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ABSTRACT

Behavioral records collected through course assessments, peer
assignments, and programming assignments in Massive Open
Online Courses (MOOCsSs) provide multiple views about a
student’s study style. Study behavior is correlated with
whether or not the student can get a certificate or drop out
from a course. It is of predominant importance to identify
the particular behavioral patterns and establish an accurate
predictive model for the learning results, so that tutors can
give well-focused assistance and guidance on specific stu-
dents. However, the behavioral records of individuals are
usually very sparse; behavioral records between individuals
are inconsistent in time and skewed in contents. These re-
main big challenges for the state-of-the-art methods. In this
paper, we engage the concept of subgroup as a trade-off to
overcome the sparsity of individual behavioral records and
inconsistency between individuals. We employ the frame-
work of Exceptional Model Mining (EMM) to dis-
cover exceptional student behavior. Various model classes
of EMM are applied on dropout rate analysis, correlation
analysis between length of learning behavior sequence and
course grades, and passing state prediction analysis. Quali-
tative and quantitative experimental results on real MOOCs
datasets show that our method can discover significantly in-
teresting learning behavioral patterns of students.
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1. INTRODUCTION

Massive Open Online Courses (MOOCs) make it possible for
educators to analyze learning behavior of students in mul-
tiple views. In contrast to traditional classes, which only
have limited learning behavioral records, MOOC platforms
such as Coursera, edX and Udacity provide huge amounts
of learning behavioral records. These platforms collect very
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detailed course information and students’ learning behavior
such as course assessments, peer assignments, programming
assignments, forum discussions and feedback [19], which can
reflect the knowledge and skill achievements and the study
performance of students. Modeling students’ learning be-
havior and trying to discover interesting behavioral patterns
are non-trivial. Most recent research is focused on how to
predict the learning results based on the learning behavior
model. It can help the tutors to design the courses and give
specific guidance and assistance to specific students. How-
ever, due to the complexity of the behavioral records, there
are still several challenges to be overcome:

Individual sparsity. Even when many students are en-
rolled in a course, the duration of their involvement varies
substantially. Figure la displays a histogram of assessment
question frequencies, which shows an obvious Power-Law
distribution [2]. Only a few students participate in hun-
dreds of assessment questions. Most of the students have
activity length less than 20 records, which is very sparse.
This makes evolutionary activity sequence based user mod-
eling methods [16, 17] ineffective.

Activity inconsistency. Beyond the distribution in ac-
tivity length of assessment questions, students’ learning be-
havior in forum discussion, click stream and peer review are
also shown to follow a Power-Law distribution. In Table
4, we can see that among the 18 courses on Coursera, en-
rolled students, grades and students who passed the course
are highly diverse. This inconsistency makes the data very
imbalanced, which results in difficulties for Matrix factor-
ization based modeling methods [24]. These methods might
merge infrequent behavior with common behavior.

Content heterogeneity. Behavior diversity is not only
shown in activity length and course status, but also shown in
informative contents. There are 7 types of assessments and
12 types of questions in the courses, such as video, summa-
tive, checkbox and multiple checkbox. Proportions of these
assessments and questions are skewed in different courses.
On the other hand, students also have varying participa-
tion records on these contents. In Figure 2, it is shown that
distributions of students are obviously different in specific
demographic categories. It is a big challenge for modeling
methods to handle these heterogeneous contents for tasks
like dropout prediction or passing state prediction.
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ment questions in which students partic-
ipate.

‘mcq’ represents multiple checkbox ques-
tions.

Figure 1: Heterogeneity and inconsistency of student behavior.
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Figure 2: Student distributions across various demographic categories.

To overcome these challenges, we propose to employ Ex-
ceptional Model Mining (EMM) [4] for exceptional learning
behavior analysis. Instead of looking for anomalies or out-
liers of individuals, we look for exceptional behavior on the
subgroup level [7], which can provide interpretable descrip-
tions such as ‘Students: Country = US, Region = Manhat-
tan, Join dates > 365 (days)’ having exceptional learning
behaviors that are predominantly different from those in
the whole dataset. We employ EMM to discover interest-
ing learning behavioral patterns in subgroups. We establish
various model classes for specific learning behaviors, such as
discovering correlation between length of behavior sequence
and course grades, finding out subgroups with exceptional
dropout ratio, and looking for specific subsets where the clas-
sifier does not perform well. Experimental results on a real
dataset illustrate the type of meaningful learning behavioral
patterns EMM can discover in MOOCs. This can help us
build an improved behavior model in the future research. In
summary, our main contributions are:

1. We employ Exceptional Model Mining (EMM) to learn-
ing behavior analysis in MOOCs, which can help us to
overcome the sparsity, inconsistency and heterogeneity
in the behavioral records.

2. We employ several EMM model classes for different
tasks to discover exceptional learning behaviors on the
subgroup level. Our results show very interesting learn-
ing behavioral patterns, which can help the tutors con-
duct specific guidance and assistance to the students.

2. RELATED WORK

Local Pattern Mining (LPM) [6, 14] is a subfield of data
mining, concerned with discovering subsets of the dataset
at hand where something interesting is going on. Typically,
a restriction is imposed on what kind of subsets we are inter-
ested in: only those subsets that can be formulated within
a predefined description language are allowed. A canonical
choice for this language is conjunctions of conditions on at-
tributes of the dataset. Hence, if the records in our dataset
concern people, then LPM finds results of the form:

Age > 45 A Smoker = yes ~»  interesting

This ensures that the results we find with an LPM method
are relatively easy to interpret for a domain expert: the
subsets will be expressed in terms of quantities with which
the expert is familiar. We call a subset that can be expressed
in such a way a subgroup.

Different LPM methods give a different answer to the ques-
tion what exactly constitutes “where something interesting
is going on”. The most famous form of LPM is Frequent
Itemset Mining (FIM) [1], where interestingness is equiva-
lent to occurring unusually frequently: things that happen
often are interesting. Hence, FIM finds results of the form:

Age > 45 A Smoker = yes ~»  (high frequency)

The methods we are mainly concerned with in this paper,
however, seek a more complex concept on the right-hand
side of this arrow. The task of Subgroup Discovery (SD)
[9, 23, 7] typically singles out one binary attribute of the
dataset as the target: subgroups are deemed interesting if
this one target has an unusual distribution, as compared to
its distribution on the entire dataset. In our example, if the



target column describes whether the person develops lung
cancer or not, SD finds results of the form:

Smoker = yes ~» lung cancer = yes

Age < 25 ~» lung cancer = no

These subgroups make intuitive sense in terms of our knowl-
edge of the domain. Smokers have a higher-than-usual in-
cidence of lung cancer. People under the age of 25 often
have not yet had the chance to develop lung cancer, so the
incidence in this group will be lower. When the connec-
tion between subgroup and unusual target distribution is
not immediately intuitively clear, the result of SD is a new
hypothesis to be investigated by the domain experts.

2.1 Exceptional Model Mining

Exceptional Model Mining (EMM) [12, 4] can be seen as an
extension of SD: instead of a single target, EMM typically se-
lects multiple target columns. A specific kind of interaction
between these targets is captured by the definition of a model
class. EMM finds a subgroup to be interesting when this in-
teraction is exceptional, as captured by the definition of a
quality measure. For instance, when two numerical columns
are selected as the targets, we can consider Pearson’s corre-
lation p as the model class. Quality measures for this model
class could be p itself (to find subgroups on which the target
correlation is unusually high), —p (to find subgroups with
unusually strongly negative target correlation), |p| (to find
subgroup with unusually strong positive or negative target
correlation), or —|p| (to find subgroups with unusually weak
target correlation). Hence, the model class fixes the type of
target interaction in which we are interested, and the qual-
ity measure fixes what, within this type of interaction, we
find interesting. Several model classes have been defined
and explored; for instance, Bayesian networks [5], and re-
gression [3]. Popular quality measure for SD/EMM include
WRACcc [10], z-score [13], and KL divergence [11].

2.2 Learning Behavior Modeling

Learning behavior modeling for students in MOOCs is gen-
erally aimed at predictive analytics such as dropout predic-
tion, passing state prediction, and grades prediction. For
instance, latent factors and state machines are employed to
model the hidden study state of students for a predictive
task [18, 16, 21]. Khajah et al. [8] integrate Latent factor
and knowledge tracing with a hierarchical Bayesian model,
which can consider the study skill for prediction tasks. Re-
current neural network and LSTM have been used to model
study trajectories for the learning results prediction [15, 22].
Most of these existing methods focus on modeling individual
behavior but do not consider the sparsity, inconsistency and
heterogeneity of learning behavior data. Our methods focus
on discovering exceptional learning behaviors on the sub-
group level, which provide interpretable information about
where the predictive model does not perform well. This al-
lows us to establish an improved model for prediction tasks
for both normal and exceptional behavioral patterns.

3. PRELIMINARIES

We assume a dataset (2: a bag of N records r € 2 of the
form r = (a1,...ax,l1,...,lm), where k and m are posi-
tive integers. We call a1,...,ax the descriptive attributes
or descriptors of r, and [1,...,l, the target attributes or

targets of r. The descriptive attributes are taken from an
unrestricted domain 4. Mathematically, we define descrip-
tions as functions D : A — {0,1}. A description D covers a
record r* if and only if D(al,--- ,al) = 1.

DEFINITION 1. A subgroup corresponding to a description
D is the bag of records Gp C ) that D cowvers, i.e.:

Gp = {ri € Q‘D(ai,...,a}‘c) = 1}

This merely formalizes the standard LPM conditions: we
seek subgroups that are defined in terms of conditions on
the descriptors, hence our results are interpretable. Those
conditions select a subset of the records of the dataset: those
records that satisfy all conditions. These subgroups must be
evaluated, which is done by the quality measure:

DEFINITION 2. A quality measure is a function ¢ : D —
R that assigns a numeric value to a description D. Occa-
stonally, we use p(G) to refer to the quality of the induced
subgroup: ©(Gp) = ¢(D).

Typically, a quality measure assesses the subgroup at hand
based on some interaction on the target columns. Hence, a
description and a quality measure interact through different
partitions of the dataset columns; the former focuses on the
descriptors, the latter focuses on the targets, and they are
linked through the subgroup.

Since subgroups select subsets of the dataset at hand, and
many such subsets exist, we need to employ a search strategy
to ensure that we find good results in a reasonable amount
of time. To do so, we employ the beam search algorithm as
outlined in [4, Algorithm 1]. This algorithm holds the mid-
dle ground between a pure greedy search algorithm, which
is likely to quickly end up in a local optimum, and an ex-
haustive search, which is likely to require too much time for
providing the global optimum. Beam search builds up candi-
date subgroups in a level-wise manner, by imposing a single
condition on a single attribute at each step of the search.
In subsequent steps, promising candidates are refined, by
conjoining to these candidates all possible additional single
conditions on a single attribute, and evaluating the results.
A purely greedy approach would, at each step, refine the
single most promising candidate. By contrast, beam search
refines a fixed number w (the beam width) of most promising
candidates at each step. The larger the choice of w, the more
likely we are to escape local optima, and the longer the algo-
rithm will take. An additional parameter of beam search is
the number d (the search depth), which sets an upper limit
to the number of steps in the search process. Hence, by de-
sign, any subgroup resulting from a beam search procedure
must be defined as a conjunction of at most d conditions
on single attributes. The larger the choice of d, the more
expressive the results are; the smaller the choice of d, the
easier the results are to interpret.

4. EXCEPTIONAL LEARNING BEHAVIOR
ANALYSIS

Our dataset originates from the learners involved in the EIT
Digital MOOCs at Coursera. EIT Digital, as part of the



= dropout students
1750, = all students

1500,

1250,

1000

Number of Students

750;

500;

) )
2 3
Country Name

Figure 3: Dropout ratio of students by country.

Table 1: Exceptional dropout rate in subgroups.
Results show subgroups with highly exceptional
dropout rate. The overall dropout rate is 0.4286.

D PWRAcc | dropout | |Gp|

Country = OM, Was Group Sponsored | 0.0338 0.0
!= True, Was Finaid Grant != True

Region = MOW, Gender != male, Join | 0.0336 0.0
Date <= 1011, Join Date > 389

Country = KR, Gender != female, Profile | 0.0330 0.7812
language != ko

Country = KR, Educational status != | 0.0313 0.7742
MASTERS DEGREE, Gender != female,
‘Was Group Sponsored != True

Country = KR, Was Group Sponsored != | 0.0304 0.7222
True

European Institute for Innovation and Technology, aims to
drive Europe’s digital transformation, also for education.
The EIT Digital academy is focused on mobility and en-
trepreneurship and is at the forefront of integrating edu-
cation, research, and business. The MOOCs in the online
programme, have been developed by the partner universi-
ties involved in the EIT Digital Master School in Embedded
Systems, in a best of breeds approach.

Together, the MOOCs form the EIT Digital online pro-
gramme “Internet of Things through Embedded Systems”.
The online programme aims to build the reputation of EIT
Digital, the partner universities, and the involved teachers.
It also helps to renew pedagogy through scalable education
technologies and data driven education. Learning analyt-
ics are at the core of this feedback mechanism. The online
programme is comparable to an edX’s micromaster and sim-
ilarly offers an online equivalent of a 25 ECTS first semester;
the online programme offers learners to study at their own
pace, any time, any place. Moreover, they first can have
a try before they commit themselves to the whole master
programme. Once selected and admitted on campus, the
learners can finish the double degree master programme of
EIT Digital Master School in Embedded Systems.

Figure 2 displays the distributions of students across vari-
ous demographic categories. In order to catch the inherent
imbalance, we use demographic columns as the left hand at-
tributes, to formulate subgroup descriptions. In the data
preprocessing process, we convert the join dates, which rep-
resents how long a student has registered in Coursera, from
the format of ‘Datetime’ to the integer days. The follow-
ing three sections illustrate what kind of discoveries can be
made by wielding various tools from the EMM toolbox.

Table 2: Exceptional correlation analysis between
length of behavior sequence and course grades. The

overall correlation coefficient p is 0.7406.

D Psed P |Gp|
Country = LT, Join Date > 701, | 0.9999 0.9782 11
Browser language != et-EE

Region = 6 0.9994 -0.1272 10
Region = QUE 0.9992 -0.0788 11
Country = NP 0.9985 0.9630 11
Browser language = es-MX 0.9973 0.1203 7

Table 3: Exceptional classifier behavior for course
passing state prediction. Results indicate that the
classifier cannot work well on these exceptional sub-
groups.

P11 |Gl
Country = OM, Profile language = en-US, | 0.5051 32
Browser language !'= en-US, Educational status
!= BACHELOR DEGREE
Country = OM, Profile language != en-US 0.4058 22
Region = MA, Gender = female, Educational sta- | 0.3489 24
tus=COLLEGE NO DEGREE
Country = OM, Met Payment Condition != True | 0.3464 31
Join Date <= 390, Region = MA 0.3193 28

4.1 Exceptional Dropout Rate Analysis

In this section, our task is to find out the subgroups which
have significantly different dropout rate compared with the
whole dataset. For the purposes of this paper, we define
a dropout student to be a student who has participated in
at least one assessment question, but has not obtained an
overall course grade. In Figure 3, we present the highest-
frequency countries, and the dropout rate of students in
those countries. From the figure we can see that both fre-
quency and dropout rate vary a lot. The high dropout rate
is usually seen as a defect of MOOCs. If we were to discover
what kinds of students have exceptional dropout rates, then
that would allow us to direct specific guidance to those stu-
dents that most require it. Traditional partition and clus-
tering methods are not qualified for this task, because they
cannot provide interpretable results about the subsets of stu-
dents and quantitative information about how different the
subsets of students are from the whole dataset. To address
this problem, we propose to engage subgroups as a partition
for the whole dataset, and look for subgroups that have most
exceptional dropout rate comparing with the whole dataset,
employing Weighted Relative Accuracy (WRAcc) [20]:

_1Gol (Sp _ Sa
PWRAcc N |GD| N

Here, |Gp| represents the number of records covered by sub-
group description D, Sp represents the number of dropout
students in subgroup Gp, Sq represents the total number of
dropout students in the whole dataset, and IV represents the
number of students who join this course and participated in
at least one assessment question.

The beam search algorithm as described in [4, Algorithm 1]
is parameterized with beam width 20 and search depth 4.
The overall dropout rate is 0.4286. In Table 1, we presents
the top-5 subgroups with most exceptional dropout rate.
The subgroup with description “D: Region = MOW, Gender
!=male, Join Date between 389 and 1011” has a dropout rate



Grades

(a) The whole dataset. p = 0.7406

0.8

0.6

Grades

0.4

o 25 50 75 100 125 150 175
Behavior Length

Grades

Grades

o

80
Behavior Length

(b) Country = LT, Join Date > 701,

100 120 140 50 100 150 200
Behavior Length

(c¢) Region = 6. p = -0.1272

Browser language != et-EE. p = 0.9782

1.0

0.8

0.6

Grades

0.4

0.2 - - 0.2

0.0 e - ° 0.0

0.8

0.6

Grades

0.4+

0.2

Eer‘ﬁal)\”or LengtBhD 100 120 0 20 40 sehae Leng(:o 100 120 o0 20 B:hﬂawor Length 60 80
(d) Region = QUE. p = -0.0788 (e) Country = NP. p = 0.9630 f) Browser language = es-MX. p =
0.1203

Figure 4: Exceptional correlations in subgroups.

of zero: all students in that subgroup complete the course.
On the other hand, the subgroup with description “D: Coun-
try = KR, Gender != female and Profile language != ko”,
has an elevated dropout rate of 0.7812: most of these stu-
dents drop out. Based on these results, we can conclude that
Korean males who have set their profile language to some-
thing other than Korean, are in need of more attention. This
may be a group of students who are foreigners in Korea, or
Koreans who are studying in a language which is non-native
to them. By identifying such at-risk groups, educators can
more effectively channel their remedial activities.

4.2 Exceptional Correlation Analysis

Generally, more active students can be expected to obtain
higher grades. To investigate this phenomenon, we look into
the relation between the activity length (denoted by ¢) of
students and the overall grades (denoted by g) in a course.
We engage the correlation model class for EMM to realize
this task. In this model class, we can estimate the correlation
coefficient by calculating the sample correlation as follows:

_ @ -a¢' ~9)
VE @ - 0* S (g - 9)?

z/*lln 1+7
) 1—7

N 2 — ¢

z" = (1)
;4_;
|Gpl-3 GG |-3

=)

Here, 7 represents the sample correlation, ¢*, ¢° represent the
activity length and course grade of each student, and ¢, g
represent their average values over the dataset. Equation
(1) is the Fisher 2 transformation, 2’ in the lower equation
represents the 2z’ computation on the subgroup and 2% on

its complement, and |Gp| represents the number of records
covered by subgroup with description D. Under the null
hypothesis that the correlation between g and g is the same
inside and outside of the subgroup, z* follows a standard
normal distribution. Hence, the value for z* implies a p-
value under this null hypothesis. Leman et al. [12] propose
to use one minus this p-value as quality measure @pscq: the
higher this value is, the more certain we are that the null
hypothesis is false and hence exceptional correlations are
observed.

Using this quality measure, we conduct the experiment with
beam width 20 and search depth 3. In Table 2 and Figure 4,
we list the top-5 subgroups with exceptional quality score,
coefficients, and coverage. We can see that some students
gain extremely high grades with longer behavior sequence
(cf. Figure 4b, 4e); some students have longer behavior se-
quence length but lower grades (cf. Figure 4c, 4d); and for
some subgroups, the length of behavior sequences has no ob-
vious correlation with the grades (cf. Figure 4f). We can de-
duce that the efforts that some students spend in the study
are not directly correlated with their learning results.

4.3 Exceptional classifier behavior analysis
Students’ behavioral records in MOOCs are sparse, incon-
sistent and heterogeneous. Learning behavior could be very
different between different students. This imbalance increases
the difficulty of training a classifier that can perform well on
each part of the dataset. This makes it difficult to train a
model that is qualified for tasks like dropout prediction and
course passing state prediction.

In this section, we investigate whether learning behavior can
predict whether or not a student can pass the course. At



Table 4: Course statistics.

course_name course_level | complete_number | avg_grades | course_enroll num | max grades | min_grades | pass_number
Marketing I 1141 0.105 4609 | 1 0.006 52
Design Thinking I 369 0.167 3483 | 0.972 0.01 22
IoT A 8 0.098 241 | 0.1 0.087 0
System Validation (2) I 63 0.412 1010 | 1 0.05 12
Smart ToT B 905 0.216 6035 | 1 0.004 100
Computer Architecture I 913 0.510 7652 | 1 0.025 299
System Validation (4) A 17 0.597 985 | 1 0.071 9
Quantitative Model (1) 1 429 0.395 1807 | 1 0.007 49
System Validation (3) A 45 0.418 764 | 1 0.057 11
Quantitative Model (2) A 979 0.339 4975 | 1 0.016 52
System Validation I 601 0.376 2605 | 1 0.04 124
Technology I 258 0.232 3930 | 1 0.002 34
Embedded Systems I 549 0.291 3737 | 1 0.02 67
Software Architecture A 2710 0.299 10487 | 1 0.012 331
Real-Time Systems I 3615 0.203 15123 | 1 0.006 389
IoT Devices I 430 0.318 6609 | 1 0.008 85
Embedded Hardware I 3943 0.160 19592 | 1 0.02 128
Open Innovation I 480 0.137 3150 | 0.969 0.008 24

the same time, we investigate in which parts of the dataset
the classifier does not work well. In Section 4.1 and 4.2,
we have presented that EMM can effectively discover ex-
ceptional learning behavioral patterns in MOOCs. We will
continue using the EMM framework to find where our pre-
dictive model does not work well in the dataset. Considering
the activities of students in assessments, forum discussions
and peer assignments, we formulate the passing state pre-
diction problem as follows:

[ X Y

Our aim is to train a classifier f that can automatically map
X% to Y?, where X* is a 8-tuple (s°,m’, 0%, c',b%, €', ht, p)
feature vector representing the length of assessment and
question sequence (s'), number of assessment types (m’),
number of question types (oi), number of correctly answered
questions (c), number of asked, answered and liked ques-
tions in the forum (b*, e*, h*), and peer review score (p), and
where Y is the label of passing state: {0,1}. We normalize
the features into 0 to 1 as the input values.

At first, the classifier is trained on the whole dataset. This
model will classify some students correctly and some stu-
dents wrongly; in any case we find a value of predicted la-
bels Y. These two binary values Y and Y will agree and
disagree on some students, and that interaction can be used
to capture the quality of the classifier predictions in a single
number. We use the f1 score to capture this:

Precision - Recall
Precision + Recall

(2)

However, we can perform the exact same computation for
a subset of the vectors Y and Y, for instance the subset
induced by a subgroup. Thus, we employ ¢ as a quality
measure for EMM.

pr1 =

We conduct the experiment by setting the search depth to 4
and beam width to 10. We engage an SVM classifier as the
predictive model', which has 0.85 as f1 score on the whole

Lone may plug in one’s preferred classifier; SVM selection is
merely meant as an illustration, not an endorsement.

dataset. In Table 3 we list the top-5 subgroups with excep-
tional behavior. We can see that even though the classifier
performs well on the whole dataset, in some subgroups it
does not. Particularly for the students described by descrip-
tions like “D: Region = MA, Gender = female, Educational
status=COLLEGE NO DEGREE”, the classifier performs
poorly on the prediction task at hand: the support vector
machine has trouble predicting the study success of Mas-
sachusets women without a college degree. Hence, this group
requires a more sophisticated classifier.

S. CONCLUSIONS

In this paper, we employ Exceptional Model Mining (EMM)
for exceptional learning behavior analysis in MOOCs. Rather
than predicting the success of individual students, which is
difficult due to the inherent sparsity, inconsistency, and het-
erogeneity of the data, EMM specializes in identifying co-
herent groups that behave differently from the norm. Since
the subgroups resulting from EMM come with an easily in-
terpretable definition, Exceptional Model Mining allows ed-
ucators to more effectively channel their remedial activities.

We employ three EMM model classes for different tasks of
learning behavior analysis. Experimental results on a real
Coursera dataset show that for some students, the dropout
rate is very different from the whole dataset, the learning
efforts are not always correlated with course grades, and a
classifier that performs very well on the whole dataset has
trouble on some subpopulations of the data. In future work,
we will make use of these discovered exceptional behavioral
patterns to establish an improved model, which can model
both normal and exceptional learning behaviors for the stu-
dents in MOOCs. We plan to develop a modeling method
that can perform well on each part of the dataset, including
the exceptional ones.

6. ACKNOWLEDGMENTS

This research was funded by EIT 18008-A1803 project. In
addition, Xin Du would like to thank China Scholarship
Council (CSC) for the financial support.



References

1]

[10]

[11]

[12]

[13]

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
A. 1. Verkamo. Fast Discovery of Association Rules. Ad-
vances in Knowledge Discovery and Data Mining, pp.
307-328, 1996.

A.-L. Barabési and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509-512, 1999.

W. Duivesteijn, A. Feelders, and A. Knobbe. Differ-
ent slopes for different folks: mining for exceptional
regression models with cook’s distance. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 868-876,
2012.

W. Duivesteijn, A. J. Feelders, and A. Knobbe. Ex-
ceptional model mining. Data Mining and Knowledge
Discovery, 30(1):47-98, 2016.

W. Duivesteijn, A. Knobbe, A. Feelders, and M. van
Leeuwen. Subgroup discovery meets Bayesian networks
— an exceptional model mining approach. In 10th In-
ternational Conference on Data Mining (ICDM), pp.
158-167, 2010.

D. Hand, N. Adams, R. Bolton (eds). Pattern Detection
and Discovery. Springer, New York, 2002.

F. Herrera, C. J. Carmona, P. Gonzdlez, and M. J.
Del Jesus. An overview on subgroup discovery: foun-
dations and applications. Knowledge and Information
Systems, 29(3):495-525, 2011.

M. Khajah, R. Wing, R. Lindsey, and M. Mozer. In-
tegrating latent-factor and knowledge-tracing models
to predict individual differences in learning. In Edu-
cational Data Mining, 2014.

W. Klésgen. Explora: A Multipattern and Multistrat-
egy Discovery Assistant. Advances in Knowledge Dis-
covery and Data Mining, pp. 249-271, 1996.

M. van Leeuwen and A. J. Knobbe. Non-redundant sub-
group discovery in large and complex data. In Proceed-
ings of the European Conference on Machine Learning
& Principles and Practice of Knowledge Discovery in
Databases, pp. 459-474, 2011.

M. van Leeuwen and A. J. Knobbe. Diverse subgroup
set discovery. Data Mining and Knowledge Discovery,
25(2):208-242, 2012.

D. Leman, A. Feelders, and A. Knobbe. Exceptional
model mining. In Proceedings of the Furopean Con-
ference on Machine Learning & Principles and Prac-
tice of Knowledge Discovery in Databases, pages 1-16.
Springer, 2008.

M. Mampaey, S. Nijssen, A. Feelders, R. Konijn, and
A. Knobbe. Efficient algorithms for finding optimal
binary features in numeric and nominal labeled data.
Knowledge and Information Systems, 42(2):465-492,
2015.

K. Morik, J. F. Boulicaut, A. Siebes (eds). Local Pattern
Detection. Springer, New York, 2005.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pp. 505—
513, 2015.

J. Qiu, J. Tang, T. X. Liu, J. Gong, C. Zhang,
Q. Zhang, and Y. Xue. Modeling and predicting learn-
ing behavior in moocs. In Proceedings of the Ninth
ACM International Conference on Web Search and
Data Mining, pp. 93-102, 2016.

M. Qiu, F. Zhu, and J. Jiang. It is not just what we
say, but how we say them: Lda-based behavior-topic
model. In Proceedings of the 2013 SIAM International
Conference on Data Mining, pp. 794-802, 2013.

A. Ramesh, D. Goldwasser, B. Huang, H. Daume III,
and L. Getoor. Learning latent engagement patterns
of students in online courses. In Twenty-Fighth AAAI
Conference on Artificial Intelligence, 2014.

D. T. Seaton, Y. Bergner, I. Chuang, P. Mitros, and
D. E. Pritchard. Who does what in a massive open
online course? Communications of the ACM, 57(4):58—
65, 2014.

L. Todorovski, P. Flach, and N. Lavra¢. Predictive per-
formance of weighted relative accuracy. In Proceedings
of the European Conference on Principles of Data Min-
ing and Knowledge Discovery, pages 255—264, 2000.

F. Wang and L. Chen. A nonlinear state space model
for identifying at-risk students in open online courses.
Proceedings of the 9th International Conference on Ed-
ucational Data Mining, pp. 527-532, 2016.

L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming exercises
using deep learning. In Proceedings of the 10th Inter-
national Conference on Educational Data Mining, pp.
324-329, 2017.

S. Wrobel. An Algorithm for Multi-relational Discov-
ery of Subgroups. In Proceedings of the European Con-
ference on Principles of Data Mining and Knowledge
Discovery, pp. 78-87, 1997.

7. Zhao, Z. Cheng, L. Hong, and E. H. Chi. Improv-
ing user topic interest profiles by behavior factorization.
In Proceedings of the 24th International Conference on
World Wide Web, pp. 1406-1416, 2015.



