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ABSTRACT 

In association rule mining, interestingness refers to metrics that 

are applied to select association rules, beyond support and 

confidence. For example, Merceron & Yacef (2008) recommend 

that researchers use a combination of lift and cosine to select 

association rules, after first filtering out rules with low support 

and confidence. However, the empirical basis for considering 

these specific metrics to be evidence of interestingness is rather 

weak. In this study, we examine these metrics by distilling 

association rules from real educational data relevant to established 

research questions in the areas of affect and disengagenment. We 

then ask three domain experts to rate the interestingness of the 

resultant rules. We finally analyze the data to determine which 

metric(s) best agree with expert judgments of interestingness. We 

find that Merceron & Yacef (2008) were right. Lift and cosine are 

good indicators of interestingness. In addition, the Phi 

Coefficient, Convinction, and Jaccard also turn out to be good 

indicators of interestingness.  

Keywords 
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1. INTRODUCTION 
In recent years, Association Rule Mining has become a central 

method in the field of Educational Data Mining. It plays a 

prominent role in reviews of the field, including reviews by 

Romero & Ventura (2007, 2010), Baker & Yacef (2009), Scheuer 

& McLaren (2012), and Baker & Siemens (in press), referred to 

this method as a core type of relationship mining.  In Association 

Rule Mining, algorithms search for patterns where a set of values 

of variables (the “if-clause”) predict another variable’s value (the 

“then-clause”). (It is also possible for a then-clause to have 

multiple variables, but less common). 

In these reviews, it was noted that Association Rule Mining has 

several potential applications. It is excellent for generating 

 

hypotheses to study further, and for finding unexpected 

connections within data.  

Association Rule Mining has been applied to several applied 

research problems within the educational data mining community 

and related research communities. Some notable examples 

include: Freyberger and colleagues have used association rules to 

analyze interactions between students and intelligent tutoring 

systems, in order to find models that predict student's success 

(Freyberger, Heffernan & Ruiz, 2004); Lu (2004) used association 

rules to match suitable learning materials based on each student 

learning needs; Garcia, Romero, Ventura & De Castro (2009) 

have used association rules to make recommendations to 

instructors for how to improve the effectiveness of a web adaptive 

course; in a similar example, association rules have been 

implemented to provide information to teachers about students’ 

behavior in intelligent tutoring systems (Ben-Naim, Bain & 

Marcus, 2009).  

A subset of Association Rule Mining, Sequential Pattern Mining, 

has also seen extensive use in the educational data mining 

community, as well as being highlighted in reviews of the field 

(e.g. Romero & Ventura, 2007; Baker & Yacef, 2009; Scheuer & 

McLaren, 2012; Baker & Siemens, in press). Sequential Pattern 

Mining consists of finding association rules where the contents of 

the then-clause occur temporally after the contents of the if-clause 

(Agrawal & Srikant, 1995). In the case of educational data 

mining, Kinnebrew, Loretz, & Biswas (2012) have used 

Sequential Pattern Mining to analyze how students engage in the 

different activities within an intelligent tutoring system over time, 

in particular studying the different sequences seen in high-

performing and low-performing students. In another example, 

Perera et al. (2009) used Sequential Pattern Mining to analyze 

how groups of students use online tools, studying the work 

patterns of successful and unsuccessful groups, in order to provide 

feedback to the groups about their work strategies.  One more 

example in education comes from the research done by Romero, 

Ventura, Delgado & De Bra (2007), who integrated Sequential 

Pattern Mining techniques in an algorithm within an educational 

system in order to provide personalized recommendations to 

students about possible links they should explore. 

Association rules are typically initially selected on the basis of 

rules’ confidence and support (Agrawal & Srikant, 1995). The 

support of a rule corresponds to the percentage of data points that 

contain both the if-clause and then-clause. The confidence of the 

rule is expressed as the percentage of data points that contain both 
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the if-clause and also includes the then-clause, divided by the 

number of data points that contain the if-clause (Garcia, Romero, 

Ventura & Calders, 2007).  

However, the combination of support and confidence is 

insufficient to select good association rules. By definition, support 

and confidence find variable values that are frequently seen 

together. As such, these metrics often end up selecting 

combinations of variable values that are trivially associated, such 

as finding that students who take advanced biology probably took 

introductory biology, or finding that students who fail a course’s 

exams fail the course as well.  

What is desirable is to instead find association rules that are 

novel, that are surprising, that are unexpected. Frequently, after 

rules are filtered by looking for all rules with a minimum support 

and confidence, the next step is to use an alternate metric that can 

give some indicator of novelty; that can determine if an 

association rule is interesting. 

To this end, researchers have tried to decide which metrics best 

capture an association rule’s interestingness, both in general (Tan, 

Kumar & Srivastava, 2004), and in the specific case of 

educational data mining (Meceron & Yacef, 2008). Merceron and 

Yacef (2008) recommend Lift/Added Value (Lift and Added 

Value are mathematically equivalent) and Cosine as excellent 

interestingness measures for educational data because their 

meaning is easily understood even to people not expert in data 

mining (e.g., teachers, school administrators, and so on); in 

addition, Cosine does not depend on the data set size. In 

particular, they recommend that researchers consider an 

association rule to be interesting if it has a high value for either of 

these measures. 

Moreover, there are additional metrics identified that have the 

potential to measure interestingness. Tan et al. (2004) review the 

potential candidates for an interestingness measure, finding over 

twenty in the published literature. Their list includes lift and 

cosine, but also includes the Phi coefficient, Goodman-Kruskal’s, 

the Odds ratio, Yule’s Q, Yule’s Y, Cohen’s Kappa, Mutual 

information, the J-Measure, the Gini Index, Laplace, Conviction, 

Piatetsky-Shapiro,  Certainty Factor, Added Value, Collective 

strength, Jaccard, and Klosgen. Such variety of possible 

interestingness measures has made it complicated to identify 

which one is the most appropriate.  

Further complicating the matter of choosing an appropriate 

interestingness measure (or measures) is the fact that the research 

on interestingness measures has thus far been mathematical or 

intuitive: interestingness measures have been selected based on 

their mathematical properties, and in some cases based on the 

intuitive perceptions of expert data miners. 

In this paper, we consider an alternate strategy for selecting 

interestingness measures: using data mining to determine which 

interestingness measure is best, based on expert judgments of 

interestingness. In other words, instead of selecting a metric 

formally or intuitively, we can actually collect data on which 

association rules are seen as being the most interesting by domain 

experts, the population that could best take advantage of new 

hypotheses and unexpected findings in a domain. We then analyze 

this data to determine which metrics, or combination of metrics, 

best matches the domain experts’ perception of specific rules’ 

interestingness. 

In the following sections, we take real data from online learning. 

We then distill association rules for that data relevant to 

established research questions in the field. We then ask three 

domain experts to rate the interestingness of the resultant rules. 

We finally analyze the data to determine which metric(s) best 

agree with expert judgments of interestingness. In doing so, we 

will explicitly compare our findings to claims in Merceron & 

Yacef (2008) as to which metrics best represent interestingness. 

2. Method 

2.1 Data 
In order to study domain experts’ assessments of which 

association rules are interesting, we generated association rules 

from real student data, relevant to established research questions 

in the field. We use domain experts, under the hypothesis that 

what experts consider interesting may be different than what 

novices consider interesting (and we believe that finding rules that 

are interesting for an expert is a more valuable use of association 

rule mining, though opinions could differ). We use genuine data 

to create these rules rather than simulated data, due to the concern 

that the metrics that predict the interestingness of genuine data 

may not be the same as the metrics that predict interestingness in 

simulated data. This would be a particular concern if the 

simulated data were to produce association rules that were 

actually false; and using generic operators would eliminate the 

potential to leverage domain expertise. 

To this end, we used models that assess student affect and 

disengaged behaviors within a widely-used online learning 

environment, to examine association rules about the relationships 

between student´s affect and disengaged behaviors. The study of 

student disengagement and affect has been a research topic of 

considerable interest to researchers in EDM and related fields. 

Sabourin, Rowe, Mott, & Lester (2011) have analyzed the relation 

between engaged and disengaged behaviors with positive and 

negative affective states in students while interacting with a 

learning system, finding that different patterns of affect correlate 

to engaged and disengaged behaviors. Hershkovitz, Baker, 

Gobert, & Nakama (2012) have found evidence that boredom 

mediates between the student´s tendency to avoid novelty and off-

task behavior. Baker, D’Mello, Rodrigo & Graesser (2010) find 

that gaming the system is often preceded and followed by 

boredom. Chauncey & Azevedo (2010) show a relationship 

between induced affect and cognitive engagement/meta-cognition, 

leading to differences in performance. 

These rules were generated from data from the ASSISTments 

system (Razzaq, Heffernan, Feng & Pardos, 2007). ASSISTments 

is an educational web-based system that provides students with 

intelligent tutor-based online problem solving activities, while 

providing teachers with dynamic formative assessment of the 

students’ mathematical abilities. The system has been found to be 

effective at enhancing student learning. (Razzaq et al., 2007), and 

is used by over 50,000 students a year. Figure 1 shows a screen 

shot of the ASSISTment system. 

Data was obtained  from the logs of 724 middle school students 

from the Northeastern United States, who answered different 

problems that measure 70 different mathematics skills. Within this 

data set, there were a total of 107,382 problems solved by 

students within the ASSISTment software. Student actions in this 

data set were classified in terms of affective states and disengaged 

behaviors from machine-learned affect and behavior detectors. 

The detectors inferred if the student:  
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 was detected as being bored or not, 

 was detected as being concentrated or not, 

 was detected as being frustrated or not, 

 was detected as being confused or not, 

 was detected as being on task or off task, 

 was detected as being gaming the system or not, 

 

The following  additional features were also included in the data 

set:  

 the student providing a correct answer  

 the student providing an incorrect answer 

 the student asking for a hint. 

 

 

Figure 1. Example of an ASSISTment item 

 

The detection of these binary categories of affective 

states/behaviors was done using the detectors presented in Pardos 

et al (2013). These detectors were developed by distilling features 

of the students´ interactions with the software, and synchronizing 

those features with field observations collected by two trained 

coders during the students’ interactions with ASSISTments. The 

log data entry and the field observations were synchronized and 

segmented in 20 second windows to develop the detectors. 

Detector performance was evaluated using student-level cross-

validation (5-fold). All detectors performed substantially better 

than chance, being able to distinguish each affective 

state/behavior between 63%-82% of the time (the A’ statistic), 

performance that was 23%-51% better than chance (the Kappa 

statistic). The detectors provide confidence values of the 

probability that an affective state or behavior occurred. To support 

the association rule mining analyses discussed below, we convert 

these probabilities into binary predictions, using a 50% 

probability threshold (the Kappa values listed above represent the 

model goodness when this transformation is used). Pardos et al. 

(2013) and San Pedro et al. (2013) provide a detailed description 

of the detectors and their use in multiple discovery with models 

analyses. Table 1 summarizes the frequency and proportion of 

each of these behaviors/affective states. Regarding table 1, it 

shows some of the average confidences are higher than what 

should be expected. Here we point out that, as it is indicated in 

San Pedro et al. (2013), some detectors used in the current 

research presented some systematic error in prediction, which 

impacted in a higher or lower average confidence of the resultant 

models compared to the proportion of the affective states in the 

original data set. This type of bias does not affect correlation to 

other variables since relative order of predictions is unaffected, 

neither affects A’ or Kappa, but it can reduce model 

interpretability. We did not rescaled the detectors, as it is 

proposed in Pardos et al. (2013) since we are considering final 

binary predictions from the detectors, where Kappa is the relevant 

goodness statistic, we use non-rescaled confidences in this paper. 

The association rules were created in way that each rule described 

how a set of the affective states/ behaviors seen in the first attempt 

at a problem was associated with a single affective state or 

behavior in the student’s first action on the next problem. In this 

analysis, simple association rules were created that predicted 

affect or behavior from a combination of the elements at the 

previous action. 

2.2 Generation of Association Rules 
Association rules were created using the arules package (Hahsler, 

Gruen, & Hornik, 2005; Hahsler et al., 2009) in R version 2.15.2 

(R Development Core Team, 2012). In specific, the apriori 

algorithm implemented within the arules package was used to 

discover the association rules (Agrawal et al., 1994). This process 

in R resulted in a list of 431,768 rules, for which support, 

confidence, and lift were automatically computed. A total of 120 

different association rules were selected from the 431,768 

measures obtained; these 120 rules were selected to be the rules 

with the highest support and confidence that were representative 

of different numbers of elements in the if-clauses and were 

representative of all variables in the then-clauses of the rules. All 

rules selected had a support over 0.05 and confidence over 0.1; 

most were considerably higher.  

Table 1. Frequency and average confidence for each affective 

/behavioral state in the data 

  

Frequency Percentage 

Rescaled 

Average 

Confidence 

Bored 52080 48.49 0.2469 

Engaged 

concentration 
47854 44.56 0.5160 

Frustrated 10929 10.17 0.0988 

Confused 20308 18.91 0.1372 

Off-Task 18135 16.88 0.0406 

Gaming the 

system 
9805 9.13 0.0182 

Used Hints 16216 0.15  

Answer was 

Correct 
45116 0.42  

 

2.3 Expert Rating of Association Rules 
Once the rules had been created, they were rated for their 

interestingness by domain experts. In specific, four scientific 

researchers with scientific expertise in the areas of affect and 

disengagement in online learning. They rated the extent to which 

each of the 120 association rules was “scientifically interesting”. 
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A Likert scale was used in rating, ranging from 1 to 5, where 1 

was “Not at all interesting” and 5 was “Extremely interesting”. 

Based on these expert ratings, the average inter-rater 

interestingness value was calculated for each rule, giving an 

indicator of how interesting the experts found each rule. In 

addition, measures of the degree of agreement between the experts 

were calculated, and are discussed in Section 3.1.  

 

2.4   Computing Association Rule Metrics 
After the expert coders rated the 120 selected association rules, 

additional interestingness measures from Tan et al. (2004) were 

computed in Microsoft Excel. The following metrics were 

computed for each rule:  

 Phi Coefficient  

 Cosine 

 Piatetsky-Shapiro 

 Jaccard, Laplace 

 Certainty Factor 

 Added Value 

 Klosgen 

 Odds Ratio 

 Cohen’s Kappa 

 Gini Index 

 Conviction 

 J Measure 

 Collective Strength 

 

In addition, non-standard metrics were created, under the 

hypothesis that these metrics might also capture some key aspects 

of expert perception of interestingness in this domain, where an 

expert might be looking for evidence of successful students or 

unsuccessful students: 

 The number of elements in a rule with values equal to 

Yes, Correct, and/or On task behavior. 

 The number of elements in a rule with values equal to 

No, Incorrect, and/or Off task behavior. 

3. Results 
The findings of the research are presented in this section. First, 

examples of some association rules rated as very interesting, not 

interesting, and with mixed rating, are presented. Then, results 

about the inter-rater agreement are included. Finally, correlations 

between the experts´ ratings and the association metrics are 

described, and regression models are presented that make 

combined predictions of expert ratings from a combination of 

association metrics. 

3.1 The Most and Least Interesting Rules 
As discussed in the previous section, each rule was rated for 

perceived interestingness by each of the four expert coders. 

Below, we present some of the most interesting and least 

interesting rules, in their perception. Note that each rule 

represents a transition from time t1 (left side of rule) and time t2 

(right side of rule). Note also that rules are presented with the 

exact same operators as generated by the algorithm, which means 

that some redundancy is present. 

The most interesting rules according to the experts (e.g. the rules 

with the highest average interestingness) were:  

{Got incorrect answer, not frustrated}  {Gaming the system} 

{Gaming the system, bored, not in engaged concentration, got the 

incorrect answer and did not request a hint}}  {Confused} 

{Off-task, confused, not bored, got the correct answer, and did not request 

a hint}   { Off-task} 

The following rules were rated as least interesting by the experts 

(in terms of average rating). 

{In engaged concentration, did not request a hint, not bored or frustrated 

or confused or off-task or gaming the system}   {Off-task} 

{In engaged concentration, got correct answer, did not request a hint, not 

frustrated or confused or off-task or gaming }   {Not gaming the 

system} 

{In engaged concentration, got correct answer, did not request a hint, not 

bored or frustrated or confused or off-task or gaming the system}  {Not 

frustrated} 

However, some rules obtained a high rating from two experts but 

low rating from the other two: 

{Got incorrect answer, did not request a hint, not in engaged 

concentration or frustrated or off-task or gaming}  {Confused} 

{Got incorrect answer, did not request a hint, bored, not concentrated or 

frustrated or confused or gaming}  {Not being frustrated} 

The first of these rules was rated as not interesting by two 

members of the same research group (experts 2 and 3 below) but 

rated as very interesting by two members of other research groups. 

The second rule, however, was rated highly by experts 1 and 2, 

who belong to different research groups, and it was rated as less 

interesting by experts 3 and 4. 

3.2 Agreement among raters 
Though there was generally good agreement between experts, 

some rules led to disagreement between the coders in terms of 

interestingness, as shown above. To see the degree of agreement 

(and to evaluate whether it was feasible to use these expert codes 

as a basis for studying which metrics best evaluate 

interestingness), we checked to make sure there was consistency 

among the four domain experts, using multiple metrics. The 

estimated Cronbach´s Alpha coefficient for the consistency in 

rating among the four experts was 0.845, which indicates there is 

a high covariation among experts in their ratings of 

interestingness of different rules. The general Intraclass 

Correlation for the agreement among the four raters was 0.487, 

which indicates a moderate agreement among the experts (Bartko, 

1966). It is worth noting that while Cronbach’s Alpha expresses a 

measure of covariation in the ratings among experts, Intraclass 

Correlation estimates reliability as the magnitude of 

disagreement/agreement among the experts (Hallgren, 2012). 

Hence, the difference among both measures reflects a discrepancy 

of what each statistic estimates. In the context of our results, these 

statistics mean that while the experts showed consistency in the 

way they rated each rule, only a moderate agreement among 

experts was achieved. 

Additionally, Spearman correlation coefficients were calculated to 

determine the degree of agreement between each pair of experts 

based on their rating of interestingness to the 120 association 

rules. Results of the Spearman correlation coefficients are 

included in the table 2, which indicate there was a significant 

degree of consistency among the four experts. As this table shows, 

all four experts had a reasonable degree of consistency, but 

experts 1 and 2 showed higher agreement with each other, while 

experts 3 and 4 had higher agreement with each other. Overall, 

there was moderate to high agreement among the experts in their 

rating of interestingness of different association rules. 
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Table 2. Spearman correlation coefficients among experts. 

 
Expert 1 Expert 2 Expert 3 Expert 4 

Expert 1 1 
   

Expert 2 .744 1 
  

Expert 3 .548 .590 1 
 

Expert 4 .580 .516 .674 1 

 

3.3 Correlation between expert judgments 

and association metrics 
Though there was some structure in terms of agreement (e.g. 

coders 1 and 2 agreed more, and coders 3 and 4 agreed more), the 

overall agreement between coders was sufficient to create a single 

metric representing the interestingness of each rule. This metric 

was created by taking the average of the four coders’ ratings for 

each rule.  

Next, Spearman correlation coefficients were calculated to 

analyze the degree of association between the expert ratings of 

interestingness and the metrics of interestingness computed in R 

(R Development Core Team, 2012; Gamer et al., 2012; Fletcher, 

2010) and Excel. The resultant correlation coefficients are 

presented in Table 3. This table shows that the experts’ ratings of 

interestingness were highly correlated with some association rule 

measures. 7 of the 24 metrics were more highly correlated with 

the expert ratings of interestingness than the experts’ ratings of 

interestingness correlated with one another, on average. The most 

highly correlated metrics were Jaccard (r= -0.838), Cosine (r= -

0.835), and Support (r = -0.82).  As shown in Table 3, the metrics 

that agreed least well with expert ratings of interestingness were 

Added Value (r= -0.014) and Kappa (r=-0.029). Merceron & 

Yacef’s (2008) recommendation to use Cosine agrees with our 

findings here; their recommendation to use Lift does not, at least 

initially. But they recommend using these metrics in concert, not 

individually. In the next section, we consider what mixture of 

metrics best predicts human judgments of interestingness. 

 

3.4 Predicting Expert Perception of 

Interestingness from a Combination of Metrics 
 

After looking at the predictive power of each metric, taken 

individually, we built a model that predicted expert judgments 

using a combination of metrics. Doing so may allow us to create a 

meta-metric that could be a better representation of interestingness 

than any single metric by itself. 

A linear regression model was created to predict the average 

expert judgment of interestingness. For this full model, no 

variable selection was conducted – e.g. all metrics listed above 

were incorporated into this model. Although the model had 

statistically significant fit statistics (r= 0.938, r2 = 0.879, Cross-

validated r2 =0.73, AIC = 123.2702, BIC = 181.8075; F(19, 100) 

= 38.24, p-value = 0.001), it also had a high degree of 

multicollinearity among the predictors, measured by the Variance 

Inflation Factor (VIF). Multicollinearity can lead to over-fitting, 

as well as making it very difficult to interpret the estimated values 

for the regression coefficients and their standard errors. This 

model is reported in table 4.  

 

Table 3. Spearman correlation among inter-rater average and 

association rules metrics. 

  
Correlation to 

Inter-Judge 

Average 

p-value 

Jaccard -0.838 <0.001 

Cosine -0.835 <0.001 

Support -0.82 <0.001 

Certainty Factor 0.775 <0.001 

Confidence -0.747 <0.001 

Laplace rule -0.647 <0.001 

Count var. of 1´s -0.609 <0.001 

Conviction -0.432 <0.001 

Count var. of 0´s -0.368 <0.001 

Klosgen -0.327 <0.001 

Gini Index -0.32 <0.001 

Odds Ratio -0.31 0.001 

Yule's Q -0.31 0.001 

Yule's Y -0.31 0.001 

Piatetsky-Shapiro -0.303 0.001 

J Measure -0.303 0.001 

Collective Strength -0.298 0.001 

Phi Coefficient -0.29 0.001 

Lift 0.202 0.027 

Kappa -0.029 0.754 

Added Value -0.014 0.876 

 

Table 4. Regression model with all association rules metrics 

and counting variables as predictors 

Predictor Coeff S.E. T P-val VIF 

Intercept 106.44 33.13 3.21 0.001  

Count var. of 1´s -0.042 0.097 -0.43 0.664 4.2 

Count var. of 0´s -0.01 0.081 -0.13 0.896 13.3 

Support 44.085 19.83 2.22 0.028 2375.2 

Confidence 0.899 1.617 0.55 0.579 230.6 

Lift -28.56 13.46 -2.12 0.036 2117.1 

Phi Coefficient 47.673 26.51 1.79 0.075 1422.1 

Cosine 34.443 47.58 0.72 0.470 24213.7 

Piatetsky Shapiro -80.69 509.0 -0.15 0.874 18302.8 

Jaccard -108.6 57.81 -1.87 0.063 16274.3 

Laplace -10.62 9.39 -1.13 0.260 3832.8 

Certainty Factor -17.37 8.473 -2.05 0.042 347.8 

Added Value 49.036 36.95 1.32 0.187 2257.6 

Klosgen -78.83 187.3 -0.42 0.674 6543.2 

Odds Ratio -0.235 4.097 -0.05 0.954 10700.1 

Kappa 172.97 70.26 2.462 0.015 6245.3 

Gini Index -437.2 283.4 -1.54 0.126 712.7 

Conviction -2.369 5.516 -0.42 0.668 7758.5 

J Measure 1038.7 502.4 2.068 0.041 1851.9 

Collective Strength -68.02 36.70 -1.85 0.066 8265.7 
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A second linear regression model was tested including just 

statistically significant association metrics as predictors with small 

multicollinearity among them. The predictors excluded from this 

analysis were: Support, Confidence, Piatesky Shapiro, Jaccard, 

Laplace, Certainty Factor, Added Value, Klosgen, Odds Ratio, 

Kappa, Gini Index, J Measure, and Collective Strength. Those 

omitted predictors presented moderate to high correlations with 

one or more association metrics included in the model 

summarized in table 5. The criteria for exclusion were high 

correlations among the predictors that, consequently, resulted in 

VIF values higher than 10 for a given model. 

Results of this second regression model showed that two 

association rule metrics –Lift and Conviction– had a positive 

prediction coefficient, while other two metrics – the Phi 

Coefficient and Cosine– had a negative coefficient. The model fit 

statistics were statistically significant and explained almost as 

much of the variance as the full model, which achieved a  

substantially higher cross-validated correlation (r= 0.902, r2 = 

0.814, Cross-validated r2 =0.791, AIC = 144.4186, BIC = 

161.1436; F = 126.4, df1 = 4, df2 = 115, p-value = 0.001). Table 5 

summarizes the second regression model. The lower values of 

BIC in the second model confirm it is a better and more simple 

model compared with the former one. 

Table 5. Regression model with association rules metrics with 

restriction for multicollinearity 

Predictor Coeff S.E. T P-val VIF 

Intercept 0.404 1.023 0.395 0.6937  

Lift 3.848 0.790 4.870 <0.001 5.477 

Phi Coef. -11.179 2.220 -5.034 <0.001 7.491 

Cosine -5.783 0.585 -9.880 <0.001 2.752 

Conviction 0.469 0.116 4.013 <0.001 2.616 

 

Although Jaccard presented the highest correlation with the inter-

rater average score, it also presented a very high correlation with 

many other metrics, including Cosine (r = 0.96). Thus, many 

models that included Jaccard also presented a high degree of 

multicollinearity among the predictors; as a consequence, Jaccard 

was excluded in the combined model presented in table 5. Table 6 

demonstrates a model similar to the model in table 5 but replacing 

Cosine with Jaccard. The model in this case was not better in 

terms of multicollinearity and was only slightly better in terms of 

goodness-of-fit (r = 0.908, r2 = 0.825, Cross-validated r2 =0.81, 

AIC = 137.5014, BIC = 164.2263; F(4, 115) = 135.6, p-value = 

<0.001). 

Table 6. Regression model including Jaccard instead of Cosine 

Predictor Coeff S.E. T P-val VIF 

Intercept 0.547 0.986 0.556 0.579  

Lift 3.502 0.778 4.496 <0.001 5.638 

Phi Coef. -7.528 2.370 -3.177 0.002 9.038 

Jaccard -8.896 0.847 -10.49 <0.001 2.780 

Conviction 0.207 0.121 1.721 0.088 2.945 

 

Regression models were also computed for each individual metric 

used in the combined models. The results, which are summarized 

in table 7, show that single-feature models presented less 

desirable fit statistics (i.e., r2, AIC, and BIC) than the combined 

model. The model including just Jaccard as predictor has the best 

fit statistics among the single-variable models (with Cosine close 

behind), but the combined model is still superior. 

.  

Table 7. Regression models with single predictors 

Predictor 
Coeff – Intercepet 

(S.E.) 
p Fit Stats. 

Lift 
2.81*Lift – 0.80 

(0.729) 
<0.001 

R2 = 0.112 

CV-R2= 0.074 

AIC = 326.43 

BIC = 334.79 

Phi  

Coefficient 

-6.744*Phi + 2.78 

(1.754) 
<0.001 

R2 = 0.111 

CV-R2= 0.098 

AIC = 326.56 

BIC = 334.93 

Cosine 
-7.72*Cosine + 5.39 

(0.387) 
<0.001 

R2 = 0.771 

CV-R2= 0.754 

AIC = 163.71 

BIC = 172.07 

Conviction 
-0.69*Conviction + 3.2 

(0.152) 
<0.001 

R2 = 0.149 

CV-R2= 0.119 

AIC = 321.24 

BIC = 329.61 

Jaccard 
-11.56*Jaccard + 4.84 

(0.552) 
<0.001 

R2 = 0.787 

CV-R2= 0.779 

AIC = 154. 84 

BIC = 163.21 

 

4. Discussion and Conclusions 
As seen in this paper, several standard association rule metrics can 

predict human expert ratings of interestingness of an association 

rule. Most commonly used interestingness metrics showed 

statistically significant correlations with the experts’ ratings of 

interestingness, but not all of them were included in the final 

combined model given the high common variation among them. 

The best metrics – Jaccard, Cosine, and Support – achieved an 

absolute correlation higher than 0.80 with the average expert 

human judgment, which is higher than the average correlation of 

the ratings between experts. Hence, we see that these association 

metrics are a good substitute for human ratings of interestingness 

In particular, our findings agree with Merceron and Yacef (2008) 

that Cosine and Lift are useful, as they were successful predictors 

in the final combined model in this data set. Taken individually, 

Cosine was good predictor, while Lift explained considerably less 

variance. The association metric Cosine consistently had a high 

negative correlation with the raters’ scores of interestingness and 

significantly predicted expert ratings of interestingness, both in a 

single-predictor model and in combination with other association 

metrics. The association metric Lift had a positive correlation and 

significantly predicted the average score of interestingness among 

the experts in combination with other metrics and in a single-

predictor model; however, Lift was relatively weak compared to 

other metrics when taken by itself.  

However, one surprise is that Cosine, while important in both our 

findings and in Merceron & Yacef, was correlated to 

interestingness in the negative direction in our findings (i.e. low, 

while Merceron & Yacef recommend looking for high Cosine). 

This finding is surprising, and merits further study. One 

possibility is that once support and confidence are accounted for, 
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then interestingness links in some ways to rarity. Perhaps that is 

not surprising –facts that are already known are not particularly 

interesting– but it does show that the association rule mining 

conception of interestingness may not quite match intuitive 

notions of this construct. In our view, this finding is itself 

impressive. In general, this result suggests that Cosine is indeed 

important, but may reflect interestingness in a different way than 

previously understood.  

In addition, other association rule metrics – the Phi Coefficient, 

Conviction and Jaccard – that have not been widely used in 

educational data mining also explained a significant proportion of 

the variance in the combined model and a in single-predictor 

models. Therefore, it might be useful to also consider these 

metrics in future research using association rule mining in 

educational data sets. 

On the whole, results in this study show that the recommended 

metrics of interestingness proposed by Merceron and Yacef 

(2008) are useful, as well as other metrics not considered by those 

authors.   

It is worth considering some limitations of this study. First, only 

linear correlations and linear regression models were considered. 

Although these approaches achieved good fit to the data, and 

explained much of the variance, it could be useful to consider 

models with non-linear relations among the association rules 

metrics and the expert ratings. Second, given the high correlation 

among different association rules metrics, other measures could be 

considered as alternative predictors of the inter-rater score of 

interestingness instead of the four measures chosen in the final 

regression model reported. Third, this paper represents a single 

analysis in a single educational research domain. Results might 

vary in a different educational research domain, or indeed outside 

of education. However, the fact that Cosine and Lift were 

prominent both in our models and in the recommendations in 

Merceron & Yacef (2008) is a positive sign, given that their work 

involved a very different area of educational research.  

Overall, the use of association mining to understand complex and 

interesting relations among different variables is a method with a 

lot of potential in educational data mining research. Association 

rules can be understood at an intuitive level, and can provide 

useful information for a variety of stakeholders who are not 

experts in EDM, including students, teachers, administrators, and 

policy makers. However, given the huge numbers of association 

rules that can be generated, it is important to try to filter not just 

by support and confidence, but by interestingness as well. By 

using the metric or combination of metrics that matches an 

intuitive conception of interestingness, we can provide the most 

interesting information to users of association rules first, 

improving the efficiency of this method.  
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