prior, the optimistic one performs better
across all students compared to the pessimistic one. Those
policies are depicted in bold letters.

For ∆DKL and the optimistic prior, the simulated students
need to solve at most 4-12 questions, depending on the
threshold value. For ∆DKL and the pessimistic prior, there
is a chance of a non-convergent policy. That holds for the
undetermined student as the policy converges only at the
end. This is depicted with the italic letters in the table.

The assessment length is short when the prior is close to
reality. This is depicted for the lenient threshold, e.g., in
the case of p+0 for a mastered student and p−0 for an unde-
termined student. Therefore, we satisfy both priors simul-
taneously. In that case, the maximum number of questions
is 9 for ∆µ̂. We get the same estimate of items with almost
the same uncertainty for both thresholds. Hence, we argue
that a shorter assessment length is preferred. It also shows
that the policy is less dependent on the value of ε.

The results of the lenient threshold stopping policies of ∆DKL

and the ∆Dµ̂ show that we achieve an efficient assessment
for both priors across all student performances. The satis-
faction of both priors is an efficient length considering that

in criterion-referenced assessments, at least n = 4 responses
are required to estimate the mastery of a single skill. Fur-
thermore, we observe that using both priors results in more
efficient assessment of wheel-spinning students. In the en-
vironment we have simulated, we see that one metric is
preferred towards the other under a certain objective. To
achieve efficiency for mastered and wheel-spinners, the KL
can be used. When the objective is shifted towards effi-
ciency among the average profiles, then the mean could be
a more appropriate metric. That doesn’t generalize to other
settings.

5. CONCLUSIONS
To conclude, we analyzed the performance of different stop-
ping policy rules for the utility function of the BAMA frame-
work. The stopping policy is constructed using both the
pessimistic and the optimistic prior for the assessment with
a maximum length of n = 20. This has several advantages:
fluent students will be picked up by the optimistic prior,
wheel-spinners by the pessimistic prior, and the other two
profiles by either one of the prior distributions. Consistent
behavior was found between the two criteria. Furthermore,
the lenient threshold is favored in both criteria. The mean
assessed mastery level (i.e., ∆µ̂) stopping criterion slightly
outperformed the divergence of assessed mastery level (i.e.,
∆DKL). The evaluation of the stopping policies is based
on these properties – fewer items, none non-convergent per-
formance case, and relative percentage approximation error
is low with high certainty. The simulated data has features
that we modelled explicitly. As future work, we plan to eval-
uate the stopping policies in real-world scenarios with real
data and provide a way to represent the average response
time and the average response accuracy of the student per-
formance.
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