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ABSTRACT 

The goal of this paper is to use Knowledge Tracing to augment 

the results obtained from an experiment that investigated the 

effects of practice schedules using an intelligent tutoring system 

for fractions. Specifically, this experiment compared different 

practice schedules of multiple representations of fractions: 

representations were presented to students either in an interleaved 

or in a blocked fashion. The results obtained from posttests 

demonstrate an advantage of interleaving representations. Using 

methods derived from Knowledge Tracing, we investigate 

whether we can replicate the contextual interference effect, an 

effect commonly found when investigating practice schedules of 

different task types. Different Knowledge Tracing models were 

adapted and compared. A model that included practice schedules 

as a predictor of students’ learning was most successful. A 

comparison of learning rate estimates between conditions shows 

that even during the acquisition phase, students working with 

interleaved representations demonstrate higher learning rates. This 

finding stands in contrast to the commonly found contextual 

interference effect when interleaving task types. We reflect on the 

practical and theoretical implications of these findings.  
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1. INTRODUCTION 
Educational data is highly complex, not only because learning is a 

complex process, but also because educational materials are 

complex. Learning materials in realistic educational settings 

generally cover a number of educational topics and use multiple 

representations. There is a substantial amount of evidence 

demonstrating that the use of multiple representations has a 

significant impact on students’ learning [2,12]. When designing 

educational software that uses multiple representations, designers 

must decide how to temporally sequence the representations. In 

particular, it may matter whether representations are presented in 

a “blocked” manner (e.g., A – A – B – B) or in an interleaved 

manner (e.g., A – B – A – B). Research on contextual interference 

shows that interleaving task types leads to better learning results 

than blocking task types [7]. When working with multiple 

representations, a relevant question is whether practice with the 

different representations should be blocked or interleaved.  

In the present paper we use log data obtained from an in vivo 

experiment (i.e., a rigorously controlled experiment in a real 

educational setting) that uses a successful type of intelligent 

tutoring system to help students learn about fractions while 

varying the practice schedule of multiple graphical 

representations. The experiment investigated the effect of practice 

schedules of graphical representations on students’ knowledge of 

fractions assessed by posttests after they worked with the tutoring 

system. The goal of the present paper is to augment the findings 

from the traditional analysis of posttest data by applying a 

Knowledge Tracing algorithm to the log data. Analyzing student 

performance during the acquisition phase is particularly 

interesting when investigating the effects of practice schedules: a 

common finding is that interleaved practice schedules lead to 

better long-term retention and to better transfer than blocked 

schedules, but they often lead to worse performance during the 

acquisition phase [7]. Knowledge tracing, which tracks student 

knowledge over time, can be used to investigate learning 

differences between conditions during the acquisition phase [9].  

In order to analyze the effect of practice schedules of multiple 

graphical representations on students’ performance during the 

acquisition phase, we use a Bayesian Network model based on 

Knowledge Tracing [5]. Knowledge Tracing uses a two state 

Hidden Markov Model assumption of learning which uses correct 

and incorrect responses in students’ problem-solving attempts to 

infer the probability of a student knowing the skill underlying the 

problem-solving step at hand. Previous research has demonstrated 

that extensions of knowledge tracing can be used to analyze 

effects of experimental conditions [9]. We combined this model 

with several other extensions to Knowledge Tracing to each of the 

four experimental conditions of the experimental study to 

investigate differences in model learning rates between the 

conditions in the Fractions Tutor. 

The findings from the present paper are applicable to many other 

settings. Multiple graphical representations are used in a large 

variety of domains including science and mathematics. Whether 

to block or interleave representations is an important practical 

question in all of these domains.  

2. THE FRACTIONS TUTORING SYSTEM   
The Fractions Tutor used in the experiment was a type of 

Cognitive Tutor. Cognitive Tutors are grounded in cognitive 

theory and artificial intelligence. Cognitive Tutors have been 

shown to lead to substantial learning gains in a number of studies 

[6]. We created the tutors used in the present experiment with the 

Cognitive Tutor Authoring Tools (CTAT [1]. The design of the 

interfaces and of the interactions students engage in during 

problem-solving are based on a number of small-scale user studies 

that we conducted in our laboratory, as well as on Cognitive Task 

Analysis of the learning domain [3].  

The Fractions Tutor included three interactive graphical 

representations of fractions (circles, rectangles, and number lines) 

and covered a comprehensive set of task types ranging from 

identifying fractions from graphical representations, creating 

graphical representations, reconstructing the unit of unit fractions 

and of proper fractions, identifying improper fractions from 

graphical representations, and creating graphical representations 

of improper fractions. Students solved each problem by 

interacting both with fractions symbols and with the interactive 

graphical representations. As is common with Cognitive Tutors, 

students received error feedback and hints on all steps. In 



 

addition, each problem included conceptually oriented prompts to 

help students relate the graphical representations to the symbolic 

notation of fractions. These prompts were shown to be effective in 

an earlier study with the Fractions Tutor [12]. 

3. EXPERIMENT AND DATA 
T Blocked Moderate Interleaved Increased 
1 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n c-c-c-c-c-c 

2 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n c-c-c-c-c-c 

3 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n r-r-r-r-r-r 

4 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n r-r-r-r-r-r 

5 c-c-c-c-c-c n-n-n-c-c-c c-r-n-c-r-n n-n-n-n-n-n 

6 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n n-n-n-n-n-n 

1 r-r-r-r-r-r r-r-r-n-n-n c-r-n-c-r-n r-r-r-n-n-n 

2 r-r-r-r-r-r n-n-n-c-c-c c-r-n-c-r-n n-n-n-c-c-c 

… … … … … 

1 n-n-n-n-n-n n-n-n-c-c-c c-r-n-c-r-n c-r-n-c-r-n 

2 n-n-n-n-n-n c-c-c-r-r-r c-r-n-c-r-n c-r-n-c-r-n 

… … … … … 

Table I. Practice schedule for each condition for all six task types 

(T). Each T was revisited three times. Students worked on nine 

problems per T. Each letter stands for one tutor problem and its 

representation: circle (c), rectangle (r), or number line (n). 

The data used in this paper is based on an experimental study 

conducted with the Fractions Tutor during the end of the school 

year of 2009/2010. A total of 527 4th- and 5th-grade students 

from six different schools (31 classes) in the Pittsburgh area 

participated in the study during their regular mathematics 

instruction. We excluded students who missed at least one test 

day, and who completed less than 67% of all tutor problems (to 

ensure that students in the blocked condition encountered all three 

representations). This results in a total of N = 230 (n = 63 in 

blocked, n = 53 in moderate, n = 52 in fully interleaved, n = 62 in 

increased). Students worked with the Fractions Tutor for about 5h. 

Table I illustrates the practice schedules of task types and 

representations for the experimental conditions. In all conditions, 

students worked on the same sequence of task types and revisited 

each task type three times. Students were randomly assigned to 

one of four conditions. In the blocked condition, students 

switched between the graphical representations after 36 problems. 

In the moderate condition, students switched representations after 

every three or six problems. In the fully interleaved condition, 

students switched representations after each problem. In the 

increased condition, the length of the blocks was gradually 

reduced from twelve problems at the beginning to a single 

problem at the end. To account for possible effects of the order of 

graphical representations, the order in which students encountered 

graphical representations was also randomized. 

For the experiment, students’ knowledge of fractions was assessed 

at three test times: before their work with the Fractions Tutor, 

immediately after, and one week after students finished working 

with the Fractions Tutor. The tests included four knowledge types: 

area model problems (i.e., problems that involved circles and 

rectangles), number line problems, conceptual transfer, and 

procedural transfer. The results from the test data (described in 

more detail by [11]) showed that the fully interleaved condition 

performed significantly better than the blocked condition, the 

moderately interleaved, and the increasingly interleaved 

conditions on conceptual transfer at the delayed posttest. 

Furthermore, there was a marginally significant advantage for the 

increasingly interleaved condition compared to the blocked, 

moderately interleaved, and fully interleaved conditions on 

number line items at both the immediate and the delayed posttests.  

The analyses presented in the current paper are based on the tutor 

log data obtained from the Fractions Tutor. The log data provide 

the number of correct steps at a student’s first attempt at solving a 

step in the tutor, the number of attempts until a step was correctly 

solved, the number of hints requested per step, and the time 

students spent per attempt. 

4. BAYESIAN MODEL 
We evaluated four Bayesian models based on the experiment log 

data. Two of the models were created for the purpose of analyzing 

the learning rates of the conditions in the experiment while the 

other two were used as baseline models to gauge the relative 

predictive performance of the new models.  

4.1 Learning Analysis Models 
One of the simplifying assumptions made by the standard 

Bayesian Knowledge Tracing model [5] is that there is a 

probability that a student will transition from the unlearned to the 

learned knowledge state at each opportunity regardless of the 

particular problem just encountered or practice schedule of the 

student. Our model hypothesis corresponds to the hypothesis of 

the experiment that different practice schedules within a task type 

may be more or less effective at allowing students to acquire the 

skill being practiced. Thus, we depart from the Knowledge 

Tracing assumption of a single learning rate per skill and instead 

fit a separate learning rate for each of the four different practice 

schedule conditions defined in the experiment.  

To model different learning rates within Knowledge Tracing, we 

adapted modeling techniques from prior work which evaluated the 

learning value of different forms of tutoring in (non-experiment) 

log data of an intelligent tutor [9]. Different representations of 

fractions are expected to result in different degrees of difficulty in 

solving the tutor problem [4]. In our condition and representation 

analysis model we used techniques from KT-IDEM [10] to model 

different guess and slips for problems depending on the 

representation used in the tutor problem. 

We employed two models which served as benchmarks for model 

fit and designed two novel models for evaluating learning 

differences among the experiment conditions. We compared four 

Bayesian models all of which were based around Knowledge 

Tracing. Figure 1 provides an overview of the different models 

that we compared. The Prior-Per-Student Model [8] includes the 

students’ individualized prior knowledge, the Condition-Analysis 

Model includes students’ prior knowledge and models the effect 

of experimental condition (C). Finally, the Condition-

Representation-Analysis Model incorporates students’ prior 

knowledge (S), condition (C), and the graphical representation 

encountered by each student in each problem (R). 

4.2 Model Fitting Procedure 
In order to determine model fit by task type, we analyzed the log 

data by tasks type. For the evaluation of predictive performance, 

reported in the next section, a 5-fold cross-validation at the 

student level was used. For the reporting of learning rates by 

practice schedule, all data was used to train the model. 

The parameters in all four models were fit using the Expectation 

Maximization algorithm implemented in Kevin Murphy’s Bayes 

Net Toolbox. For the Condition-Representation-Analysis Model 

the number of parameters fit per task was 12 (2 prior + 4 learn rate 

+ 3 guess + 3 slip). Probabilities of knowledge are fixed at 1 if the 

skill was already known,  (    ) = 1, to represent a zero chance 

of forgetting, an assumption made in standard KT.  



 

Fig. 1. Overview of the four different Bayesian Networks tested, with observed (o.) and hidden (h.) nodes. 

5. EVALUATION RESULTS 
 Model RMSE AUC 

1 Condition-Representation-Analysis Model  0.3427 0.6528 

2 Standard-Knowledge-Tracing Model  0.3445 0.6181 

3 Condition-Analysis Model 0.3466 0.5509 

4 Prior-Per-Student Model 0.3469 0.5604 

Table II. Cross-validated prediction results summary of the four 

models using RMSE and AUC metrics 

To evaluate the predictive accuracy of each of the student models 

mentioned in section 2, we conducted a 5-fold cross-validation at 

the student level. By cross-validating at the student level we can 

have greater confidence that the resulting models and their 

assumptions about learning will generalize to new groups of 

students. The metric used to evaluate the models is root mean 

squared error (RMSE) and Area Under the Curve (AUC). Lower 

RMSE equals better prediction accuracy. For AUC, a score of 

0.50 represents a model that is predicting no better than chance. 

An AUC of 1 is a perfect prediction.  

As shown in Table II, the Condition-Representation-Analysis 

Model has the lowest RMSE with .3427 as well as the best AUC. 

We conclude that the Bayesian Network that includes students’ 

prior knowledge (S), experimental condition (C), and 

representations used for a certain problem (R) provides the best 

model fit. All predictions were statistically significantly different 

from one other by a paired t-test of squared errors. 

Table III provides the learning rates obtained from the Condition-

Representation-Analysis Model for each condition for each of the 

task types that the tutoring system covered. Overall, the learning 

rate estimates align with the results obtained from the posttest 

data: the interleaved condition demonstrates higher learning rates 

than the blocked condition. The task types were as follows: (1) 

identifying fractions from representations, (2) making 

representations of fractions, (3) reconstructing the unit from unit 

fractions, and (4) reconstructing the unit from proper fractions. On 

task type (5) identifying improper fractions from representations 

and (6) making representations of improper fractions. 

TT Blocked Moderate Interleaved Increased 

1 0.0061 0.0061 0.0080 0.0072 

2 0.0019 0.0032 0.0065 0.0036 

3 0.0149 0.0059 0.0337 0.0030 

4 0.0037 0.0022 0.0035 0.0014 

5 0.0108 0.0220 0.0124 0.0130 

6 0.0043 0.0107 0.0078 0.0090 

Overall 0.0062  0.0056 0.0120 0.0062 

Table III. Learning rates by task type (TT) and condition from 

the Condition-Representation Analysis Model. 

The learning rates by task type provide more specific information 

on the nature of the differences between conditions in learning 

rates. For all but the fourth task type, the fully interleaved 

condition demonstrates a higher learning rate than the blocked 

condition. This difference was statistically significant for tasks 1, 

2 and 3 (p < 0.05) and moderately significant for task 5 (p = 0.06). 

The same binomial test as was used in [9] was employed here to 

test for significance. The interleaved condition achieved the 

highest overall learning rate which was twice that of any other 

condition. This was despite having the second lowest percent 

correct among responses in the acquisition phase. 

6. DISCUSSION 
The findings from the Bayesian Networks support and augment 

the findings from the posttest data in several ways. First, the 

finding that the Condition-Representation Analysis Model 

provides the best fit to the log data confirms the overall finding 

from the posttest data of the experiment that practice schedules of 

multiple representations matter. It also highlights that per item 

level parameters are greatly beneficial, especially when the 

problem opportunities involve different cognitive operations, such 

as solving problems with different representations. Furthermore, 

the finding that the representation used in a tutor problem is a 

useful predictor of learning confirms that different graphical 

representations provide different conceptual views on fractions in 

a way that influences how students understand fractions [4].  



 

Second, the learning rate estimates per condition support the 

finding from the posttest data that interleaved practice schedules 

of multiple graphical representations of fractions lead to better 

learning than blocked practice schedules. This finding is 

interesting, because the literature on contextual interference shows 

that interleaved practice schedules often impair performance 

during the acquisition phase [7]. It is assumed that temporal 

variation between consecutive problems interferes with immediate 

performance since students have to adapt their problem-solving 

procedures each time they encounter a new task. This interference 

leads to higher processing demands and lower performance during 

the acquisition phase, but results in better long-term retention and 

transfer performance later on. Hence, one might expect that higher 

learning gains in the interleaved condition become apparent only 

in the posttest data, but not during the acquisition phase, because 

they might be “masked” by impaired performance due to 

interference. Our findings show, however,  that an intervention 

that is assumed to lead to impaired performance during the 

acquisition phase nonetheless leads to a learning advantage that is 

not only detectable in higher posttest performance but also during 

the acquisition phase using our experiment adapted Bayesian 

model. Bayesian Network analyses allowed us to detect learning 

gains that may be too subtle to detect during the acquisition phase 

when relying on performance. We believe this was able to be 

achieved thanks to the item level modeling that distinguished 

learning from variation in problem difficulty. 

Finally, the differences between learning rate estimates between 

task types yield important insights into the effectiveness  of the 

tutor task types that will help improve the tutoring system in 

future iterations. Bayesian Network analysis provides us with a 

useful tool that can help us evaluate this iterative improvement of 

the tutoring system at a much finer grain size than through the 

traditional analysis of posttest data. This technique also allowed 

for analysis to be accomplished without pre or post test data. 

The results from the Bayesian Network analysis presented in this 

paper yield interesting insights that are both of theoretical and 

practical significance. Our results confirm the finding from our 

previous experiment [18] that interleaving representations leads to 

better learning than blocking representations and extend the 

finding by demonstrating that the advantage of interleaved 

practice is apparent also during the acquisition phase. This finding 

is of practical relevance as it demonstrates that face-value 

methods, such as percent correct during the acquisition phase, do 

not provide sufficient information to evaluate an educational 

intervention. Since many domains use multiple graphical 

representations to augment instructional materials, we believe that 

our findings have the potential to generalize across a wide range 

of learning materials. Furthermore, the analysis of learning rates 

by condition allows us to identify parts of the Fractions Tutor 

curriculum that need to be improved as they do not seem to help 

students learn. Bayesian Network analyses can help us make sense 

of the complex educational data that we obtain from the rich 

settings in which education takes place, and hence, help us 

understand complex learning processes.   
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