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ABSTRACT
Randomized A/B tests in educational software are not run
in a vacuum: often, reams of historical data are available
alongside the data from a randomized trial. This paper
proposes a method to use this historical data–often high-
dimensional and longitudinal–to improve causal estimates
from A/B tests. The method proceeds in two steps: first, fit
a machine learning model to the historical data predicting
students’ outcomes as a function of their covariates. Then,
use that model to predict the outcomes of the randomized
students in the A/B test. Finally, use design-based methods
to estimate the treatment effect in the A/B test, using pre-
diction errors in place of outcomes. This method retains all
of the advantages of design-based inference, while, under cer-
tain conditions, yielding more precise estimators. This pa-
per will give a theoretical condition under which the method
improves statistical precision, and demonstrates it using a
deep learning algorithm to help estimate effects in a set of
experiments run inside ASSISTments.

1. INTRODUCTION
Randomized A/B tests hold a lot of promise for the study
of student learning within intelligent tutors. Not only do
they allow for causal inference without fear of confounding,
but they also allow for “design-based” effect and standard
error estimates that are virtually guaranteed to be unbiased
[13]. These strengths are to the fact that data analysts know
exactly how, and with what probability, conditions were as-
signed to subjects.

The traditional tools for analyzing experiments estimate ef-
fects using only data from the experiments themselves, dis-

carding data from (potential) subjects that were not ran-
domized. For instance, data from past users or from con-
current users who, for whatever reason, were not included
in the A/B test, are excluded from the analysis. We refer to
users such as these, with similar covariate and outcome data
as the participants in the A/B test, but who were not ran-
domized, as the “remnant.” Excluding the remnant makes
good statistical sense: after all, the probabilities of assign-
ment are known only for participants in the experiment,
not for the remnant. However, data from the remnant may
be quite useful—in particular, the extra sample size could
improve the statistical precision, i.e. reduce the standard
errors, of experimental effect estimates. This is especially
the case for experiments run within intelligent tutors or
other big data environments. Vast amounts of log data,
collected prior to the experiment, in conjunction with pow-
erful machine-learning methods, could help sharpen causal
estimates considerably.

This paper introduces a method for using the remnant in an-
alyzing experiments, without sacrificing any of the benefits
of experimentation or making additional modeling assump-
tions. The core of the method is residualization—predicting
experimental subjects’ outcomes using a model fit to the
remnant, and then estimating effects using prediction resid-
uals instead of the outcomes themselves. We call the method
“remnant-based residualization,” or“rebar.” Rebar builds on
methods suggested in [9], [7], and [1]. Rebar was first intro-
duced in [12] as a method to reduce confounding bias in
observational studies. Here we show that rebar can also re-
duce standard errors in randomized A/B tests, particularly
in educational data mining contexts.

Most other methods incorporating machine learning into
analysis of experiments, either to estimate average effects
(e.g. [16]), to estimate subgroup effects (e.g. [3]), or to
optimally allocate treatment (e.g. [11], [19]) use machine
learning to replace, rather than complement, design based
methods. This is a very promising avenue of research, but
lacks the statistical guarantees of well-worn design-based es-
timates.



The next section will formally introduce rebar, and sections
3, 4, and 5 will illustrate it using a deep-learning model to
sharpen effect estimates in a set of 22 experiments run within
the ASSISTments system [14]. Section 6 will conclude.

2. REBAR
2.1 Experiments and Modeling
To learn if an intervention worked, or to figure out which of
two conditions (say, condition 0 and condition 1) produces
better outcomes, statistical models can often be quite help-
ful. To take a common example, analysts might regress an
outcome Y on an indicator for condition Z, along with a
vector of covariates x. Then, the estimated coefficient on
Z is taken as the estimated effect of condition 1 versus 0,
controlling for x [18].

The shortcomings of this approach are well-known: if the
vector x is missing a confounder—a covariate that predicts
both subjects’ choice of condition, 0 or 1, and outcomes Y—
then the regression estimate will be biased. Moreover, even
if there are no unmeasured confounders, if the regression
model is misspecified, for instance, modeling the relation-
ship between Y and x as linear, then the estimate will also
be biased. On the other hand, a regression model may be
run on all available data, producing precise (if inaccurate)
estimates.

Randomized experiments correct regression’s faults. If sub-
jects are randomly assigned to conditions 0 or 1, then the
difference in mean outcomes between the two groups is an
unbiased estimate of the average treatment effect. More
precisely, following [15] and [10], let y1i be the outcome a
subject i would experience if assigned to condition 1, and
let y0i be the outcome i would experience under condition
0. A subject’s observed outcome Yi = y1i if i is assigned to
1, Zi = 1; Yi = y0i if i is assigned to 0. (Since observed
outcomes Y are a function of Z, they are random; we may
model potential outcomes y0 and y1 as fixed.)

Under this framework, we define causal effects based on po-
tential outcomes y0 and y1, rather than observed outcomes
Y . An individual i’s treatment effect τi is the difference of
those two: τi ≡ y1i−y0i—the difference between i’s outcome
under treatment versus under control. Without strong as-
sumptions, these individual effects are not identified by the
data; instead, we estimate quantities such as the average
treatment effect (ATE) over all subjects τ̄ =

∑
i τi/n, or

the average effect of the treatment on the treated (TOT)
τ̄Z=1 =

∑
i Ziτi/n1, where n and n1 are the total num-

ber of subjects and the number of treated subjects, respec-
tively. In a simple randomized experiment, the ATE and
TOT have the expectation, but their estimators may have
different standard errors. For the sake of simplicity, we will
focus on the TOT.

Observed outcomes may be used to estimate the ATE, TOT,
or other causal parameters. In particular, an unbiased esti-
mator of the TOT is:

τ̂ = Ȳ Z=1 − Ȳ Z=0

where Ȳ Z=1 is the mean of Y for treated subjects,∑
i ZiYi/n1, and Ȳ Z=0 is the mean of Y in the control group.

An unbiased estimator of the squared standard error is:

SE2
TOT = n/(n1n0)s2(Y )Z=0

where s2(Y )Z=0 is the sample variance of Y in the control
group. See the Technical Appendix, and [4] for more details.
Estimators τ̂ and SETOT , and their properties, are derived
solely from the experimental design, via survey sampling
theory; they do not depend on the (unknown) distributions
of y1 and y0, or any other modeling assumptions. They are
“design-based.”

In a randomized experiment there are no confounders. Since
the probability distribution of Z is known exactly, no sta-
tistical models, or modeling assumptions, are necessary—
the analysis may be “design-based” instead of model-based.
In particular, the estimate τ̂ and its standard error derive
from survey sampling theory, not the distribution of y0 or
y1. On the other hand, any data from the “remnant” of
an experiment—the set of subjects outside the experiment,
who were not randomized to either condition—play no role
in this analysis. Since subjects in the remnant were not ran-
domized, there is no telling how they may differ from the
Z = 0 or Z = 1 groups, in ways measured or unmeasured,
and there is no telling (exactly, statistically) how their data
came to be, so design-based analysis is impossible and any
model fit to the remnant is most likely misspecified. How-
ever, though dropping the remnant from the analysis brings
unbiasedness, it also brings a loss of precision—all that sam-
ple size, thrown away.

2.2 A Role for the Remnant
Assume the following setup: a set of users, “the experimen-
tal set”were randomized to either condition 0 or condition 1,
and their outcomes Y were measured at the end of the exper-
iment. Conditions 0 or 1 could be two different treatments,
or control and treatment condition; we will refer to condition
0, as “control” and 1 as “treatment.” The goal of the experi-
ment is to estimate the TOT, τ̄Z=1, the average effect in the
treatment group. Some more subjects, the remnant, were
not randomized; instead, they all received condition 0, the
default (this isn’t strictly necessary—the theory also works if
they received condition 1, a mix of conditions, or something
else altogether—but it makes things simpler). Outcomes Y
were also measured for members of the remnant. Finally,
a set of covariates x, possibly high-dimensional, of mixed-
types, and/or longitudinal, were measured for everyone, in
the experimental set and in the remnant.

Experimental estimates typically drop the remnant, and pay
the price of lower precision. Instead, we suggest training
a machine-learning model on the remnant, and using it to
“residualize” the data from the experimental set—that is, es-
timate effects using prediction residuals. We call this algo-
rithm “remnant-based residualization” or “rebar.” The pro-
cess is as follows:

1. Using data from the remnant, train a model ŷ0(·) to
predict y0 as a function of x.

2. Validate ŷ0(·) (using cross-validation or other tech-
niques). if it performs well, proceed; otherwise return
to step 1, choosing a different model.



3. Use ŷ0(·) and covariates x in the experimental set to
generate predicted outcomes ŷ0(x) and residuals, e =
Y − ŷ0(x).

4. Estimate the TOT as a difference in mean residuals,

τ̂rebar = ēZ=1 − ēZ=0

with estimated standard error

SErebar =
√
n/(n1n0)s(e)Z=0

Where s(e)Z=0 is the sample standard deviation of e
in the control group.

Just like the traditional estimator τ̂ , the rebar estimator
τ̂rebar is design-based—its logical basis is the designed ex-
periment, not a model. On the other hand, it harvests in-
formation from the remnant to improve upon τ̂ .

Rebar works because the predictions ŷ0(x) were generated
from an external sample—the remnant—and pre-treatment
covariates x. Subject i’s prediction ŷ0(xi) will be the same
whether i is assigned to 0 or to 1. Since there’s no treat-
ment effect on ŷ0(x), subtracting ŷ0(x) from Y only removes
noise—not part of the treatment effect. When treatment
is randomized, Z is independent of ŷ0(x), so, in expecta-
tion, the mean of ŷ0(x) will be equal across the two treat-
ment groups. In fact, the rebar estimator can be re-written
as τ̂rebar = ȲZ=1 − ȲZ=0 − (ŷ0(x)Z=1 − ŷ0(x)Z=0). The
first term is τ̂ , which is unbiased for the TOT. The sec-
ond term is the difference in means of ŷ0(x), which is zero
in expectation—therefore, τ̂rebar is unbiased. This property
holds not just for the difference-in-means estimator—rebar
can sharpen any treatment effect estimator that is linear in
Y and unbiased.

Rebar’s main tool is the model ŷ0(·), which predicts y0 as
a function of x. In EDM settings, the dimension of avail-
able covariates is often very large, and sample sizes are of-
ten large as well—machine learning algorithms make strong
candidates for ŷ0(·). ŷ0(·) is not a statistical model per se,
estimating the parameters of a probability distribution, but
as a tool for prediction. It need not be correct in any sense,
and its estimates need not be unbiased or consistent. Since
ŷ0(·) is fit on a separate sample from the experimental sub-
jects, the process of fitting it—steps 1 and 2 above—do not
affect standard errors, and model misspecification does not
lead to bias.

On the other hand, for rebar to be more precise than the
usual difference in means, ŷ0(·) must be able to generate
decent predictions of y0 in the experimental set. This will
be the case if ŷ0(x) is a good prediction of y0—by residual-
izing, we subtract out the component of Y ’s variance that
is predicted by ŷ0(·). The variance of the rebar estimator
is proportional to the difference between the mean-squared
prediction error of ŷ0(·), MSE = ||y0 − ŷ0(x)||2/n and its
squared bias. (Recall that both τ̂ and τ̂rebar are unbiased
estimates of the TOT; the bias here refers to ŷ0(·)’s predic-
tions of y0, not to treatment effect estimates.) The extent
to which it outperforms the standard estimate τ̂ , measured
as percent improvement (SE2

TOT − SE2
rebar)/SE2

TOT , is at
least as large as ŷ0(·)’s prediction R2 in the control group,
R2 = 1 − ||Y − ŷ0(x)||2Z=0/||Y − Ȳ ||2Z=0 (see the Technical

Appendix for derivations). If ŷ0(·) performs poorly in the
control group—so that ||Y − ŷ0(x)|| > ||Y − Ȳ ||—then this
R2, as we have defined it, could be negative, and τ̂rebar will
be less precise than τ̂ ; however, it will still be unbiased. The
improvement τ̂rebar offers rests entirely on the performance
of ŷ0(·). The better we can predict how subjects would have
performed in the control condition, the more precisely we
can estimate treatment effects.

Since ŷ0(·) is trained in the remnant, its performance in the
experimental set (as measured by, e.g. prediction R2) will
be hard to gauge at the outset. If the distribution of Y , con-
ditional on x, differs widely from the between the two sets,
ŷ0(·)’s performance may suffer in extrapolation. This prob-
lem is not fatal: the rebar estimate is unbiased regardless
of ŷ0(·)’s properties. However, a model with poor predic-
tive power in the experimental set will not reduce standard
errors substantially, and may increase them. Of course an
analyst may calculate ŷ0(·)’s R2 in the experimental set, but
choosing a model based on Y induces dependence between
Y and ŷ0(x), and may cause bias. Models trained on a sub-
set of the remnant that resembles the experimental set—or
which weight such a remnant more heavily—may perform
better than those trained on the entire remnant.

The previous discussion assumed simple randomization.
However, rebar easily extends to more complex designs, in-
cluding experiments with more than two treatment condi-
tions. Further, as we will illustrate below, rebar can be ex-
tended to regression estimators of causal effects as well, mod-
eling low-dimensional covariates within sample and high-
dimensional covariates out of sample.

3. DATA: 22 EXPERIMENTS AND MORE
The 22 experiment dataset is a feature-rich dataset on
students who participated in randomized controlled trials
(RCTs) ran inside a free, online tutoring called ASSIST-
ments [14]. This dataset consists of student-level data from
8,205 unique students participating in 22 A/B tests, 14,947
unique student-RCT pairs in total.

These RCTs were run within skill builders. Inside ASSIST-
ments, a skill builder is a type of problem set that requires
students to practice solving problems until they master the
associated skill. Skill mastery is determined by the student’s
ability to answer a certain number of problems correctly,
usually three, in a row.

This feature-rich dataset includes 30 features, including
both categorical features, such as student grade levels, and
numerical features, such as student performances prior to
the experiment. This dataset also includes two dependent
measures. The first dependent measure, “completion,” is
whether the student completed the assignment and achieved
mastery. The other dependent measure is the number of
problems attempted; for students who achieved mastery, this
may be interpreted as mastery speed. The analysis in this
paper will focus on the first dependent measure, completion.

4. DEEP LEARNING TO PREDICT COM-
PLETION



As described in Section 2.1, the model ŷ0(·) is an integral
part of the rebar methodology with the purpose of producing
predicted outcome y0 as a function of x. The methodology
does not rely on a specific type of model, nor any specific
algorithm to be used so long as an estimate for the outcome
variable of interest is generated by the model from included
covariates. As also stated in that section, the accuracy of
the model, however poor, does not lead to bias. That said,
models that are more accurate at estimating the outcome
variable of interest will likely lead to better estimates of
treatment effects. Deep learning models have been previ-
ously applied in educational contexts with promising results,
often reporting higher performance over existing methods
[8][6][2]. While the application of such methods is not ap-
propriate to all problem applications due to the size and
complexity, the use of such models in this work is justified
due to 1) the scale of data available for model training and
2) the inconsequence of producing an uninterpretable model
(e.g. the significance and coefficients of individual variables
in the model are not intended for study or knowledge discov-
ery). What is needed, again, is simply a prediction model.

We develop and apply a type of deep learning model known
as a long short term memory (LSTM) [5] network. This
model is a variant of a recurrent neural network (RNN) [17]
that is commonly applied to time series data to model tem-
poral relationships within the sequences. The model pro-
duces its estimates for each time step by utilizing both co-
variates provided corresponding to the current time step as
well as information from all previous time steps within the
series. As such, the model is developed as a sequence-to-
sequence method that observes a sequence of student data
as input and produces a sequence of outcome estimates of
equal length. The model structure utilizes a 3-layer design,
with an input layer feeding into a recurrent hidden layer
(represented as a layer also connected to itself in previous
time steps), before then proceeding to an output layer.

Two separate datasets are used to train and apply the model.
The application dataset, comprised of student data from the
22 experiment dataset combined with assignment-level in-
formation for all work each student started before begin-
ning the respective experiment. In an attempt to reduce the
complexity of the data from which the model must learn,
the sequence length of student assignment history is limited
such that no more than 10 prior assignments are included
for each student. In other words, students who were in a sin-
gle experiment have a sequence length of 10, with the last
time step representing the most recent assignment prior to
beginning the experiment. Conversely, students in multiple
students may exhibit sequences longer than 10 if partici-
pation in the experiments was separated by fewer than 10
assignments. The dataset is comprised of data from 8,297
distinct students and a total of 130,935 student assignments.

The second dataset, used to train and validate the model, is
comprised of student data exclusive to that comprising the
22 experiment dataset. Student data, again non-inclusive
of students within the 22 experiment dataset, is collected
from the non-experimental problem sets found in the ap-
plication dataset. From these, assignments are randomly
sampled, with which the dataset is constructed using the 10
most recent assignments before students begin the sampled

assignment. This step, helps to ensure a similar structure
of the dataset to that of the application set. Again, for pur-
poses of validity, it is important to stress that no students
are found in both the training and application datasets. The
dataset contains data from 134,141 distinct students and a
total of 686,590 student assignments.

The model uses just 4 assignment-level covariates per time
step to predict assignment-level performance on the subse-
quent assignment. These covariates include the simple mea-
sures of completion of the assignment, the number of prob-
lems attempted, the number of problems completed, and
a measure of inverse mastery speed; this last measure is
a transformation of mastery speed, using 1 divided by the
number of problems when the assignment was complete, or
0 when the assignment was not completed. While simple in
the number of covariates, again, the model also uses infor-
mation from previous time steps, adding to its complexity
(i.e. time step 2 is informed by time step 1, time step 3
is informed by time steps 2 and 1, etc.). The model pro-
duces two values per time step corresponding with the de-
sired outcome variable of completion of the next assignment,
and also an estimate of inverse mastery speed on the next
assignment, using a combined cost of these two measures to
update model parameters during training; this second mea-
sure was included as it is believed the model may better
learn from the data by observing a continuous variable in
addition to the binary value of completion and also acts as
an example as to how future works may utilize the same
methodology to observe beyond the measure of completion
presented in this work.

The model is first evaluated using a 5-fold student-level
cross-validation. The model is trained for multiple epochs,
or training cycles through the data, using a 30% holdout
set, sampled from the training set of each fold, to determine
the stopping point of model training; this holdout set also
helps stop the model training process before overfitting is
detected. It is found that the model produces average AUC
of 0.81 and an RMSE of 0.34 for next assignment completion
over the 5 folds. Once completed, a final model is trained
over the entirety of the training dataset and applied to the
application dataset, which has acted as a holdout set during
the training and validation process. The next assignment
completion estimates, collected from the most recent assign-
ment before students begin each experiment, is then used as
the estimated value of completion that is used in subsequent
steps of the rebar analyses.

5. RESULTS
We estimated treatment effects of interventions on skill-
builder completion for the 22 experiments using both raw
outcomes Y , the usual approach, and using e = Y − ŷ0(x),
the rebar estimator. We also estimated standard errors in
both cases. We used difference in means estimators, so the
effect estimates are in units of percentage points—how much
more likely were students to finish skill builders under the
treatment condition than under control.

Figure 1 shows improvement in precision of the rebar es-
timator over the usual estimator: the difference of the
two standard errors, divided by the usual standard error,
(SEusual−SErebar)/SEusual. The x-axis shows the predic-



Figure 1: The improvement in precision of effect es-
timates as a percentage of the usual precision esti-
mate, [SE(τ̂)−SE(τ̂rebar)]/SE(τ̂), plotted as a function
of ŷ0(·)’s prediction R2 in the experimental set.

tion R2 of the deep learning model when extrapolated to
each of the 22 experimental datasets. In 19 of the datasets,
the rebar standard errors were lower than the usual stan-
dard errors. In 15 of those datasets, there was a greater
than 25% improvement, and in four datasets the improve-
ment was greater than 40%. The extent of the reduction in
standard error corresponded closely to the prediction R2 of
ŷ0(·), with the most dramatic improvements occurring when
R2 & 0.5.

Figure 2 shows the estimated treatment effects and approx-
imate 95% confidence intervals (two standard errors in each
direction) for the two sets of estimators. In all but three
cases, the rebar estimate was slightly closer to zero than the
usual estimate. This is what we would expect if most of
the true effects were null, so that reducing the noise of the
treatment effect estimates would draw them closer to their
true values. For that reason, although rebar reduced the
standard errors in almost all of the experiments, it did not
cause any of the non-significant results to become statisti-
cally significant. In fact, in two cases it had the opposite
effect; though this may be disappointing for researchers, it
is probably more accurate.

We also used linear regression to estimate treatment effects,
regressing either indicators for completion or prediction er-
rors on indicators for treatment assignment and two covari-
ates: the proportions of students’ prior skill builders com-
pleted and the proportions of prior skill builder problems
students worked that they answered correctly. The results,
available upon request, are nearly identical. Although the
two covariates improved precision slightly, rebar continued

Figure 2: Effect estimates and 95% confidence in-
tervals for the 22 experiments, using both the usual
and rebar estimates. Experiments are ordered by
their estimated effect.

to dominate the usual estimate.

6. DISCUSSION
The rich, high-dimensional, fine-grained data that educa-
tional technology makes available should be a boon to causal
inference. However, big data is subject to the same maladies
as small data—confounding from unmeasured variables, and
model misspecification. Classical randomized experiments
remain relevant.

The same may not be true for classical design based estima-
tors. Big data may not be able to correct unmeasured con-
founding and may exacerbate model misspecification, but we
have shown that it can play a significant role reducing the
standard errors of treatment effect estimates. The method
we proposed here retains all of the statistical properties that
recommend design-based estimators, while, in most cases,
delivering substantially lower standard errors. We demon-
strated the method’s effectiveness using a cutting-edge deep
learning algorithm trained to log data from ASSISTments
which yielded impressive gains in precision when used to
analyze a set of 22 experiments.

Rebar’s most important tool in this exercise was the deep
learning algorithm, which in 17 of the 22 experiments pre-
dicted completion better than the within-sample proportion.
In general, designing prediction algorithms that perform well
in the target dataset is the central challenge to effectively
implementing rebar. Along the same lines, the most impor-
tant open question is how to design diagnostics for predic-
tion performance that do not rely on “peeking” at the exper-
imental outcomes. One such diagnostic, termed “proximal



validation,” was described in [12]—extending it to experi-
mental studies and showing that it works is the next step in
developing this method.

Wedding classical randomization-based causal inference
with modern machine learning and big data can yield
unbiased, robust, precise treatment effect estimates in
technology-based educational datasets.

Technical Appendix
This discussion roughly follows [4], Section 1.1. The
TOT

∑
i Zi(y1i − y0i)/n1 may be re-written as

n−1
1

(∑
i Yi −

∑
i y0i

)
, the difference between the total

of Y across both treatment groups, and the total that
would have been observed had everyone received the control
condition. The first sum is known exactly, but the second
must be estimated using data from the control group.
From elementary survey sampling, nȲ Z=0 is unbiased
for

∑
i y0i. Further, the standard deviation of nȲ Z=0

is
√
n2(1− n0/n)s2(y0)/n0 =

√
n/(n1n0)s2(y0), where

s2(y0) is the sample variance, over the whole sample, of y0,
and 1 − n0/n = n1/n is the finite population correction.
Finally, due to random sampling, s2(Y )Z=0 is an unbiased
estimator for s2(y0). Substituting σZ=0 for σ0 and dividing
by n1 gives the expression for SETOT .

Each individual treatment effect τi is the same whether the
outcome (dependent variable) is Y or e:

e1 − e0 = (y1 − ŷ0(x))− (y1 − ŷ0(x)) = y1 − y0

since ŷ0(x) is invariant to treatment. Therefore, the theory
supporting standard estimates τ̂ and SETOT applies equally
to τ̂rebar and SErebar. In particular, τ̂rebar is unbiased for
the TOT with consistent standard error estimate SErebar,
due to survey sampling theory.

The sample variance of e in the control group is

s2(e)Z=0 =
||e− ē||2Z=0

n0 − 1

=
||Y − ŷ0(x)− (Ȳ − ŷ0(x))||2Z=0

n0 − 1

=
||Y − ŷ0(x)||2Z=0

n0 − 1
− n0

n0 − 1

(
ȲZ=0 − ŷ0(x)Z=0

)2
or the MSE of ŷ0(·) in the control group, minus its squared
bias. Since the squared bias is always positive,

s2(e)Z=0 ≤
||Y − ŷ0(x)||2Z=0

n0 − 1

Therefore, the ratio of the estimated rebar standard error to
the usual TOT standard error is:(
SErebar

SETOT

)2

=
s2(e)Z=0

s2(Y )Z=0
≤ ||Y − ŷ0(x)||2Z=0

||Y − Ȳ ||2Z=0

= 1−R2
Z=0

with equality if ŷ0(·) is unbiased.
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