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ABSTRACT
The extraction of sentiment from text requires many method-
ological decisions to make inferences about mood, opinion,
and engagement in informal learning contexts. This study
compares sentiment software (SentiStrength, LIWC, tidy-
text, VADER) on N = 1,382,493 tweets in the context of the
Next Generation Science Standards reform (N = 546,267)
and U.S. State Educational Twitter Hashtags (N = 836,226).
Automated sentiment classifications were validated on N =
300 hand-coded tweets. Additionally, we developed a dis-
crepancy measure to identify tweet features associated with
scale inconsistency. Results indicated that binary sentiment
classifications (positive/neutral vs. negative) were more ac-
curate than trinary classifications (positive, neutral, neg-
ative). Combined tidytext dictionaries and VADER out-
performed LIWC for negative sentiment, which was overall
difficult to classify reliably while positive sentiment was clas-
sified with high accuracy across all four dictionaries. Thus,
researchers are encouraged to (a) consider employing overall
sentiment scales or positive/neutral to negative ratios based
on binary classification to characterize their sample, (b) ag-
gregate multiple dictionaries or use domain-specific senti-
ment dictionaries, and (c) be aware of the current limitations
of detecting negativity through dictionary-based sentiment
analysis in educational contexts.
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1. INTRODUCTION
Sentiment analysis extracts positive and negative emotions
from text. Its many applications include stock market pre-
diction [22], marketing research [29], and, recently, inves-
tigating public sentiment on educational reforms on Twit-

ter [32, 38]. Sentiment analysis typically requires numerous
methodological decisions, such as deciding whether to use a
dictionary-based or a supervised machine learning approach
and determining how sentiment measures are suited to the
investigation of a particular domain (e.g., VADER for social
media data) [13, 30].

User-defined sentiment dictionaries (UDDs) rely on matches
of word occurrences with a value in their dictionary, with lit-
tle overlap often yielding less valid results. Whereas many
sentiment measure validation studies investigate binary (i.e.,
positive and negative) sentiment classifications [1, 25, 28],
less research has systematically compared trinary classifica-
tions (i.e., positive, neutral, negative) and sentiment scales.
Furthermore, as sentiment classifiers do not generalize well
across domains [2], sentiment validation studies are needed
to inform educational researchers utilizing the increased avail-
ability of big data in education [7]. This study examines the
performance of popular sentiment analysis methods in the
context of a particular, social media-based data source: large
education-related Twitter communities.

The motivation of this study is two-fold. First, sentiment
measures can give insight into how and why teachers en-
gage in online communities on Twitter, a potentially novel
form of informal teacher learning [6, 33]. Second, public
opinion and sentiment can be viewed as a proxy for success-
ful reform implementation [4, 27]. Wang and Fikis applied
SentiStrength on more than 660,000 tweets related to the
Common Core State Standards, finding sentiment, includ-
ing that expressed by teachers, to be largely negative [38].
In contrast, Rosenberg et al. found largely positive sen-
timent in 570,000 NGSS-related tweets through the same
SentiStrength algorithm [32]. However, the validity of the
utilized sentiment methods was not examined.

2. RESEARCH BACKGROUND
2.1 Sentiment Analysis Methods and Tools
Sentiment analysis is frequently carried out through user-
defined dictionaries (UDDs) [9]. UDDs contain sets of la-
beled words that are rated on affect dimensions (e.g., va-
lence, potency, activity) and matched to word occurrences
in texts [23]. Researchers can either use pre-defined dic-
tionaries or create their own dictionaries [9]. UDD methods



examine words individually, potentially neglecting figurative
language and ambiguous phrases [36]. This study examines
four popular examples of UDD software: (a) SentiStrength,
(b) Linguistic Inquiry and Word Count (LIWC), (c) the R-
package tidytext, and (d) the social-media attuned software
VADER.

SentiStrength outputs two truncated five-point scales [37]
which is different from many other UDD implementations.
It offers feature selection options and measures sentiment
weight, which is the intensity or strength of positivity or
negativity in a text, as opposed to simply comparing the
frequency of sentiments in a text [14].

LIWC is possibly the most popular text analysis software
[17]. It uses a well-validated default dictionary [16] and con-
tains around eighty subdictionaries of topics for which it
outputs individual scales [26]. LIWC has been used to in-
fer psychological processes and constructs (e.g., emotional
expressions) from text [36].

Tidytext [34] does not provide its own default dictionary.
At its core, it strives to pre-process input text which is then
analyzed through any input dictionary [35]. Tidytext pro-
vides functions for converting text into a “one-token-per-
document-per-row” format which may ease text analysis.

VADER (Valence Aware Dictionary for Sentiment Reason-
ing) features multiple subdictionaries and considers word
order and degree modifiers (e.g., ”very”, ”slightly”, ”some-
what”) [5]. It performs well in sentiment analyses of social
media content (including from Twitter) while remaining ap-
plicable to other contexts [5, 13]. That said, we found the R
implementation of VADER to take around 80 times longer
to compute compared to the other methods.

2.2 Research Questions
This study examined the validity of SentiStrength, LIWC,
tidytext, and VADER in the context of educational Twitter
data with the following research questions (RQs):

RQ1: How valid are the employed sentiment measures with
respect to human coding of sentiment?

RQ2: How discrepant are sentiment scales and are correla-
tions among scales consistent with these discrepancies?

RQ3: Which features of texts (i.e., the number of words,
likes, retweets, and context) account for scale discrepancy?

3. METHOD
3.1 Sample
The study utilized tweets related to the Next Generation
Science Standards reform and large educational state-wide
hashtags (1,382,493 tweets, 156,446 users) posted between
July 2008 and October 2020. Search terms included the
#NGSSchat hashtag (N = 175,094 tweets, N = 67,060 of
which being inside of designated chat-sessions), the terms
“ngss” (without #NGSSchat, N = 312,167 tweets) or “next
gen[eration] science standard[s]” (N = 59,006 tweets). In ad-
dition, we included tweets from 47 State Educational Twit-
ter Hashtags (N = 836,226). Tweets not recognized as of
English language by the Twitter API were omitted (5.0%).

3.2 Sentiment Measures
To investigate the validity of different sentiment measures,
we used SentiStrength [37], LIWC [26], tidytext [34], and
VADER [13] to obtain (a) binary and trinary classifications,
(b) unidimensional (positive and negative) sentiment scales,
and (c) a bidimensional sentiment scale rating for all tweets.
While SentiStrength has binary and trinary classification
methods, we subtracted negativity ratings from positivity
ratings to obtain overall scores and defined a tweet as neu-
tral if that overall rating was 0 (over 0 as positive, under 0
as negative) for LIWC and tidytext. For tidytext, we used
the NRC [24], Loughran-McDonald [20], AFINN [10], and
Bing [12] dictionaries, standardizing ratings by the number
of words in each tweet and averaging across available ratings.
The remaining non-matches were assigned a 0. For VADER,
we used its internal compound score as overall scale and
classified tweets as neutral if that score was between -0.05
and 0.05 (instead of 0) [13]. Binary classification combined
positive and neutral tweets, such that neutral tweets were
coded as positive, as done in previous validation studies [8]
and since we observed that SentiStrength always classified
tweets rated neutral in its trinary method positive in its bi-
nary method. Additionally, we defined ambiguity measures
for all sentiment dictionaries as the sum of the absolute val-
ues of their positivity and negativity ratings.

3.3 Additional Variables
Continuous predictor variables included the number of likes,
retweets, and words (excluding links and user mentions) of
each tweet. To account for some features of the specific data
sets we analyzed, we created a categorical predictor variable
indicating whether a tweet was from the NGSS or SETHs
data set (and, for the NGSS data set, whether the tweet
was posted inside of #NGSSchat, designated chat-sessions
of #NGSSchat, or included the term ”ngss”).

3.4 Data Analysis
3.4.1 Hand-coding and validation

To provide a validation set of tweets to investigate how
UDDs compare to human-evaluated sentiment (RQ1), two
raters hand-coded 300 randomly sampled tweets on two 1-5
scales for positivity and negativity, similar to SentiStrength.
Our two raters reached a consensus of κ = 0.728 for posi-
tivity and κ = 0.689 for negativity after coding 70 tweets
independently, fulfilling common thresholds for satisfactory
agreement [21]. After discussing and resolving any disagree-
ments, an additional 230 tweets were coded independently.
The binary and trinary sentiment classifications of human
coders were assigned analogously to how they were created
for the other UDDs. We calculated accuracy, precision,
recall, and F -score for each category in each classification
method (binary and trinary).

3.4.2 Scale consistency and discrepancy index
To quantify scale discrepancy for RQ2, we normalized the
sentiment scales to M = 0 and SD = 1, accounting for Sen-
tiStrength’s truncation of scales at |5| (contrasting LIWC,
tidytext and VADER). As a discrepancy index, we calcu-
lated the absolute difference between normalized scales for
positivity, negativity, and overall scales for all six pairs of
sentiment measures. For each tweet and scale type, the to-
tal scale discrepancy was summed up and divided by the



number of comparisons. As a robustness check for our dis-
crepancy measure, we calculated pairwise scale correlations
between methods.

3.4.3 Predictive modeling of scale discrepancy
To examine RQ3, we conducted three ordinary least square
linear regression models to predict discrepancy in the (a)
positivity, (b) negativity, and (c) overall scales through var-
ious tweet properties. Model assumptions (normal distri-
bution of residuals, homoscedasticity, linearity assumptions
and leverage) were investigated through graphical model
tests in R. Robust standard errors (HC3 estimator [19]) were
used to address residual heteroscedasticity for discrepancy in
the positivity scales. Independent variables included tweet
context and the number of words, likes, and retweets of a
tweet. We also included binary classifications (0: negative,
1: positive or neutral) to investigate whether scale discrep-
ancies varied with sentiment polarity and ambiguity ratings
to estimate whether tweets being high in positivity and nega-
tivity were less consistently rated than tweets with less emo-
tional valence. All independent variables had a generalized
variance inflation factor (GVIF) of less than 5 [3].

4. RESULTS
4.1 Validation of Sentiment Measures (RQ1)
4.1.1 Dictionary coverage

Coverage characterizes the fit of user-defined dictionaries
with the data. Coverage is the relative frequency of texts
that had a least one match inside a specific dictionary. We
observed a coverage of 58.91% for SentiStrength, 55.7% for
LIWC, and 67.7% for VADER. The combined tidytext dic-
tionaries had a coverage of 84.9%. As subdictionaries, cover-
age was 70.5% for NRC, 62.0% for AFINN, 56.9% for Bing,
and 34.9% for the Loughran-McDonald dictionary.

4.1.2 Hand-coded tweets and validation
Comparing human coders with SentiStrength’s scale ratings
(LIWC, tidytext and VADER do not output 1-5 scales; we
describe these later in this section), we found a moderate
two-way random effects ICC for absolute agreement [18] for
both the positivity scale, ICC2k = 0.690 [0.57, 0.77] and the
combined, overall scale, ICC2k = 0.683 [0.59, 0.75]. The
negativity scale exhibited worse agreement, ICC2k = 0.448
[0.31, 0.56]. Notably, Cohen’s kappa ratings were not sat-
isfactory with κ = 0.301 for positivity, κ = 0.270 for the
overall scale, and κ = 0.183 for negativity [21].

Tables 1 and 2 describe the validity of the binary and tri-
nary classifications for SentiStrength, LIWC, tidytext, and
VADER. We found trinary classifications to have higher ac-
curacy scores than binary classification (ranging from 85.00%
to 88.33% and 56.33% to 67.00%, respectively). Notably,
we found classifications of negative tweets to be less accu-
rate than for positive tweets, with F -scores of tidytext and
VADER (0.45 and 0.44, respectively) being higher compared
to SentiStrength and LIWC (0.38 and 0.29, respectively). To
test whether these differences were significant or random, we
ran permutation tests with 250,000 simulations [39]. Tidy-
text and VADER improved compared to LIWC, but not
to SentiStrength, (albeit marginally) significantly (p = .058
and p = .047, respectively), although only 11.67% of tweets
were rated as negative by human coders.

Table 1: Binary validation results
SentiStr. LIWC
Accuracy 85.50 88.33

Pos/Neut Neg Pos/Neut Neg
Precision 0.92 0.36 0.90 0.50
Recall 0.91 0.40 0.97 0.20
F -Score 0.91 0.38 0.94 0.29
tidytext VADER
Accuracy 87.00 88.33

Pos/Neut Neg Pos/Neut Neg
Precision 0.93 0.44 0.93 0.50
Recall 0.92 0.46 0.94 0.40
F -Score 0.93 0.45 0.93 0.44

Note: Positive Tweets are either positive or neutral in bi-
nary classification. Support: 265 Pos/Neut, 35 Neg

Table 2: Trinary validation results
SentiStr. LIWC
Accuracy 66.00 67.00

Pos Neut Neg Pos Neut Neg
Precision 0.66 0.75 0.36 0.65 0.71 0.50
Recall 0.77 0.63 0.40 0.78 0.69 0.20
F -Score 0.71 0.69 0.38 0.71 0.70 0.29
tidytext VADER
Accuracy 56.33 65.33

Pos Neut Neg Pos Neut Neg
Precision 0.50 0.88 0.44 0.59 0.79 0.50
Recall 0.90 0.33 0.46 0.84 0.57 0.40
F -Score 0.64 0.48 0.45 0.69 0.66 0.44

Note: Support: 115 Pos, 150 Neut, 35 Neg

4.2 Consistency of Sentiment (RQ2)
4.2.1 Positivity scale

For positivity scales, LIWC and VADER were the most con-
sistent with each other based on scale correlation (r = .83)
and mean discrepancy (0.41 SDs) followed by tidytext and
VADER (r = .71, 0.53 SDs) and LIWC and tidytext (r =
.63, 0.61 SDs). On average, positivity scales yielded pair-
wise correlations of r = .63 and scale discrepancies of 0.60
SDs (Table 3).

4.2.2 Negativity scale
For negativity scales, LIWC and VADER were the most con-
sistent with each other based on scale correlation (r = .68)
and mean discrepancy (0.33 SDs) followed by SentiStrength
and LIWC if based on scale correlation (r = .61, 1.14 SDs)
and LIWC and tidytext if based on scale discrepancy (r =
.09, 0.59 SDs). On average, negativity scales yielded pair-
wise correlations of r = .35 and scale discrepancies of 0.83
SDs (Table 3).

4.2.3 Overall scale
For overall scales, LIWC and VADER appeared to be closest
based on scale correlation (r = .69) and mean discrepancy
(0.54 SDs) followed by LIWC and tidytext (r = .65, 0.59
SDs), SentiStrength and VADER (r = .64, 0.65 SDs), and
SentiStrength and LIWC (r = .56, 0.64 SDs), respectively.
On average, overall scales yielded pair-wise correlations of r
= .61 and scale discrepancies of 0.64 SDs (Table 3).



Table 3: Pairwise scale correlations (Corr) and discrepancy
(Disc) for positivity, negativity, and overall scales of Sen-
tiStrength (SS), LIWC (LI), tidytext (TT), and VADER (VA)

Pos Neg Scale
Corr Disc Corr Disc Corr Disc

SS, LI 0.54 0.64 0.61 1.14 0.56 0.64
LI, TT 0.63 0.61 0.09 0.59 0.65 0.59
SS, TT 0.43 0.78 0.13 1.04 0.52 0.74
SS, VA 0.59 0.66 0.58 1.19 0.64 0.65
LI, VA 0.83 0.41 0.68 0.33 0.69 0.54
TT, VA 0.71 0.53 -.01 0.69 0.60 0.65
∅ 0.63 0.60 0.35 0.83 0.61 0.64

Table 4: Linear models predicting aggregated scale discrep-
ancy measures; N = 1,382,493

Predictor Pos Neg Scale
(Intercept) -0.56*** 1.52*** -0.23***
Number of Words -0.00*** 0.01*** 0.01***
Number of Likes 0.00 0.00 0.00
Number of Retweets 0.00*** 0.00*** 0.00***
Context [#NGSSchat] 0.02*** -0.01*** 0.03***
Context [SETHs] -0.01*** 0.05*** -0.02***
Context [Chat Hour] 0.00 -0.03*** 0.00
Ambiguity [SentiStr.] 0.07*** 0.21*** 0.07***
Ambiguity [LIWC] 0.11*** 0.14*** 0.11***
Ambiguity [tidytext] 0.08*** 0.19*** 0.10***
Ambiguity [VADER] 0.04*** 0.06*** 0.04***
SentiStr. Binary [1] 0.16*** -0.64*** 0.00
LIWC Binary [1] 0.29*** -0.28*** 0.30***
tidytext Binary [1] 0.30*** -0.47*** 0.11***
VADER Binary [1] 0.14*** -0.48*** -0.03***

R2 0.22 0.75 0.24

Note: ***p<0.001 **p<0.01 *p<0.05.

4.3 Understanding Scale Discrepancies (RQ3)
Linear models for evaluating scale discrepancies included
four notable associations between tweet properties and scale
discrepancies (Table 4). First, all four ambiguity measures
were positively associated with scale discrepancy measures
across all three models, most notably SentiStrength’s ambi-
guity measure with negativity scale discrepancy, β = 0.21,
t(1382478) = 229.30, p < .001. Second, for binary classifi-
cations (i.e., positive/neutral vs. negative), negative tweets
tended to have higher negativity discrepancy and vice versa.
For example, discrepancy in negativity scales was negatively
associated with tweets classified as positive/neutral by Sen-
tiStrength, β = -0.64, t(1382478) = -281.13, p < .001. Mean-
while, tidytext classifying tweets as positive was associated
with increased positivity discrepancy, β = 0.30, t(1382478)
= 129.71, p < .001. Third, text- and tweet-specific variables
(e.g., number of words, likes, and retweets) did not seem to
be associated with scale discrepancy, while tweet context
had a small effect size. For instance, tweets from State Ed-
ucational Twitter Hashtags were positively associated with
negativity scale discrepancy, β = 0.05, t(1382478) = 52.86,
p < .001. Fourth, the explained variance in scale discrep-
ancy was highest for negativity scales at 75.3%, followed by
overall scales (23.5%) and positivity scales (22.4%).

5. DISCUSSION
5.1 Key Findings
This study evaluates sentiment analysis methods on educa-
tional Twitter data. Our three main findings are as follows:

First, negative sentiment is difficult to reliably detect with
dictionary approaches. This could be due to nuanced lin-
guistic markers (e.g., sarcasm) that require advanced algo-
rithms to be detected [31]. While this finding aligns with
previous work [30], it contrasts initial validations of Sen-
tiStrength [37] on a set of around 1,000 MySpace comments
[37]. Nonetheless, this highlights the importance of validat-
ing commonly used sentiment analysis tools across multiple
contexts. Thus, we encourage researchers to carefully exam-
ine how negativity may be expressed in their study context.

Second, in the context of educational Twitter data, binary
sentiment classifications that combine positive and neutral
sentiment are substantially more robust than trinary clas-
sifications. Thus, researchers may consider computing the
ratio of negative to positive/neutral tweets, similar to a re-
cent Twitter study on the Common Core State Standards
[38]. For a continuous variable, our findings suggest using an
overall scale, as discrepancy in negativity was substantially
associated with ambiguity and binary classifications.

Third, in the context of educational Twitter data, tidytext
and VADER produce more accurate classifications of neg-
ative sentiment than LIWC. Notably, tidytext also has the
highest dictionary coverage. Thus, educational researchers
are encouraged to aggregate multiple dictionaries or to cre-
ate domain-specific sentiment dictionaries for more reliable
measures of negative sentiment, for instance, similar to a
previous study investigating political expression [11].

5.2 Limitations
This study has two notable limitations. First, the sample
size of the training data is relatively small (N = 300). That
said, it is comparable to sample sizes of previous sentiment
measure validation studies [28]. Similarly, the lack of neg-
ative tweets in our training data (11.67%) may limit infer-
ences about that particular type of sentiment. The number
of negative tweets is considerably smaller compared to pre-
vious validation studies utilizing text data from sources such
as MySpace, Twitter, BBC forums, and YouTube that in-
clude up to 86.84% negative sentiment [8]. Therefore, future
validation studies should deliberately sample more negative
tweets [13] or sample from contexts with higher expected
negativity, such as Common Core State Standards hashtags
[38]. Second, this study focuses on dictionary-based senti-
ment analysis, while future studies might also consider fea-
ture extraction and word co-occurrence methods [15].

5.3 Implications
This study highlights the importance of coverage, validity,
and scale discrepancy in sentiment analysis, specifically for
negative sentiment. For educational Twitter data, this study
recommends using binary classifications or overall scales,
preferably derived from tidytext or VADER, and encour-
ages replication studies1 across more educational contexts.

1Code: https://github.com/jrosen48/comparing-sentiment
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