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ABSTRACT 

Although ITSs are supposed to adapt to differences among 
learners, so far, little attention has been paid to how they might 
adapt to differences in how students learn from help. When 
students study with an Intelligent Tutoring System, they may 
receive multiple types of help, but may not comprehend and make 
use of this help in the same way. To measure the extent of such 
individual differences, we propose two new logistic regression 
models, ProfHelp and ProfHelp-ID. Both models extend the 
Performance Factors Analysis model (Pavlik, Cen & Koedinger, 
2009) with parameters that represent the effect of hints on 
performance on the same step on which the help was given. Both 
models adjust for general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty. 
Multilevel Bayesian implementations of these models were fit to 
data on student interactions with a geometry ITS, where students 
received on-demand problem-relevant help ranging from first-
level hints that facilitate application of principles to specific and 
immediately actionable bottom-out hints. The model comparison 
showed that in this dataset students differ in their individual hint-
processing proficiency and these differences depend on hint 
levels. These results suggest that we can assess specific learning 
skills, e.g., making sense of instructional text, and in future work 
we may be able to remediate and improve such skills. 

Keywords 
Effect of help on performance, individual differences, learning 
skills, multilevel Bayesian models, Item Response Theory 

1. INTRODUCTION 
In virtually all imaginable learning settings, when students work 
through problems, they may seek help. But are all students able to 
benefit from help equally, and are there meaningful differences 
across types of help?1 
Our long-term goal is to answer this and other questions related to 
the nature of the learning skills that students bring to bear when 
working with educational technologies, as well as whether or not 
there are significant individual differences in these learning skills. 
Seeking help and learning from help [1, 19] may be one set of 
such learning skills, which can include both the metacognitive 
monitoring needed to determine when soliciting help benefits 
learning, as well as making sense of instructional text in the 
context of problem solving. If individual differences in learning 
skills exist, and if they can be assessed, an Intelligent Tutoring 
System may be able to adapt to these differences, to provide 
students with appropriate metacognitive support, and perhaps 
even to improve learning skills. 

                                                                 
1 This work is supported in part by Postdoctoral Training Grant 

awarded to Carnegie Mellon University by the Department of 
Education (#R305B110003). 

In this project, we aim to determine whether or not there are 
significant variations in students’ abilities to make use of help. As 
a first step, we examine how well students can use help to solve 
the task at hand (i.e., the problem step they are working on). 
While the effect of help on learning, rather than performance, is of 
primary long-term interest, if a student cannot make good use of 
help “locally” (on the current step), it is unlikely such help will 
enhance learning (i.e., enhance performance on a future related 
task). [11] In other words, studying the “local” effect of help on 
performance is useful, because any beneficial effect of help on 
performance may be a harbinger of longer-term effect on learning. 
Specifically, our research questions are: How well do students 
perform after receiving hints, and does performance after hints 
differ across hint levels? Are there individual differences in how 
effective hints are among students, and if so, are the individual 
differences consistent within each student across hint levels? Are 
the individual differences, if any, related to general student 
proficiency in solving problems? 
We analyze data generated in the course of another study, and use 
statistical methods to account for potentially confounding 
variables, including general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty. 
One prior effort to evaluate the effect of hints on same-item 
performance is by the developers of the Mastering physics ITS. In  
[12], a 2PL Item Response Theory model was fit to performance 
on first attempts, after which separate models were fit to each of 
several paths through the ITS. Unlike that effort, our work 
examines individual differences with various types of help, and 
addresses potential confounds due to variability in prior practice 
and due to difficulty of knowledge components (rather than just 
unique problem items). We also analyze a larger dataset, and fit 
parameters relating to various types of help simultaneously in a 
Bayesian Markov Chain Monte Carlo (MCMC) framework to 
account for uncertainty during estimation. 
Mining data from the Geometry Cognitive Tutor (an earlier 
version of the tutor whose data is analyzed in the current study), 
we showed that asking for help is beneficial for local 
performance. [1] Specifically, asking for help after one or two 
errors on a step was compared to attempting to solve the step 
again. Asking for help, compared to continued trying, was 
associated with fewer subsequent errors on the given step and a 
reduction in the time needed to complete the step. However, [1] 
did not look into individual differences in students’ ability to take 
advantage of help to improve performance on problem steps, and 
did not investigate differences between hint levels. 
Another related study [7] presents two models, a learning 
decomposition and an extension to Bayesian Knowledge Tracing. 
The latter is particularly interesting in that it aims to distinguish 
the effect of help as a performance scaffold from its effect on 
learning. However, neither model addresses multiple hint levels or 
individual differences in hint-processing proficiency. 



 

Table 1: Examples of hint messages 

Knowledge 
Component First Hint Second Hint Third Hint 

Triangle-Sum-
Answer 

In this problem, you have triangle SOL. You 
know the measure of two of the angles in this 
triangle, namely, angles DSO and OLD. 

The sum of the measures of the interior 
angles of a triangle is 180 degrees. 

m∠SOL = 180 - m∠DSO - 
m∠OLD. 

Triangle-Sum-
Reason 

In this problem, you have Triangle WAR. You 
know the measure of two of the angles in this 
triangle, namely, angles ARO and OWA. 

The sum of the measures of the interior 
angles of a triangle is 180 degrees. 

You can find the measure of 
Angle WAR by applying the 
“Triangle Sum” theorem. 

Separate-
Complementary-
Angles-Answer 

The problem statement says that angles ∠XSD 
and ∠JNT are complementary angles. 

Complementary angles are angles whose 
measures add up 90 degrees. 

m∠XSD = 90 - m∠JNT. 

Angle-Addition-
Answer 

Angles DGF and MGD are adjacent angles. 
This means that they share a side (namely, 
GD) but do not overlap. Together they form 
∠MGF. 

When an angle is formed by two or more 
adjacent angles, the measure of that angle 
is equal to the sum of the adjacent angles. 
Therefore, m∠MGF = m∠DGF + 
m∠MGD. 

[No third level hint.] 

 An exploratory analysis of our dataset (Section 2) shows that 
selection effects confound a naïve approach that merely tallies 
successful and unsuccessful performance with and without hints. 
Section 3 proposes two logistic regression models that take these 
confounds into account. Section 4 describes the results of fitting 
multilevel Bayesian implementations of these models to our data. 
The final sections discuss the results, limitations, contributions of 
this research, and future directions. 

2. EXPLORATORY DATA ANALYSIS 
The study that produced the dataset analyzed here took place at a 
vocational school [17]. Three 9th grade classes of 51 participating 
students, led by the same teacher, used Geometry Cognitive Tutor 
as part of regular instruction about twice a week for five weeks. 
Students worked through problems, most of which contained 
multiple steps. There were 170 distinct problems, consisting of 
1666 problem steps. Problems were assigned to students 
according to a mastery criterion based on the Knowledge Tracing 
[8] algorithm in the Cognitive Tutor software, i.e., each student 
only saw a subset of the 170 problems. 
Using this software, a student may make multiple attempts to 
complete a problem step. Completing a step requires a correct 
response; giving a correct response on the first attempt means that 
this student will never see a hint. On each attempt, a student may 
supply a correct answer, an incorrect answer, or may ask for a 
hint. The first hint that the student sees is called “help level 1”, the 
second is “help level 2”, and so on to the final (“bottom-out”) 
hint, which in our dataset is help level 3 or 4. (Table 1) For 
students who do not know how to respond, the bottom-out hint 
often states exactly what the response must be. 
In general, a first hint points out relevant problem features, and it 
defines key terms, e.g., “vertical angles.” Second hints state the 
problem-solving principle that is applicable given the features 
pointed out in the first hint, in terminology consistent with the 
first hint. Third hints derive an expression for the sought angle 
measure (in terms of known angle measures). Using this 
expression, the angle measure can be found in a straightforward 
manner, by first substituting in the values for the angle measures 
referenced in the expression, and then evaluating the resulting 
arithmetic expression. The rationale for sequencing hint levels 
from less specific to more specific was to try to give the student as 

much opportunity as possible to “generate” the step, which may 
include retrieving a relevant problem-solving principle, as 
discussed in [4] and [3]. 
Interaction with such hint sequences may lead some students (e.g., 
those who are relatively less proficient) to request hints more 
often than others. Similarly, some problem steps (e.g., those that 
are challenging) may lead to hint requests relatively more often. 
As a measure of student proficiency, we consider how often a 
student responds correctly to a problem step on the first attempt. 
Specifically, a crude measure of proficiency is the success rate on 
first attempts, i.e., the proportion of all problem steps that the 
student answered correctly on first attempt out of all those first 
attempts where a student gave a correct or an incorrect response 
(omitting first attempts where the student requested a hint). 
Given this measure, is proficiency related to use of hints? For 
each student, the hint use rate is the proportion of problem steps 
on which this student requested one or more hints out of all 
attempted problem steps. The correlation of student proficiency 
and hint use rate is r=-0.84, i.e., hints are more likely to be 
requested by less proficient students. 
Similarly, as a measure of problem step difficulty, we take the 
proportion of first attempts on the step to which a student gives a 
correct response out of correct and incorrect first attempts (again, 
omitting first attempts that are hint requests). Is step difficulty 
related to use of hints? The rate of hint use on a problem step is 
the proportion of students who request any hints on the step out of 
all students who attempt the step. The correlation of step easiness 
(1 - step difficulty) and rate of hint use is r=-0.68, i.e., hints are 
more likely to be requested on steps that are harder. 
Do hints of different levels differ in their effect on performance?  
If requesting a hint counts as unsuccessful performance (Table 2, 
top row), the success rate drops from first attempts (78%) to 
attempts after first and second hints (21% and 37%). However, 
when students request a first hint, the next action that they are 
most likely to perform in the tutor is to ask for a second hint (87% 
of the time). Students ask for a third hint as the likely next action 
after the second (88% of the time). Not counting hint requests 
(Table 2, bottom row), performance after the first hint (68%) is 
lower than after the second and third hints (83% and 88%). 



 

Table 2: Success rates after hints, counting Correct, Incorrect, 
and Hint outcomes 

Success Rate 
Formula 

On First 
Attempt 

After  
1st Hint 

After  
2nd Hint 

After  
3rd Hint 

𝐶 (𝐶 + 𝐼 + 𝐻)⁄  78% 21% 37% 82% 

𝐶 (𝐶 + 𝐼)⁄  83% 68% 83% 88% 

To sum up this exploratory analysis, we find that hints are more 
likely to be requested by less proficient students; hints are more 
likely to be requested on steps that are difficult; and success after 
first hints is less likely than after second and third hints. 
The exploratory analysis is appealing, but possibly misleading. 
First, what is “student proficiency”? A student who is proficient 
may simply have had more opportunities to practice the relevant 
skills, which would cause a selection effect for this analysis, or 
there may be additional differences in student ability that cannot 
be observed directly. Second, while an ITS may tutor all students 
on the same skills, it may assign students different problems. If so, 
skills rather than problem steps would be the right grain size for 
analysis. Third, since students see different problems, and 
problems involve different hints, there could be selection effects 
in terms of how we measure performance after hints for different 
students. Thus, it would be desirable to control for proficiency, 
prior practice, selection effects related to problem difficulty, and 
to take into account a model of skills in the domain. As described 
in the following section, we can use a logistic regression to take 
these elements into account. 

3. METHODS 
We fit two models to these data, both extending the Performance 
Factors Analysis (PFA) model. [14] PFA is a logistic regression 
that is fit to correct and incorrect student responses. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 1: Performance Factors Analysis (PFA) model 

Under PFA, the probability of a correct response by a pupil on a 
problem step, i.e., of 𝑌 = 1, is determined by a linear combination 
of parameters related to the knowledge components (KCs) that are 
thought to be relevant to that step. Parameter 𝛽𝑗  denotes the 
easiness of 𝐾𝐶𝑗 . Parameters 𝛾𝑗  and 𝜌𝑗  are weights on the observed 
frequency of successful (𝑠𝑖,𝑗) and unsuccessful (𝑓𝑖,𝑗) prior practice 
by the same learner 𝑖 on the same KC 𝑗. The innovation in PFA 
was to separate 𝛾𝑗  and 𝜌𝑗 , the effects of successful and 
unsuccessful prior practice, rather than collapsing these effects as 
one parameter. 

Table 3: Example of instances in our dataset 

Pupil Item Attempt Prior Practice Outcome 

5 Prob1.St3 1 S5,9=3; F5,9=1 First hint 
5 Prob1.St3 2 S5,9=3; F5,9=1 Incorrect 
5 Prob1.St3 3 S5,9=3; F5,9=1 Correct 

Our interest is in learner performance in the presence of help on 
attempts after the first. The original use of PFA was to model 
unassisted performance; in PFA, the outcome variable 𝑌 and the 
prior practice counts 𝑠𝑖,𝑗 and 𝑓𝑖,𝑗 only represent first attempts on a 
problem step, not subsequent attempts. By contrast, we fit our 

models to outcomes both at first attempts and at each attempt that 
was the next action after a hint (but the prior practice counts still 
represent only first attempts). 
Consider the example in Table 3, where a student (pupil 5) makes 
three attempts on the same item (problem 1, step 3). When the ITS 
initially presents the student with this step in the course of solving 
the problem, the student requests a hint. This hint is at the first of 
several levels of help (usually 3 or 4) that the ITS may offer on a 
problem step. According to the knowledge component model for 
the problems in this dataset, this step has a single relevant KC 
with KC id=9. This student has had prior practice opportunities 
with this KC: three were successful, and one was not. Counts of 
prior practice are based on first-attempts only; thus, when this 
student practices this KC on a future item, prior practice counts 
will be S5,9=3; F5,9=2, because the outcome of the first attempt in 
this example was unsuccessful. This example yields two instances 
to be input to the logistic regression, corresponding to the first 2 
attempts. Both attempts are coded as having the outcome 0 (only 
correct outcomes are coded as 1). For the purpose of estimating 
the help-level parameters in our model, the first-attempt instance 
is coded as not following a help message, and the second-attempt 
instance is coded as following a hint at help level 1. We assume 
that the effect of a hint should be observable in the next attempt 
on the same step. Because attempt 3 follows an input rather than a 
hint display, its outcome is not directly attributable to a hint, and 
this attempt does not yield an instance. Of the 28777 transactions 
in this dataset, 17515 were first attempts, 4466 attempts were the 
next action after some kind of a hint, and the rest were not entered 
as instances because they were not next actions following a hint. 
The first model, ProfHelp, examines how help levels differ in 
their effect on performance, but does not consider individual 
differences in hint processing among students. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = 𝜃𝑝 +  𝜆ℎ + � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 2: Proficiency and Help (ProfHelp) model 

The innovation in this model is the 𝜆ℎ parameter. One 𝜆ℎ is fit for 
every attempt after a hint. (Because help may be requested as a 
first attempt, but never prior to a first attempt, 𝜆0 = 0.) One of 
𝜆1, . . , 𝜆4, respectively, represents the contribution of having just 
seen a first, second, third or fourth hint to the probability of 
successful performance on this subsequent attempt. Another view 
of 𝜆ℎ is that it represents average proficiency in processing level-h 
hints. Parameters other than 𝜆ℎ control for student proficiency, 
problem step difficulty via a decomposition on knowledge 
components, and prior practice on knowledge components. In 
other words, the effect of having just seen a hint is not 
confounded by the findings that hints are more likely to be 
requested by less proficient students and on more difficult items 
(Section 2), nor by the intuition that a lack of prior practice can 
lead to more frequent hint requests. Finally, one 𝜃𝑝 parameter, as 
in Item Response Theory (IRT) models, is fit for every student p, 
representing the baseline proficiency of that student. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = 𝜃𝑝 + 𝜆𝑝,ℎ + � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 3: ProfHelp-ID (Individual Differences) model 

The second model, ProfHelp-ID, considers that the same help 
level may have different effects on different students. The 



 

difference from the ProfHelp model is in the 𝜆𝑝,ℎ parameter, 
where the subscripts 𝑝, ℎ indicate that a separate parameter is fit 
for each pupil in each help level. This represents the pupil’s 
individual hint-processing proficiency. These parameter estimates 
are pooled across pupils within a single help level via a multilevel 
model (bold typeface denotes hyperparameters): 

𝜆𝑝,ℎ~𝑁(𝝀ℎ,𝝈ℎ2) 

For instance, the ProfHelp-ID model stipulates that 𝜆𝑝,2, i.e., each 
per-pupil estimate of the effect of responding after a second hint 
(h=2) is drawn from a distribution with mean 𝝀2 and variance 𝝈22 
that is shared across pupils. In this way, information on each pupil 
helps determine a baseline effect of seeing a second hint, and the 
baseline effect helps constrain the estimate of the per-pupil 
individual differences. 
Partial pooling is appropriate for this problem not only for 
statistical parsimony, but also because it lets us be conservative in 
making a claim about the presence of individual differences.  
(Partial pooling is similar to the idea of a random effect, where 
values are assumed to come from a broader sample of interest, 
rather than a fixed effect, where all values of interest are 
represented.)  The alternative, a no-pooling model, would treat 
pupils as independent of one another. This means that first, the 
no-pooling model could detect individual differences even when 
the differences are small (i.e., not meaningful), and second, 
unpooled individual differences would be hard to quantify 
because there may be very few observations for any particular 
pupil at a given help level. The partial pooling pulls all individual 
difference estimates towards the mean, reducing the effect of 
small differences, and it helps compensate for data sparsity by 
using the hyperparameter estimates as prior information for the 
parameters. (Note that model ProfHelp is the complete-pooling 
version of ProfHelp-ID, in that ProfHelp does not allow for 
individual differences in hint processing.) 
The models were fit using the JAGS software for Bayesian 
modeling [15], which is an effective platform for fitting Item 
Response Theory and similar models (e.g., [9]). For each model, 
we ran 4 sampling chains, with 400 adaptation iterations 
(discarded). Inferences below are based on every 10th draw 
(thinning) of 1000 iterations. Model convergence and mixing 
across chains were verified by visual examination of 
autocorrelation, trace and density plots. 

4. RESULTS 
As multilevel Bayesian models, ProfHelp and ProfHelp-ID may 
be compared in terms of Deviance Information Criterion (DIC). 
DIC is similar to AIC in that it rewards models that fit the data 
well but penalizes an increase in the number of parameters in the 
model. [16] DIC takes into account that in Bayesian models with 
pooling, the effective number of parameters is itself estimated as a 
posterior distribution of a random variable. 

Table 4: Model-fitting results 

Model Deviance Effective 
Parameters DIC 

ProfHelp 22013 135 22149 
ProfHelp-ID 21741 220 21962 

As Table 4 shows, the ProfHelp-ID model is preferable to the 
ProfHelp model on this dataset in that the improvement in 
prediction accuracy outweighs the increase in the number of 

parameters. Relative to the ProfHelp approach of fitting a single 
parameter across all students within a help level (complete 
pooling), the partial-pooling approach of ProfHelp-ID finds that 
there are individual differences in student performance after a hint 
at each help level. This finding is despite the fact that ProfHelp-ID 
is nonetheless more conservative than a no-pooling model. 
The 𝜃𝑝 proficiency parameter (Figure 1) is positive for most of the 
students, reflecting the prevalence of successful first attempts in 
this dataset (the model predicts that a student for whom 𝜃𝑝 = 0 
will answer correctly on 50% of first attempts, given that the other 
terms are zero). The 𝜃𝑝 parameter is entered into the model for 
both first attempts and later attempts, and both could affect its 
estimate. However, first attempts are much more frequent than 
later ones, and 𝜆𝑝,ℎ provides an intercept for each pupil on the 
later attempts. This effectively makes 𝜃𝑝 a constant baseline for 
𝜆𝑝,ℎ that is unaffected by the later attempts.2 

ProfHelp-ID measures the effect of having seen a hint on the 
immediately preceding attempt as a baseline across all students 
(the 𝜆ℎ hyperparameter), and as a deviation from this baseline for 
every pupil, 𝜆𝑝,ℎ. The improved fit of ProfHelp-ID over ProfHelp 
implies that the mean effects 𝜆ℎ are correct only on average, not 
for all students. As Figure 2 shows, the mean effect, in logit units, 
of having just seen a hint (solid black vertical line in each of the 
three frames) are approximately -2.4, -1.7 and 0.5 for first, second 
and third help levels, respectively.3 These differences are 
significant, as indicated by the non-overlapping 95% credible 
intervals (grey vertical lines on the left and right of each black 
line). The mean effects of first and second hints are negative, 
which implies that, on average, the performance of all students, 
proficient or not, and on all problem steps, easy or difficult, is 
lower after these hints than would be predicted based only on 
overall proficiency 𝜃𝑝. The effect of third hints is only somewhat 

                                                                 
2 A parameter in a logistic regression adds to the model’s estimate 

of success on a given instance. To interpret a coefficient, a rule 
of thumb is to divide by 4. For example, if 𝜃1 = 2, that adds 0.5 
to the probability that model will predict success on every 
attempt by pupil 1. 

3 As a check on the model fitting, the estimates of 𝜆𝑝,ℎ from 
ProfHelp were similar, -2.3, -1.5, and 0.5. There were few 
observations for performance after a fourth hints, so we omit 
discussion of 𝜆𝑝,4 and 𝜆4. 

Figure 1: Medians and 95% CI for 𝜽𝒑 under ProfHelp-ID 



 

positive. Converted to probabilities, effects of first and second 
hints at -2.4 and -1.7 logit units, respectively, implies that a 
student with median proficiency on this dataset (𝜃𝑝 = 1.4), on a 
problem step of average difficulty (∑ 𝛽𝑗 = 0𝑗∈𝐾𝐶 ), and with no 
prior practice on relevant KCs, is predicted to respond correctly 
27% of the time after first hints and 42% of the time after second 
hints. These predicted correctness rates are higher than those of 
the “naïve” analysis (21% and 37%, Table 2) that does not take 
into account proficiency and other confounds. While these rates 
are low, they are nonetheless an improvement over the students’ 
failures to answer correctly on the first attempt. 
An unexpected finding is that general proficiency 𝜃𝑝 is negatively 
correlated with hint-processing proficiency 𝜆𝑝,ℎ: for first, second, 
and third hints, r=-0.48, r=-0.54, and r=-0.41, p < 0.01 for all. The 
more proficient the student, the less likely it is that the student 
benefits from a hint. This relationship is also visible in Figure 2, 
where each frame is ordered by ascending 𝜃𝑝. Hint-processing 
proficiency of first hints 𝜆𝑝,1 is also correlated with hint-
processing proficiency of second hints 𝜆𝑝,2, r=0.34, p<0.05; other 
hint-processing proficiencies are uncorrelated with each other. 

5. DISCUSSION 
We aimed to understand the nature of learning skills such that we 
can support learning more effectively. We found that hints levels 
differed in their effect on performance, and only level-1 and level-
2 hint-processing proficiencies correlated with each other. 
Further, there were individual differences in hint-processing 
proficiency, and general proficiency was negatively correlated 
with hint-processing proficiency. 
Given how hint levels are implemented (Table 1), it is not 
surprising to see better performance on the next attempt after the 
bottom-out hint level, compared to the next attempt after other 
hint levels. As mentioned, all that correct performance following a 
bottom-out hint requires is algebraic substitution and arithmetic, 
which are likely to be mastered skills for our student population. 
By contrast, correct performance after first and second hint levels 
requires interpretation of mathematical text that refers to 
potentially unmastered geometry concepts and principles. To 
solve problems in the geometry unit in this dataset, one needs to 
retrieve a general geometry principle, to apply the principle to the 
problem by mapping it to specific problem features, and to 
perform algebra and arithmetic according to the principle. Before 
the principle can be retrieved, salient problem features need to be 
identified. Level-1 hints tend to point out the salient problem 
features and define key terms. Level-2 hints state what principle is 
applicable given the salient features pointed. 
The negative effects of level-1 and level-2 hints are consistent 
with prior work on hint effectiveness. [1] As pointed out in [7], 
“students request help on [items] on which they have low 
knowledge. The help thus acts as evidence of a lack of knowledge, 
rather than a direct cause of that lack of knowledge.” Further, 
neither short nor long hint reading times are positively associated 
with learning. [18] Another explanation for the negative 
coefficients for our dataset in particular is that the logistic 
regression is effectively forced to estimate these very negative 
effects given the prevalence of positive 𝜃𝑝 values (which are in 
turn due to the prevalence of successful first attempts). 
Prior work suggests that it can be fruitful to consider how tutor 
behavior may differentially affect students across varying levels 
of KC mastery. [2] The ProfHelp models are based on the 

psychometric concept of latent traits that is inherent to Item 
Response Theory. IRT models are said to be unidimensional if 
they represent proficiency with one parameter 𝜃𝑝 per student. 
ProfHelp-ID relaxes this unidimensionality assumption via 
parameters 𝜆𝑝,ℎ per student for attempts after hints, but retains it 
within each type of attempt (first attempt and after each hint 
level). Thus, the dimensions of proficiency in ProfHelp-ID (first 
attempts and help levels) may not represent proficiency ideally. 
The ProfHelp-ID estimate of the probability of success will be in 
error when performance within this type of attempt is 
multidimensional, e.g., if an otherwise easy KC unexpectedly 
challenges a proficient student (or, vice versa, if a student with 
low proficiency succeeds quickly on a generally difficult KC). 
Having found individual differences within different attempt 
types, we speculate as to the nature of the learning skills that may 
be involved in interpreting hints and using them to support correct 
performance. This analysis will inform future model refinements. 
Success after level-1 hint with good knowledge of relevant KC. 
A student who is close to KC mastery did not succeed on the first 
attempt on a step, but did on the next action after a level-1 hint. 
The failure on the first attempt may have been an “identification 

Figure 2: Medians and 95% CI for 𝝀𝒑,𝒉 under ProfHelp-ID; 
median of 𝝀𝒉 (black vertical) and 95% CI (grey vertical) 



 

slip”, i.e., a slip in identifying the relevant problem features that 
was due to random circumstance rather than lack of knowledge, or 
to high cognitive load such as could be expected in a dataset of 
quite complex geometry problems that involve multiple steps and 
multiple problem-solving principles. Level-1 hints point out 
problem features that are relevant to the application of a principle, 
but not what principle to use, or how. Because the student 
succeeded after the level-1 hint, the student was apparently able to 
retrieve and apply the principle (i.e., did not need further hints) 
once given the salient features, but required assistance to identify 
the salient features. When hints are used to fix “identification 
slips,” no hint interpretation skills are needed; the hint serves as 
reminder of something the student already knows but failed to 
retrieve. The student still applied “principle application skills” to 
the extent that the knowledge of how to apply this principle had 
not yet been proceduralized or automated. 
Success after level-1 hint with little knowledge of relevant KC. 
By contrast, an identification slip is not possible for a student with 
little knowledge of the relevant KC. Given that level-1 hints state 
problem features relevant to the application of a principle, success 
after a level-1 hint suggests that this hypothetical student was able 
to infer a correct answer from a set of problem features, even 
without knowing the rule that connects the features to the answer. 
Perhaps Assuming this was not a guess, the student induced a 
valid principle from the given example, and then used principle 
application skills mentioned above, though a less generous 
interpretation would suggest that the student learned shallowly.  
Quite an impressive feat of unsupervised inductive learning, with 
less than a single example to work with and no outcome given! 
How could this be possible? Perhaps this student drew on 
additional information sources, e.g., student peers or the textbook. 
Perhaps the diagram helps; e.g., once one sees a visual 
representation of adjacent angles, the notion that the measure of 
an angle made up of adjacent angles is the sum of the two 
measures of the adjacent angles seems quite intuitive. Other 
geometry knowledge may help as well. For instance, smart 
students may be able to infer the vertical angles theorem from the 
linear pair postulate.  
Success after level-2 hint with good knowledge of relevant KC. 
Failure after a level-1 hint followed by success after a level-2 hint 
suggests that the student needed to be reminded of the relevant 
domain principle. This student should have been able to retrieve 
the relevant domain principle from memory given the prior 
practice of the KC. What could cause failure to retrieve a 
principle? Similar to failure on a first attempt, one cause may be a 
mere “applicability slip” in mapping problem features to a known 
principle, e.g., due to random occurrence or to overwhelming 
cognitive load. Another cause may be that there is a phase in the 
normal skill acquisition process in which students have more 
trouble recognizing the applicability of rules than in applying 
them once cued to critical problem features.  In other words, while 
in this phase, students need to be reminded of a principle, but can 
apply it, especially when also given some key information (as in 
the level-1 hint) on how to instantiate the principle. This 
hypothesized phase also explains failure after the level-1 hint.  
The modest but statistically significant correlation of 𝜆𝑝,1 and 𝜆𝑝,2 
suggests that the two hint levels may be linked in how they affect 
students, but that there are also some differences. One explanation 
for the correlation is that level-1 and level-2 hints would both be 
skipped by a student engaged in “help abuse” [19], causing both 
level-1 and level-2 hints to be associated a 0 (unsuccessful) 

logistic regression outcome. By contrast, bottom-out hints cannot 
be skipped, so unsuccessful outcomes after bottom-out hints 
would not be confounded with help abuse. Another cause for the 
correlation may well the requirement, shared across the level-1 
and level-2 hints, to apply a principle, while the requirements of 
bottom-out hints, likely mastered by all students, would not 
induce a correlation. Finally, the two hint levels may share the 
hypothesized phase affecting students with good KC knowledge. 
One difference between level-1 and level-2 is that answering 
correctly after (only) a level-1 hint requires more domain-specific 
knowledge than answering correctly after a level-2 hint. One way 
to answer correctly after a level-1 hint is to retrieve the relevant 
problem-solving principle from memory, possibly cued by the 
problem features pointed out in the hint, and to apply the rule 
successfully, helped perhaps by the information provided in the 
hint. By contrast, to answer correctly after a level-2 hint, it is not 
necessary to retrieve the principle from memory, since the level-2 
hint provides a statement of the principle. The student must still 
do some work to figure out how the rule applies. 
An instance of poor retrieval may be symptomatic of a broader 
retrieval deficiency on the part of the student, which would 
constitute a learning skill deficiency. Success after first hints 
occurred frequently enough (predicted 27% correctness rate for a 
student with median general proficiency) that it may be worth 
investigating whether such a deficiency could be detected, or even 
addressed. Ideally, learners could be supported in overcoming 
such a cognitive shortcoming on their own. Students need to apply 
general principles to specific problems in many domains (e.g., 
[10]), and it would be interesting to see if such a skill could 
transfer. 
Success after level-2 hint with little knowledge of relevant KC. 
Poor retrieval cannot explain success after a level-2 hint when a 
student has had little prior practice on the relevant KC, i.e., when 
there is no expectation for retrieval. A level-2 hint states the rule 
that applies, but not how it applies. Thus, such successful 
performance may indicate that the student is skilled at applying a 
somewhat unfamiliar problem-solving principle, when given a 
statement of that principle (level-2 hint) and key problem features 
that instantiate the principle's applicability conditions (level-1 
hint). What remains for the student to do is still rather involved: 
apart from understanding the principle, the principle has to be 
mapped onto the problem, a process that (facilitated by the level-1 
hint) requires dealing with difficult terminology in relating the 
general terms in which the rule is stated to the specific problem.  
Success after level-3 hint. With respect to the level-3 hints, it 
seems unlikely that correct performance after a bottom-out hint 
involves important learning skills, aside from possibly a general 
tendency to carefully follow very specific instructions. 
In sum, this analysis contemplates several hypothesized 
metacognitive skills. Success after level-1 and level-2 hints for a 
student with high KC knowledge may indicate deficiencies in 
identifying salient problem features, mapping a principle to salient 
features, and retrieving a principle. Success after level-2 hints for 
a student with little KC knowledge may indicate skill in applying 
unknown principles (i.e., parsing and mapping—with some 
help—of an unfamiliar principle). Our results could be viewed as 
implying that different students possess these different learning 
skills to different degrees. This interpretation addresses both 
possible causes of differences between hint levels and possible 
causes of learners’ differences in hint processing. For instance, if 



 

we could find a way to help students learn to recognize when a 
geometry principle applies, this should both improve the 
effectiveness of first hints, and reduce unexplained variability 
among students in terms of their hint-processing proficiency. 
Perhaps if students were given instruction to look for diagram 
features that can cue a principle, then on a first hint like “The 
problem statement says that angles ∠XSD and ∠JNT are 
complementary angles”, they might be better able to interpret the 
notion of complementary angles by paying attention to that part of 
the diagram. The analysis considered the major findings that hint 
levels differ in their effect on performance, that student 
proficiencies with level-1 and level-2 hints are modestly 
correlated, and that there are individual differences in hint-
processing proficiency.  
Finally, we address the finding that general proficiency is 
negatively correlated with hint-processing proficiency. One 
explanation is that this finding is merely an artifact induced by the 
statistical model. In designing the ProfHelp-ID model, we 
reasoned that to ascribe an effect to some proficiency with hints 
we had to partial out the effect of general proficiency. In fact, 
making 𝜃𝑝 a baseline for 𝜆𝑝,ℎ may overcorrect for any relationship 
between general proficiency and hint proficiency. The linear 
combination of the two parameters effectively subtracts 𝜃𝑝 from 
𝜆𝑝,ℎ, which means that 𝜆𝑝,ℎ contains information on 𝜃𝑝, and that 
can induce the negative correlation.4 While such a correlation 
complicates interpretation of parameter estimates, it would not 
invalidate the model fit. A second explanation is that individuals 
with a higher proficiency may be less proficient with hints 
because they have less practice using them. 
One contribution of the ProfHelp models is that they control for 
selection effects due to general student proficiency, prior practice 
on knowledge components, and knowledge component difficulty. 
The models here do not account for other selection effects, which 
we intend to address in future work. First, ProfHelp treats all hint 
messages at a given level as equally effective, while messages 
associated with different KCs may in fact have differential effects 
on student performance.  (Such an analysis would be the "KC 
differences" analogue of the individual differences analysis 
presented here.)  In this way, we might be able to identify specific 
hint messages that are significantly more or less effective than 
other messages to inform ITS design. Second, in future work we 
intend to relax the unidimensional IRT assumption, i.e., to handle 
the case that a KC that the model estimates to be easy may 
challenge a student that the model estimates to be proficient. 
Third, the ProfHelp models do not account for patterns of use that 
students may follow. For instance, in discussing the effect of 
level-1 and level-2 hints it would be desirable to account for the 
effects of help abuse, e.g., a student clicking through the hints 
without reading them. [2, 6] The ProfHelp models do not 
distinguish such behavior from spending a long time on each hint, 
which may indicate deliberative reflection. 
The need for future research is highlighted by the ProfHelp-ID 
estimates of effectiveness of hints: 27% and 42% accuracy after 
level-1 and level-2 hints, respectively, for a student with median 
general proficiency. While even these relatively low levels of 
effectiveness improve, by definition, over the students’ failure to 

                                                                 
4 To see how this would work, let 𝑋 and 𝑌 be two independent 

random normal variables. Let 𝑋’ ← 𝑌 − 𝑋. By definition, 
𝑐𝑜𝑟(𝑋,𝑌)  =  0, but 𝑐𝑜𝑟(𝑋’,𝑌)~0.71. 

answer correctly on the first attempt, there is clearly room to make 
hints more effective, and hence a need for research on hints types 
and hint processing. The ProfHelp-ID model may serve as a tool 
for such research. Given that this model can fit transaction data 
from an ITS, one can expect to apply it again in the future to 
evaluate alternative hinting strategies. 

6. CONCLUSIONS 
The results presented here may be said to pose more questions 
than they answer, which is appropriate for an early project in a 
relatively unexplored area. Significantly, the results show that 
hints levels differ in their effect on performance, and that there are 
individual differences in hint-processing proficiency. These 
findings account for general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty via 
the ProfHelp and ProfHelp-ID models. The next steps are to 
understand the causes of the individual differences, and to try to 
detect them automatically. 
An additional contribution of this research is the new Bayesian 
implementation of the new ProfHelp and ProfHelp-ID models 
(and by extension, the PFA model).5 The flexibility of the JAGS 
modeling tool is well-suited to logistic regressions such as these 
and to the need for rapid prototyping of model variations. The 
time saved in development easily outweighs potentially slow 
MCMC sampling. Moreover, the model-fitting process can easily 
be parallelized for separate MCMC chains. 
This research has wide impact. The data analyzed here come from 
a system in the Cognitive Tutor family, in use by over 600,000 
students. [5] The same methods would apply to any software that 
uses either progressive hint sequences or multiple independent 
types of help. For instance, in SQL Tutor, “an error flag message 
informs the student about the clause in which the error occurred. 
A hint-type message gives more information about the cause of 
error. Partial solution feedback displays the correct content of the 
clause in question, while the complete solution simply displays 
the correct solution of the current problem.” [13] The 
Masteringphysics ITS includes three types of hints (“a list of 
steps, declarative statements, and procedural subtasks”) and other 
types of help. [12] 
Among the limitations of this research, the first is that it considers 
the effect of hints on performance, not learning. As [7] points out, 
in theory, a hint may both scaffold performance on the current 
step and it may teach the student in preparation for a subsequent 
problem. However, as evidenced by the analysis in Section 5, 
while the effects on learning are important, the effects on 
performance are not yet well understood.  
Other limitations are due to the assumptions embedded in the PFA 
model and the ProfHelp models. These include that knowledge 
components are independent and linearly additive; that the effects 
of the problem step are fully represented by the relevant 
knowledge components and prior practice on these KCs; and that 
there are no problem effects, e.g., steps within the same problem 
are treated as independent of one another. The ProfHelp models 
are limited in that they only consider the effect of help from the 
immediately preceding attempt, while there could be effects that 
carry over from earlier attempts. In the dataset examined here, 
hint levels were always presented in the same order, and the 
differential effects of hint types could not be teased apart using 

                                                                 
5 Please contact the corresponding author for the JAGS code. 



 

ProfHelp. However, this is a limitation of the dataset rather than 
ProfHelp itself. 
In future work, we plan to extend the ProfHelp models. We may 
incorporate students’ hint-level preferences, such as to take into 
account the tendency of some students to click through to the 
bottom-out hint without making attempts after first and second 
hints. We may also incorporate the number of prior hint episodes 
on practice opportunities of various KCs to distinguish the effect 
of prior hints from the effect of incorrect prior performance. 
At the same time, regression techniques cannot eliminate all 
selection effects. Future work should include controlled 
experiments that compare different hint types, and an evaluation 
of their effects on learning and on reduction of unexplained 
variance in hint processing among students. 
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