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ABSTRACT
Student modeling is useful in educational research and tech-
nology development due to a capability to estimate latent
student attributes. Widely used approaches, such as the
Additive Factors Model (AFM), have shown satisfactory re-
sults, but they can only handle binary outcomes, which may
yield potential information loss. In this work, we propose
a new partial credit modeling approach, PC-AFM, to sup-
port multi-valued outcomes. We focus particularly on the
amount of assistance, that is, the number of error feedback
and hint messages, a student needs to get a problem step
correct. Because errors and hint requests may not only de-
rive from student ability, but also from non-cognitive fac-
tors (e.g., students may game the system), we first test PC-
AFM on synthetic data where this source of variation is not
present. We confirm that PC-AFM is indeed better than
AFM in recovering the true student and knowledge com-
ponent (KC) parameters and even predicts student error
rates better than a model fit to error rates. We then ap-
ply the approach to six real-world datasets and find that
PC-AFM outperforms AFM in reliable estimation of KC
parameters and produces better generalization to new stu-
dents, which requires better KC estimates. However, con-
sistent with the hypothesis that student assistance behavior
is driven by motivational or meta-cognitive factors beyond
their ability, we found that PC-AFM was not better in reli-
able estimation of student parameters nor in generalization
across items, which requires accurate student estimates. We
propose cross-measure cross-validation as a general method
for comparing alternative measurement models for the same
desired latent outcome.
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1. INTRODUCTION
Student modeling has been an important tool that researchers
can use to estimate latent student abilities. Similarly, in-
telligent tutoring systems also depend on how accurately
we can predict student mastery to deliver efficient adap-
tive learning. Current popular approaches, such as Additive
Factors Model (AFM) [4, 18, 13] and Bayesian Knowledge
Tracing (BKT) [5, 13], perform reasonably well by includ-
ing the growth factors in their models. However, they are
restricted by using only binary student performance (e.g.
correct/incorrect response), which could suffer from an in-
formation loss due to its dichotomized nature.

For example, many existing intelligent tutoring systems (ITS)
support step-by-step interactions [22], which usually allow
students to try multiple attempts or request for hints un-
til they are able to complete the step correctly. These in-
teractions are important for an ITS because it allows the
system to provide immediate feedback or support an adap-
tive experience, while collecting a rich interaction dataset
on student actions. However, since AFM and BKT can only
handle binary outcomes, the student data is needed to be
aggregated through a rollup procedure before we can use it
in student modeling. This means only success on students’
first attempt on each step will be included in the data, and
the rest of the actions (e.g. other attempt or hint requests)
will be ignored. To illustrate how this could be problem-
atic, let’s imagine student A who had one incorrect attempt
on a step before correctly completing it and student B who
had multiple incorrect attempts and asked for multiple hints
on the same step before getting it right. The dichotomous
model like AFM and BKT would treat both students as the
same on this particular step, but we can see that it is more
likely that student A has demonstrated better knowledge
than student B.

In our case, we are concerned with having a raw measure
of student success at each assessment opportunity. There
are different functions for producing or deriving an outcome
measure for the data available in a tutoring system. Perhaps
the most typical function is: first transaction correct = 1;
otherwise = 0 where both hints and incorrect responses are
both counted as a failure. While there are multiple ways
to elicit polytomous outcomes from ITS student data, in
this work we focus on an assistant score, which is a total
number of incorrect attempts and hint requests combined
for each step. From our preliminary analysis, we found that



there are correlations between assistance scores and AFM’s
predicted error rate, which suggests that there could be an
extra information in assistance scores compared to a binary
correctness outcome.

In this work, we are interested in whether or not an assis-
tance score model could be a better predictor of student’s
change in performance than a dichotomous model like AFM.
Particularly, our research questions are: (1) How can we de-
velop an effective statistical measurement model that uses
assistance scores? and (2) How do we compare two different
response models?

A popular approach to compare different cognitive models
in Educational Data Mining is to use goodness-of-fit (e.g.
Bayesian Information Criterion), but it is not applicable in
our scenario because our model is based on different out-
comes (correctness vs assistance score). Alternative versions
of measures of predictor variables can be contrasted through
cross validations, but it becomes inadequate when the out-
come variables are different. We also discuss a set of strate-
gies for addressing the general problem of how to compare
alternative measurement models for the same desired latent
outcome. Particularly, how do we compare a binary correct-
ness model with a polytomous Assistance Score model?

We propose a new cognitive modeling approach to support
polytomous outcomes and demonstrated its ability to re-
cover parameters and predict student error rates better than
AFM in synthetic data. We then evaluated our model to six
real-world datasets spanning five different domains from the
DataShop repository [10]. We found that our model outper-
forms AFM in most Student-blocked CVs and estimating
KC parameters, but it falls short at estimating student in-
tercepts. We hypothesize that our model is struggling to es-
timate student parameters in the real-world datasets due to
variance in students’ help-seeking behavior, such as gaming-
the-system, that leads to the extra variance in Assistance
Scores above and beyond the variance associated with stu-
dent ability.

2. RELATED WORK
2.1 Item Response Theory with Partial Credit
Item Response Theory (IRT) models [6] is the preferred
method used in several state assessments in the United States
and international assessments [8]. The goal of the IRT model
is to estimate the latent construct (e.g. student ability) and
item characteristics (item difficulty) based on only a collec-
tion of responses.

The simplest variation of IRT is the Rasch model (1PL
model) [19], which is characterized by a single parameter
representing item difficulty (dj), and a single parameter rep-
resenting student ability (ai). As Eq.1 is equivalent to a
logistic function, the Rasch model is essentially a logistic
regression model.

p(rij = 1) =
1

1+−(ai−dj)
(1)

Other variations increase the complexity by introducing ex-
tra parameters. For example, the 2PL model adds a discrim-

ination parameter for each item that controls the slope of
the logistic function, and the 3PL model that also includes
a pseudo-guessing parameter for each item. Even though,
these models are characterized by a different number of pa-
rameters, they are all based on dichotomous response data
(e.g. correctness). There is another class of IRT models
that can be applied to polytomous outcomes, where each
response can be a different value [17, 21]. An example of re-
sponses that is applicable to this class of models are Likert
scale. There are different variations of polytomous IRT mod-
els, such as Partial Credit Model (PCM) [14], Generalized
Partial Credit Model (GPCM) [15], and Graded Response
Model (GRM) [20].These polytomous models are generalized
from the dichotomous IRT models and can be reduced to the
dichotomous IRT models when there are only two response
categories. Our model extends the polytomous model to in-
clude growth factor by applying a similar approach to PCM
to AFM.

2.2 Knowledge Tracing Approaches
Intelligent tutoring systems (ITS) have been shown to be
effective in improving student learning outcomes across dif-
ferent domains [2, 9], and mastery learning strategies have
been an important component in these systems. To im-
plement mastery learning, knowledge tracing techniques are
regularly utilized by ITSs [7] to adaptively assess students’
knowledge states, which is used to decide when students have
mastered skills and are ready to move on to other skills.

In many existing ITSs, such as Cognitive Tutor Authoring
Tools (CTAT) [1], students are given a number of practice
opportunities for each skill , and students are usually allowed
to try multiple attempts or request for hints until they are
able to successfully complete the step on each practice op-
portunity. The goal of a knowledge tracing algorithm when
used for mastery learning is to determine when to stop giv-
ing students practice opportunities for the given skill.

Knowledge tracing is often performed by a statistical model
of student learning that could be fit to data. There are
two popular families of methods [12]: Bayesian Knowledge
Tracing (BKT) [5, 13] and Additive Factors Model (AFM)
[4, 18, 13]. Both methods include growth factors in order to
estimate students’ performance as it is changing with learn-
ing. BKT models student knowledge as a latent variable
in a Hidden Markov Model. AFM is an extension of the
IRT model that includes learning opportunity counts in the
model. Even though these methods have been proven to
work well in many scenarios, they are based on the binary
error measurement model (correct or incorrect) and thus do
not make use of potential added information from the num-
ber of error and hint messages a student may receive. Our
approach explores this opportunity by extending AFM to
use such multi-valued or polytomous outcomes in hopes of
better estimating student knowledge. While other variations
on AFM, such as Performance Factor Analysis (PFA) [18]
and individualized AFM (iAFM) [13], have been shown in
some cases to produce better prediction fit than AFM, we
chose to use AFM to simplify the contrast between binary
and polytomous measurement models and with the goal of
producing more parsimonious and interpretable parameter
estimates. Future work can explore alternatives.



2.3 DataShop Data Features
In this work, we use a variety of real world datasets across
different domains from the DataShop repository [10]. Learn-
Lab’s DataShop (http://learnlab.org/datashop) is an open
data repository of educational data with associated visual-
ization and analysis tools, which has data from thousands of
students derived from interactions with on-line course ma-
terials and intelligent tutoring systems.

In DataShop terminology, Knowledge Components (KCs)
are used to represent pieces of knowledge, concepts or skills
that students need to solve problems [11]. When a specific
set of KCs are mapped to a set of instructional tasks (usually
steps in problems) they form a KC Model, which is a specific
kind of student model.

Each dataset in DataShop consists of a set of student trans-
actions, which is a collection of students’ interactions with
ITSs. The collected students’ actions include (but not lim-
ited to) correct attempts, incorrect attempts, and hint re-
quests. The transactions that belong to the same prac-
tice opportunity get aggregated into a single students’ step
through the rollup procedure. The correctness of the step
depends on the result of the student’s first response for the
practice opportunity, and the total number of incorrect at-
tempts and hint requests is reported as an Assistance Score
of the step. Most existing knowledge tracing algorithms use
students’ steps, rather than transactions, in their models.

3. METHOD
The Additive Factors Model (AFM) [4] is a logistic regres-
sion that extends Item Response Theory by incorporating a
growth or learning term. The model gives the probability pij
that a student i will get a problem step j correct based on the
student’s baseline ability (θi), the baseline difficulty of the
related KCs on the problem step (βk), and the learning rate
of the KCs (γk). The learning rate represents the improve-
ment on a KC with each additional practice opportunity, so
it is multiplied by the number of practice opportunities (Tik)
that the student already had on the KC.

log(
pij

1− pij
) = θi + Σk(qjkβk + qjkγkTik) (2)

Our extension of AFM to support a polytomous outcome
measure, like Assistance Score, is inspired by the Partial
Credit Model (PCM) [14], which is an adjacent-categories
logit model [21]. The model was designed to work with or-
dered polytomous response categories with a specific order
or ranking of responses, which is the case for Assistance
Score. It is widely applied in aptitude testing to allow for
partial credit for near correctness of a response. In adjacent-
categories logit models, we model the odds of a higher cat-
egory relative to the adjacent lower one, and this paired
comparison creates the ordering of the categories.

Assistance Score can be interpreted in the partial credit
framework as follows. A student who gets a problem step
correct on their first try or after fewer errors or hint requests
is more likely to have the associated competence than a stu-
dent who makes many errors or requests multiple hints be-
fore getting the step correct. Thus, students making no er-

rors and needing no hints get full credit (Assistance Score =
0) and students with errors and/or hint requests get partial
credit in rough proportion to the number hint and errors.

The Partial Credit Additive Factors Model (PC-AFM) builds
upon these two different statistical models, AFM and PCM.
For a student i and a step j, there is a set of probabilities
Pij = {pija; a = 0, 1, ..., A} describing the chance for student
i to get Assistance Score a on the step j, where A is the max-
imum Assistance Score. In this work, we decided to limit an
Assistance Score at 5 because values above this tend not to
be meaningful and rare, but extreme outliers (e.g., where
assistance score is over 20 or even 140!) would significantly
bias the model. 98% of our data have an Assistance Score
of 5 or less. We extend AFM to use multivariate general-
ized linear mixed model, and the link function in logistic
regression takes the vector-valued form.

flink(Pij) =

flink,1(Pij)
...

flink,A(Pij)

 =

 log(
pij1
pij0

)

...
log(

pijA
pijA−1

)

 (3)

Note that flink,0 is not included due to the number of non-
redundant probabilities. PC-AFM use adjacent-categories
logits as a link function based on PCM. The ath adjacent-
categories logit is the logit of getting an Assistance Score
a versus a − 1. Each link function is an extended version
of AFM’s linear model (Eq. 2) with a level parameter (αa),
which represents the difficulty to improve from an Assistance
Score a to a− 1.

flink,a(Pij) = θi + αa + Σk(qjkβk + qjkγkTik) (4)

Inverting this function gives an expression for the probabil-
ities of student i to complete a problem step j with each of
the possible Assistance Scores a.

pija = eλa

ΣAi=0e
λi

λa =

{
0 if a = 0

Σa
l=1flink,l(Pij) otherwise

(5)

4. EXPERIMENT
We conduct experiments on both synthetic data and real
student data to evaluate the performance of PC-AFM. We
used the synthetic data to validate PC-AFM’s parameter re-
covery capability and examine our evaluation strategy in a
synthetic environment in which Assistance Score is stochas-
tically derived from student ability alone. In particular, As-
sistance Scores in the synthetic data are not confounded by
other student variations, such as their motivational state.
We hypothesized that PC-AFM would work less effectively
with the real student data because of non-ability effects on
Assistance Score, such as students’ help seeking strategies
or propensity to game the system.

While goodness-of-fits metrics, such as BIC, are widely used



to compare different cognitive models [16], such as knowl-
edge tracing algorithms, it is not applicable in our case due
to the difference of outcome measures between AFM and
PC-AFM. The challenge is how we can compare models that
are based on different outcomes (error rate vs Assistance
Score), while targeting the same desired latent measure (e.g.
student’s ability).

We explore two strategies to tackle this comparison problem.
The first approach is to use parameter estimate reliability in
split-half comparisons. Since both AFM and PC-AFM share
the majority of their parameters (student intercepts, KC in-
tercepts, and KC slopes), we can compare their parameter
recovery capability. However, unlike synthetic data, the true
parameters are not known in real data, so we need to use
the reliability of parameter estimates in split-half compar-
isons instead. Another strategy is to compare cross-measure
predictions. The assumption is that if a model based on
polytomous outcomes (Assistance Score) yields better accu-
racy than a model based on binary outcomes (error rate)
in predicting both polytomous and binary outcomes, the
polytomous model will be demonstrated to be a better mea-
surement model. This strategy is applicable in our scenario
because there are connections between both outcomes. Since
a student step is considered correct only when there is no
assistance, the error rate can be derived by calculating the
probability of Assistance Score = 0. On the other hand,
we can convert the error rate to a probability of an Assis-
tance Score by calculating the likelihood, where given an
error rate p, the probability of having an Assistance Score
a is (1 − p)pa. Then we can use CVs on both measures to
compare the models.

4.1 Experiment 1: Synthetic Data
In order to validate PC-AFM capability to recover student
and KC parameters, we synthetically generate datasets of
student steps based on a logistic regression model. Given a
set of student and KC parameters together with an oppor-
tunity count, a distribution over Assistance Scores is deter-
mined. We then sample once from the distribution to gener-
ate an Assistance Score of that student step. We generated
6 datasets of varying numbers of students and KCs, of which
the true student and KC parameters are known, to examine
parameter recovery capacity of PC-AFM in comparison to
AFM. In each generated dataset, student intercepts range
from -2 to 2, KC intercepts range from -1 to 1, and KC
slopes range from 0 to 0.5. The number of KCs ranges from
8 to 32, and the number of students range from 25 to 200.

We also evaluate both models with three types of cross-

Table 1: Correlation between true and estimated parameters
in synthetic data.

Dataset Stu Intercept KC Intercept KC Slope
PC AFM PC AFM PC AFM

KC8 S25 0.978 0.954 0.996 0.802 0.914 0.675
KC8 S50 0.973 0.936 0.998 0.985 0.972 0.964
KC8 S100 0.973 0.931 1.000 0.984 0.952 0.909
KC8 S200 0.975 0.936 1.000 0.979 0.975 0.735
KC16 S50 0.990 0.977 0.998 0.780 0.962 0.933
KC32 S50 0.996 0.988 0.995 0.799 0.929 0.543

Table 2: Correlation between split-halves parameters in syn-
thetic data

Dataset Stu Intercept KC Intercept KC Slope
PC AFM PC AFM PC AFM

KC8 S25 0.932 0.828 0.990 0.895 0.912 0.498
KC8 S50 0.963 0.906 0.998 0.931 0.972 0.945
KC8 S100 0.980 0.941 0.998 0.850 0.969 0.888
KC8 S200 0.871 0.790 0.999 0.955 0.910 0.894
KC16 S50 0.947 0.857 0.997 0.947 0.927 0.843
KC32 S50 0.967 0.942 1.000 0.883 0.997 -0.345

validation (CV), Random (data points are split randomly),
Student-blocked (data points are split by student), and Item-
blocked (data points are split by item), to demonstrate if
our model training on Assistance Score, can outperform a
dichotomous model training on error rate in predicting di-
chotomous outcomes.

We report on results for each of six different synthetic datasets
by comparing PC-AFM and AFM. We found that PC-AFM
better recovers the true student and KC parameters than
AFM in almost all comparisons using correlation (Table 1).
All contrasts are the same using mean absolute error. As
the number of students goes up, both models tend to better
recover the true parameters. The correlations of parameters
in split-half comparison are reported in Table 2, which show
a similar pattern to the correlation between estimated and
true parameters. This demonstrates that the parameter cor-
relation in split-half comparisons, which can be computed in
real data, is a reasonable proxy for true parameter recovery,
which cannot be computed in real data.

Figure 1 illustrates better true parameter recovery using
Assistance Score and PC-AFM than using error rate and
AFM. PC-AFM parameter estimates (red x’s) are generally
accurate across the spectrum of known parameter values (x-
axis), as can be seen by their closeness to the line, which is
identity function (intercept of 0, slope of 1). AFM estimates
(blue dots) are generally biased toward the extremes. For
student intercepts (Figure 1a), low prior knowledge students
are estimated by error rate/AFM to be worse than they are
and high prior knowledge students are estimated to be better
than they are. For KC intercepts (Figure 1b), hard KCs (on
the left) are estimated by error rate/AFM to be even harder
than are. For hard KCs, most responses are errors, yield-
ing quite low estimates by error rate/AFM. But, these same
steps show more variance in Assistance Score/PC-AFM as
somewhat better students and higher opportunities will pro-
duce lower, but non-zero Assistance Scores (i.e., not chang-
ing in error rate).

In error rate CV results, except Item-blocked CV where
both models perform similarly, PC-AFM outperforms AFM
in all other CVs (Table 4). Recall that these CV evalua-
tions require PC-AFM, while fit to Assistance Score (poly-
tomous outcome), to predict error rate (dichotomous out-
come). When we turn the tables and compare methods on
predicting Assistance Score, we find a similar pattern where
PC-AFM yields better accuracy in most CVs (Table 3).

4.2 Experiment 2: Real student data



Figure 1: Using Assistance Score and PC-AFM on synthetic data produces better estimates of the true parameters, for all three
of student intercepts, KC intercepts, and KC slopes than does using error rate and AFM.

Table 3: Cross-validation results (RSME) in synthetic data
predicting Assistance Score in the test set by estimating pa-
rameters based on Assistance Score (PC-AFM) or on Error
Rate (AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

KC8 S25 0.546 0.598 0.542 0.600 0.586 0.634
KC8 S50 0.544 0.599 0.541 0.601 0.575 0.610
KC8 S100 0.536 0.596 0.532 0.599 0.550 0.602
KC8 S200 0.541 0.597 0.537 0.600 0.541 0.597
KC16 S50 0.540 0.600 0.537 0.601 0.566 0.604
KC32 S50 0.540 0.587 0.539 0.590 0.579 0.626

In the second experiment, we examine PC-AFM across a
variety of real world datasets. We used 6 datasets across
different domains (statistics, English articles, algebra, and
geometry) from the DataShop repository. Table 5 shows
the number of students, items, KCs, total transactions for
each dataset. For each dataset, we use the KC model that
achieves the best BIC reported on the DataShop repository.
All KC models coded a single KC per step. The number of
KCs ranges from 9 to 64, and the number of students ranges
from 52 to 318.

For each dataset, we evaluated both PC-AFM and AFM on
5 independent runs of 3-fold CVs of each type predicting
both Assistance Score and error rate. We report the result
of Assistance Score CVs in Table 6 and the results of error
rate CVs in Table 7. We found that PC-AFM outperforms
AFM in Student-blocked in both Assistance Score and error

Table 4: Cross-validation results (RSME) in synthetic data
predicting Error Rate in the test set by estimating parame-
ters based on Assistance Score (PC-AFM) or on Error Rate
(AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

KC8 S25 0.275 0.278 0.310 0.306 0.370 0.430
KC8 S50 0.273 0.280 0.282 0.304 0.356 0.297
KC8 S100 0.273 0.277 0.283 0.300 0.387 0.449
KC8 S200 0.271 0.275 0.278 0.295 0.278 0.282
KC16 S50 0.277 0.281 0.278 0.311 0.301 0.294
KC32 S50 0.287 0.291 0.292 0.320 0.358 0.347

Table 5: Real Student Dataset.
Dataset Domain #Stu #Item #KC

ds308 College Statistics 52 113 9
ds313 English articles 120 85 26
ds372 English articles 99 84 15
ds388 Middle School math 318 64 64
ds392 Geometry 123 2035 43
ds394 English articles 97 180 13

rate CVs in most datasets, which suggests that PC-AFM can
achieve better estimates of KC parameters. To validate the
hypothesis, we investigated split-halves parameters correla-
tion of both models. We splitted the datasets on students to
evaluate KC slopes and intercepts correlation, and we split-
ted the datasets on KCs to evaluate students’ intercepts (Ta-
ble 8). On average, PC-AFM yields better correlations of
both KC intercepts (0.954 vs 0.946) and KC slopes (0.600 vs
0.563), but correlations of student intercepts is significantly
higher for AFM (0.784 vs 0.495).

5. DISCUSSION
Assistance score should, in principle, improve model param-
eter estimates and predictions based on them. A student
who gets a step correct after just one error or one hint (As-
sistance Score = 1) is likely to be closer to full acquisition
of a KC than a student who makes an error and requests 3
hints (Assistance Score = 4). However, the error rate metric
commonly used with BKT and AFM treats these the same,
since the student was not correct on their first attempt at
the step without a hint. Thus, there is potentially extra in-

Table 6: Cross-validation results (RSME) in real data pre-
dicting Assistance Score in the test set by estimating param-
eters based on Assistance Score (PC-AFM) or on Error Rate
(AFM) in the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

ds308 0.376 0.376 0.381 0.378 0.384 0.388
ds313 0.541 0.528 0.551 0.554 0.549 0.555
ds372 0.478 0.463 0.480 0.481 0.484 0.487
ds388 0.672 0.649 0.682 0.703 0.702 0.703
ds392 0.385 0.354 0.386 0.387 0.385 0.390
ds394 0.499 0.486 0.499 0.499 0.504 0.510



Table 7: Cross-validation results (RSME) in real data predict-
ing Error Rate in the test set by estimating parameters based
on Assistance Score (PC-AFM) or on Error Rate (AFM) in
the training set.

Dataset Random Stu-Blocked Item-Blocked
PC AFM PC AFM PC AFM

ds308 0.336 0.326 0.332 0.328 0.341 0.339
ds313 0.417 0.408 0.413 0.440 0.435 0.424
ds372 0.379 0.377 0.383 0.402 0.388 0.387
ds388 0.454 0.421 0.439 0.470 0.501 0.456
ds392 0.324 0.324 0.325 0.333 0.325 0.325
ds394 0.395 0.391 0.388 0.418 0.403 0.403

formation about students’ level of knowledge acquisition in
the Assistance Score not present in error rate. On the other
hand, prior research, for example on gaming the system [3],
suggests there are other reasons students may produce re-
peated incorrect entries or hint requests. These may pro-
duce enough confounding variance to make using Assistance
Score worse at accurate latent parameter estimation than
using error rate.

In developing a statistical model, PC-AFM, to convert As-
sistance Scores to knowledge acquisition estimates, we first
wanted to confirm that PC-AFM works as intended and is
able to benefit from extra information in Assistance Score
when no confounding sources for Assistance Score variation
are present. Indeed, when we generate synthetic data where
Assistance Scores are stochastically produced from known
latent parameters, we demonstrate better parameter recov-
ery using Assistance Score and PC-AFM than using error
rate and AFM. As shown in Figure 1, PC-AFM estimates
of student parameters are better correlated with true param-
eters and the AFM estimates are baised at the extremes.

This parameter recovery method for comparing these two
different measurement models cannot be applied to real datasets
because the true parameters are unknown. Thus, we em-
ployed we explored two other approaches: parameter esti-
mate reliability and our novel cross-measure cross-validation
approach. We demonstrated better parameter estimate re-
liability (in split-halves comparisons) using PC-AFM than
AFM. We also show how it is possible to use cross-measure
predictions to evaluate which of two different measurement
models works better, call them M1 and M2. We show that
estimating based on M1 (e.g., assistant score) can predict
M2 (e.g., error rate) on held-out data better than estimat-
ing based on M2 itself (e.g., error rate). We believe this
cross-measure cross-validation is a novel approach for com-
paring measurement models.

Assessing whether Assistance Score is a better measure than
Error Rate in real student data is complicated in two ways.
First, we do not have access to the true parameters in real
datasets, so we turn to measures of reliability and predictive
validity. Second, we know from models of gaming the sys-
tem and help seeking that students may produce Assistance
Scores for motivational and metacognitive reasons that are
potentially independent of a mastery source. In other words,
Assistance Scores have a student-driven source of variation
that may reduce their effectiveness in estimating student

Table 8: Split-halves parameters correlation in real data.
Dataset Stu Intercept KC Intercept KC Slope

PC AFM PC AFM PC AFM

ds308 0.113 0.486 0.971 0.955 0.745 0.583
ds313 0.490 0.830 0.948 0.937 0.865 0.905
ds372 0.427 0.803 0.985 0.968 0.433 0.639
ds388 0.567 0.873 0.946 0.945 0.225 0.354
ds392 0.830 0.901 0.973 0.964 0.494 0.485
ds394 0.541 0.809 0.904 0.906 0.838 0.413

mastery. We hypothesize that our model is struggling to
estimate student parameters in the real-world datasets due
to variance in students’ help seeking behavior.

We found that in real world datasets PC-AFM can better es-
timate KC parameters than AFM, which results in PC-AFM
outperforming AFM in Student-blocked CVs. KC parame-
ters estimates significantly impact Student-blocked CVs be-
cause they are the sole driver of these predictions. Poor stu-
dent estimates do not impact Student-blocked CVs because
they are not carried from the training to test as blocking
means there are different students in the test than training.
It does impact Random CVs and Item-blocked CVs because
they are likely to have some students showing up in both
test and training.

6. CONCLUSION AND FUTURE WORK
We investigated whether or not Assistance Score provides
a better measurement model than error rate for estimating
student’s ability. To pursue this question, we developed a
statistical model, PC-AFM, that utilizes Assistance Score.
We also faced the more general problem of how to compare
alternative measurement models for the same desired latent
outcome. In typical model comparison the predicted out-
come measure stays the same, but such comparison does not
work when the outcome measures are different. We proposed
two strategies to tackle this problem: parameter estimate re-
liability in split-halves comparisons and a new approach we
call, cross-measure cross-validation. We demonstrated that
these strategies work well by using synthetic data to show
that a model that better recovers parameters will also yield
better results with these strategies.

We demonstrated that PC-AFM outperforms AFM when
Assistance Scores are synthesized to be meaningful, but its
performance is hindered by non-ability variance in students’
behavior in the real-world datasets. Future work can explore
this finding by synthesizing Assistance Scores that derive
from both ability and motivational factors.

Future work can also test our measurement model compar-
ison strategies. For example, while it has been standard
practice in many tutoring systems to count hints as errors
(M1), some have wondered whether it would be better to not
count hints as errors (M2). Our measurement model com-
parison techniques, split-half reliability and cross-measure
cross-validation, can be used to compare M1 and M2 to in-
fer which provides better estimates of student ability.
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