
Measuring Gameplay Affordances of User-Generated
Content in an Educational Game

Drew Hicks
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
aghicks3@ncsu.edu

Zhongxiu Liu
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
zliu24@ncsu.edu

Michael Eagle
Carnegie-Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

meagle@cs.cmu.edu

Tiffany Barnes
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
tmbarnes@ncsu.edu

ABSTRACT
Level creation is a creative game-play exercise that resembles
problem-posing, and has shown to be engaging and helpful
for players to learn about the game’s core mechanic. How-
ever, in user-authoring environments, users often create lev-
els without considering the game’s objective, or with entirely
different objectives in mind, resulting in levels which fail to
afford the core gameplay mechanic. This poses a bigger
threat to educational games, because the core gameplay is
aligned with the learning objectives. Therefore, such lev-
els fail to provide any opportunity for players to practice
the skills the game is designed to teach. To address this
problem, we designed and compared three versions of level
creators in a programming game – Freeform, Programming,
and Building-Block. Our results show that a simple-to-use
building-block editor can guarantee levels that contain some
affordances, but an editor designed to use the same core me-
chanic as gameplay results in the highest-quality levels.

Keywords
User-created Content, Educational Game, Educational Data
Mining, Learning Analytics

1. INTRODUCTION
In previous work with our programming game, BOTS, we
demonstrated that user-created levels in our game frequently
contain appropriate gameplay affordances, which reward spe-
cific, desired patterns of gameplay related to the game’s
learning objectives. Such levels demonstrate the creator’s
understanding of those learning objectives, and offer other

players opportunity to practice using those concepts. How-
ever, alongside these high-quality submissions there also ex-
ist various negative patterns of user-generated content, four
of which we specifically defined in previous work: Sandbox,
Griefer, Power-Gamer, and Trivial levels. In various ways,
these are levels which ignore or replace the game’s core learn-
ing objectives and challenges.

Figure 1: Gameplay screenshot from the BOTS
game showing a complex puzzle and partial solution.

In order to implement user-created levels into the game it-
self, an additional filtering and evaluation step is needed to
identify and remove these low-quality submission. Our ini-
tial attempt at filtering these levels, a “Solve and Submit”
procedure, was effective at reducing the number of these
types of levels which were published, and additionally was
somewhat effective at reducing the number of these levels
created to begin with; however, some users created fewer
levels under this condition, indicating that the barrier after
level creation discouraged further creation. Our next step is
to make further improvements to the content authoring tools
in order to increase the overall quality of submitted content.

Proceedings of the 9th International Conference on Educational Data Mining 78



In order to do so, we will investigate three versions of the
game’s level editor. The initial, free-form editor, and two
constrained editors employing different types of constraints.

Previous work has shown that players are engaged when
constraints are posed that are restrictive enough to encour-
age demonstration of the game’s target learning concepts,
but not so restrictive as to require them, lest players feel as
though they are unable to create what they want to create.
We propose to evaluate level editors with two different forms
of constraint added. The Programming Editor, where the
length (in lines of code) of the solution is constrained, simi-
larly to the Point Value Showcase in Bead Loom Game. Sec-
ond, where the construction of the level itself is constrained
by providing authors with a limited selection of “Building
Blocks”. For this work, we hope to answer (or gain insight
into) the question: Does providing game-like scaffolding, in
the form of objectives and points related to elements of high-
quality content, result in better user authored content?

2. BACKGROUND
User-generated content has been revolutionizing gaming, and
the potential applications in educational games are intrigu-
ing. Commercial games such as Super Mario Maker[20] and
Little Big Planet[19] rely almost entirely on user-submitted
levels to provide an extendible gameplay experience, with
the creation process itself serving as the meat of the built-
in gameplay. Creative gameplay avoids many of the mo-
tivational pitfalls of educational games, such as relying on
competitive motivators, that may make the intervention less
successful for non-males, who may have a more social orien-
tation towards gameplay, or may have less experience with
traditional video games [13, 14, 5].

Creating exercises, in the form of problem-posing, is a com-
mon educational activity in many STEM domains. In Math-
ematics in particular, Problem-posing has been promoted as
a classroom activity and as an effective assessment of stu-
dent knowledge [23, 7]. Games and ITSs such as Animal-
Watch[4] and MONSAKUN[17] have users creating exercises
for from expert-selected “ingredients.” Work with systems
such as “MONSAKUN”, “AnimalWatch” and the Peer-to-
peer learning community “Teach Ourselves” has shown that
systems that facilitate problem creation by students can pro-
vide benefits beyond those of systems without this feature.

MONSAKUN [17] is a system which facilitates problem-
posing for elementary arithmetic problems. The authors
wanted to influence students to produce word problems whose
structure was different from the structure of the mathemat-
ical solution. In order to build the word problem, students
are given segments of a word problem such as “Tom has 3
erasers” or “Tom buys several pencils” which they arrange
in order to construct their problem.

Animal Watch [1, 4] is a pre-algebra tutor which uses data
about exotic animals as the theme for the problems pre-
sented. The tutor covers topics such as finding average me-
dian and mode, converting to different units, and so on.
While the tutor contains around 1000 problems authored by
the developers, the authors of this paper noted that even
with a large number of problems the system can “run out”
of appropriate problems to give a student. The pilot mostly

investigated student attitudes towards problem posing, find-
ing that students were excited about sharing content with
their peers, and proud that content they had created would
be online and accessible to others. At the same time, stu-
dents reported a low self-assessment of learning, and felt
that it was easy once they got started.

Later work by Carole Beal, “Teach Ourselves,” investigated
these effects further [3], incorporating aspects of gamifica-
tion. Players earn rewards for solving and creating that are
displayed on a leaderboard, and can get “+1” from peers for
creating good content in the form of problems and hints.
Problems created by students were of usable quality, with
an average quality score of 7.5/12 on a scale developed by
the system’s designers. Teachers who used the system ob-
served increased motivation in their students, and believed
that the system encouraged higher-order thinking. Even
simple problem-posing interventions have been shown to be
effective. In Chang’s work with a problem-posing system
to teach mathematics, it was demonstrated that when the
posed problems were to be used as content for a simple quiz-
show-like game, low performing students experienced signif-
icantly greater learning gains from the activity, and students
reported being more engaged with the activity [8].

3. DESCRIPTION OF BOTS
BOTS (bots.game2learn.com) is a puzzle game designed to
teach fundamental ideas of programming and problem-solving
to novice computer users. BOTS was inspired by games such
as LightBot and RoboRally, as well as the syntax of Scratch
and Snap [9, 11, 26]. In BOTS, players take on the role of
programmers writing code to navigate a simple robot around
a grid-based 3D environment. The goal of each puzzle is to
press several switches within the environment, which can be
done by placing an object (or the robot itself) on top of
them. Within each puzzle, players’ scores depend on the
number of commands used, with lower scores being prefer-
able. For example, in the first tutorial level, a user could
solve the puzzle by using the “Move Forward” instruction 10
times. This is the best score possible without using loops
or functions. Therefore, if a player wants to make the robot
walk down a long hallway, it will be more efficient to use a
loop to repeat a single “Move Forward” instruction, rather
than to simply use several “Move Forward” instructions one
after the other. These constraints, based on the Deep Gam-
ification framework, are meant to encourage players to op-
timize their solutions by practicing loops and functions.

Previous work with BOTS focused on how to restrict play-
ers from constructing negative design patterns in their levels
[16], and how to automatically generate low-level feedback
and hints for user-generated levels without human authoring
[22, 10]. Our next steps with this game are to further im-
prove the level authoring tools to increase the quality of the
levels which don’t exhibit these negative design patterns.

3.1 Gameplay Affordances
The term Affordance has its origins in psychology, where it
is defined by Gibson as “what [something] offers the animal,
what it provides and furnishes” [25]. This concept was later
introduced to HCI, where Norman defined affordance as“the
perceived or actual properties of the thing, primarily those
fundamental properties that determine just how the thing

Proceedings of the 9th International Conference on Educational Data Mining 79



could possibly be used” [21]. Norman’s definition centers on
users’ perspectives. If a user does not read an action with an
object possible, then the object does not afford that action.

With respect to affordances in games, James Paul Gee wrote
that games create a match between affordances and what he
calls “effectivities” [12]. In his writing, effectivities are de-
fined as the abilities of the player’s tools in the game; for ex-
ample a character in a platforming game may be able to run,
climb, and jump. On the other hand, affordances describe
relationships between the world and actors, or between tools
and actors. Other work taxonomizing level design patterns
in video games also referred to the desired gameplay pro-
duced by these types of structures. For example, in Hullet
and Whitehead’s work with design patterns in single-player
First-person shooter (FPS) levels, the Sniper Location de-
sign pattern is a difficult to reach location with a good view
of the play area, occupied by an enemy [18]. This pattern is
described as forcing the player to take cover. The presence
of other gameplay elements such as Vehicles and Turrets
herald similar gameplay changes [2].

In BOTS, the primary educational goal is to teach students
basic problem solving and programming concepts such as us-
ing functions and loops to handle repetitive patterns. Stu-
dents (with the robot as their tool) must look at puzzles
in terms of opportunities for optimization with loops and
functions. Thus, affordances in BOTS come in the form of
objects or patterns of objects which both provide and com-
municate the presence of, these optimization opportunities.

Though the objects in BOTS signal gameplay patterns, play-
ers building levels in BOTS frequently place them in mis-
leading or irrelevant ways, where the gameplay decisions in-
formed do not lead to a correct or successful solution. For
example, a player can place an extra crate, which communi-
cates that the “Pick Up” command may be used. However,
when the optimal solution to the puzzle does not require this
crate, the affordance of the crate is meaningless and distract-
ing. Similarly, a player could construct a repetitive structure
which affords the use of a ”Function” command to navigate,
but if ignoring or avoiding the structure entirely results in
a better solution, this affordance is also unwanted. Thus,
our primary focus is on the subsets of affordances which in-
volve the core mechanisms in question relating to problem
solving and solution optimization, and through which play-
ers can improve their gameplay outcome in terms of final
score. These are referred to as “Gameplay Affordances” in
remaining sections.

3.2 Level Editors
Specific discussion of the design principles behind the two
level editors used for this study can be found in our previous
work [15]. For the sake of space, we will only generally
discuss those design principles here, instead focusing on the
tools available to users in the different designs.

In all versions of the level editor, levels consist of a 10x10x10
grid, where each grid square can be populated by a terrain
block or an object. Levels must contain at minimum a start
point and goal, and can optionally contain additional goals
which must be covered with movable boxes before the level
will be completed.

Figure 2: The Programming editor interface.

In the Free-Form drag-and-Drop editor, players will be asked
to create a level in a Free-Form editor which uses controls
analogous to Minecraft. Players can click anywhere in the
world to create terrain blocks, and can select objects from
a menu such as boxes, start points, and goals, to populate
the level with objectives. At any point during creation, the
player can save the level (which must, at minimum, contain
a start point and a goal.) The player must then complete the
level on their own before the level is published and available
to other users. In early versions of the Free-form editor,
levels began with a 10x10 floor. However, to partially inhibit
canvas-filling, this was later changed so that the editor now
begins with an entirely blank canvas.

In the Programming Editor (inspired by the Deep Gamifi-
cation framework [6]) players will be asked to create a level
by programming the path the robot will take. To inhibit
canvas-filling, players will be constrained to using a limited
number of instructions. This is analogous to the level cre-
ation tools in BeadLoom Game where players created levels
for various “showcases” under similar constraints. This type
of constraint has been shown to be effective for encourag-
ing players to perform more complex operations in order to
generate larger more interesting levels under the constraints.
One challenge with this approach is that since simple solu-
tions are still permitted, and nearly all programs are syntac-
tically correct, users who are experimenting with the level
creation interface with no goal in mind may create levels
that they themselves do not understand.

In the Building-Block editor, we constrain level creation
by providing meaningful chunks to authors in the form of
“Building Blocks.” This is inspired by problem-posing ac-
tivities as presented in systems like MONSAKUN [17] and
AnimalWatch [1, 4] in which players are asked to build a
problem using data and problem pieces provided by experts.
In this version of the level editor, players will be asked to
create a level only using our “Building Blocks” which are
pre-constructed chunks of levels. These “Building Blocks”
will be partial or complete examples of the patterns iden-
tified in previous work [15], specific structures which corre-
spond to opportunities to use loops, functions, or variables.

Proceedings of the 9th International Conference on Educational Data Mining 80



Figure 3: The Building-Block editor interface.

Again, to inhibit canvas-filling, the player is limited to a
small number of blocks, regardless of those blocks’ size. We
hypothesize that this may lead to better levels because it
explicitly promotes the inclusion of these patterns, which
will lead to opportunities for players to use more complex
programming constructs like loops and functions. We also
believe that this will encourage students to think about op-
timizing the solution to the level while they are making the
level. One potential challenge with this approach is that
students may find these constraints too restrictive, which
might reduce engagement for creatively-oriented players [6].
By evaluating these two versions of a gamified level editor
against each other, we will determine which practices best
suit our game. In particular, which version of the activity
leads to the production of better content for future users.

4. DATA
This paper reports gameplay data from 181 unique user IDs
(48 in the Programming condition, 61 using Block Editor,
72 using Free-Form Editor) across all classes/workshops that
used the BOTS game as part of their activities. In total, 243
levels were created by these players (91 Block / 59 Program-
ming / 93 Free-Form). Of these levels, 9 Block levels and 6
Programming levels were excluded due to bugs in the early
versions of the editors rendering them unplayable after their
creation, and 3 additional levels (1 Block level, 1 Program-
ming level and 1 Free-Form level) were removed due to other
errors, reducing the total number of levels in the sample to
225 levels (81 / 52 / 92). 175 (49 / 33 / 92) of these levels
were published and made public. Additionally, after publi-
cation the game continually enforces a minimum ideal solu-
tion length of 5, automatically setting levels which meet this
criteria to be unplayable. After removing these levels, the
final count of levels examined by our zero-inflation model
was 197 (73, 44, and 80) puzzles, created by 54, 42, and
64 authors. These participants were participants in STEM
workshops organized through SPARCS or other outreach ac-
tivities. Only anonymized game-play data was used for this
analysis, to protect participants. For the Free-Form edi-
tor, levels from previous experiments were used, as well as
anonymous data from other outreach use of the tool, where
the same 90 minute session structure was followed.

The additional data was collected in 90 minute sessions, in
which all students followed the same procedure. First, each
student created a unique account in the online version of
the game. Players then completed the Tutorial up to the
final challenge level which functions as sort of a ”collector”
stage; Players aren’t expected to complete this level with op-
timum score, but exploring this level allows faster students
to continue practicing while the rest of the class catches
up. During the tutorial segment, instructors were told to
prompt players to reread the offered hints for their current
level carefully, if they became stuck, and only to offer more
guidance after the player had carefully read the instructions.
This part of gameplay took 45 minutes. Data collected with
the Free-form editor used an older version of the game with
a longer tutorial. We account for this difference between
groups by including tutorial completion in our models.

For the remaining 45 minutes, students were instructed to
build at least one level in their version of the level editor
interface. After collecting this level, players could continue
creating levels, or could play levels created by their peers.

The way the level editor was selected varied per data col-
lection. In the first set of data collections, (data collected
prior to the implementation of the new editors) all students
used the “Free-Form” level editor to create their levels. To
publish their levels, some students were then required to
submit a solution to their level before it became public, how-
ever this filtering step took place outside of the level editor
and after level creation. Therefore, in this data we make
no distinction between published or unpublished levels in
this condition. One subsequent data collection used only
the “Programming” level editor; this data was initially used
to evaluate some graphical elements the interface design of
that editor. In the remaining data collections, students were
randomly assigned an interface between the “Programming”
editor and the “Building-Block” editor.

To analyze the differences between created levels, we played
each level to find the shortest-path solution from start to
goal, and used a solver to find the shortest program to pro-
duce this optimal solution. As the actual process of solving a
BOTS puzzle would be as complicated as that of a Light-Bot
puzzle [24], we used an algorithm which instead, based on
student solutions, finds the best optimization of the short-
est discovered path in the level. The algorithm used by
the optimization solver is a simple: First, a program that
recreates the shortest-path using only simple commands is
constructed. Then, sets of repeated commands are identi-
fied in this program by treating the commands as words and
identifying repeated n-grams. Then, recursively, each possi-
ble combination of optimization on these n-grams is applied:
either replacing the -gram with a subroutine identifier wher-
ever it appears, or replacing adjacent -grams with a single
instance of that -gram, wrapped in loop commands. After
each step, the program is recursively re-evaluated, until the
shortest, most optimal version of the solution is found. The
shortest-path solution itself is the naive solution which uses
only simple commands such as moving and turning. The op-
timized shortest-path solution is the expert solution which
uses loops and subroutines to optimize the shortest path so-
lution. The difference between these solutions, in terms of
lines of code, is used as a measurement of how well the level

Proceedings of the 9th International Conference on Educational Data Mining 81










