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ABSTRACT
In most contexts of student skills assessment, whether the
test material is administered by the teacher or within a
learning environment, there is a strong incentive to mini-
mize the number of questions or exercises administered in
order to get an accurate assessment. This minimization ob-
jective can be framed as a Q-matrix design problem: given
a set of skills to assess and a fixed number of question items,
determine the optimal set of items, out of a potentially large
pool, that will yield the most accurate assessment. In recent
years, the Q-matrix identifiability under DINA/DINO mod-
els has been proposed as a guiding principle for that purpose.
We empirically investigate the extent to which identifiability
can serve that purpose. Identifiability of Q-matrices is stud-
ied throughout a range of conditions in an effort to measure
and understand its relation to student skills assessment. The
investigation relies on simulation studies of skills assessment
with synthetic data. Results show that identifiability is an
important factor that determines the capacity of a Q-matrix
to lead to accurate skills assessment with the least number
of questions.

1. INTRODUCTION
Consider a set of items intended to assess a student’s mas-
tery over a set of skills, or knowledge components (KC).
These items, along with the set of skills, can be designed
to test a single skill at once. Or, they can be designed to
involve two or more skills. A test composed of a fixed num-
ber of items can either be composed of a mixture of single
and multiple skills items, or composed of one type of items
only. Skills can themselves be defined so as to facilitate the
creation of task/problem items that involve single skill per
item, or multiple skills per items. By which principles should
a teacher choose among these different options?

This paper addresses this question, with the general objec-
tive of designing a test that will bring the most accurate
assessment of a student’s skill mastery state with the least
number of questions items.

The investigation is framed within the DINA model, which
was a widely researched model and originally proposed in
the research of a rule space method for obtaining diagnostic
scores (Tatsuoka, 1983). In this model, question items can
involve one or more skills, and all skills are required in or-
der to succeed the question, while a success can still occur
through a guessing factor, and failure can also occur through
a slip factor.

2. Q-MATRIX, DINA MODEL AND
IDENTIFIABILITY

The mapping of items to skills is referred to as a Q-matrix,
where items are mapped to latent skills whose mastery is
deemed necessary in order for the student to succeed at the
items. An item can represent a question, an exercise, or
any task that can have a positive or negative outcome. In
the DINA model, the conjunctive version of the Q-matrix is
adopted: all skills are considered necessary for success.

In the last decade, a number of papers have been devoted to
deriving a Q-matrix from student test results data (Barnes,
2010; Liu, Xu, & Ying, 2012; Desmarais, Xu, & Beheshti,
2015; P. Xu & Desmarais, 2016). Another line of research
on Q-matrices has been devoted to refine or to validate an
expert-given Q-matrix (de la Torre & Chiu, 2015; Chiu,
2013; Desmarais & Naceur, 2013). While the problems of
deriving or refining a Q-matrix from data are related to Q-
matrix design, they do not provide insight into how best to
design them.

In parallel to these investigations, some researchers have
looked at the question of the identifiability. The general
idea behind identifiability is that two or more configurations
of model parameters can be considered as equivalent. Sets
of parameters will be considered equivalent if, for example,
their likelihood is equal given a data sample. Or, conversely,
if the parameters are part of a generative model, two sets of
equivalent parameters would generate data having the same
characteristics of interest, in particular equal joint probabil-
ity distributions (see Doroudi & Brunskill, 2017, for more
details).

The issue of identifiability for student skills assessment
was first researched in multiple diagnosis model compar-
ison (Yan, Almond, & Mislevy, 2004), Bayesian Knowl-
edge Tracing (Beck & Chang, 2007) and later discussed by
more researchers (van De Sande, 2013; Doroudi & Brun-
skill, 2017). A mathematically rigorous treatment Q-matrix
identifiability under the DINA/DINO setting was presented
under zero slip and guess parameters (Chiu, Douglas, & Li,
2009), and under known slip and guess (Liu, Xu, & Ying,
2013), and finally under unknown slip and guess parame-
ters (Chen, Liu, Xu, & Ying, 2015). An overall discussion
can also be found (G. Xu & Zhang, 2015; Qin et al., 2015).
These studies provide theoretical basis to derive Q-matrices
from data, but not to the design of Q-matrices itself. In this
paper, we consider the identifiability of the Q-matrix with



regards to the DINA model.

Identifiability is a general concept for statistical models. Its
formal definition is:

Definition (1) (Casella & Berger, 2002) A parameter θ for a
family of distribution f(x|θ : θ ∈ Θ) is identifiable if distinct
values of θ correspond to distinct pdfs or pmfs. That is, if
θ 6= θ′, then f(x|θ) is not the same function of x as f(x|θ′).

The DINA model has parameters θ = {Q, p, s, g}, where Q
is the Q-matrix. p is the categorical distribution parameter
for all student profile categories. That is, it indicates the
probability that a student belongs to each profile category.
For example, in a 3-skill case, there are 23 = 8 categories
for students to belong to, and the 8-component probabil-
ity vector of students belongs to each of these categories is
the model parameter p. Finally, s and g are both vectors
denoting the slip and guess of each item.

The identifiability of all parameters in DINA model have
been thoroughly investigated and several theorems are given
(G. Xu & Zhang, 2015). But for the Q-matrix design prob-
lem that is the focus of this paper, we solely need to ensure
that the model parameter p is identifiable, meaning that we
can distinguish different profile categories. Fortunately, for
the case when s and g are known, the requirement is easily
satisfied, since it only requires the Q-matrix to be complete.

Definition (2) (Chen et al., 2015) The matrix Q is complete
if {ei : i = 1, ...,K} ⊂ RQ, where K is the number of skills
(columns of Q), RQ is the set of row vectors of Q, and ei is
a row vector such that the i-th element is one and the rest
are zero (i.e. a binary unit vector, also known as a “one-hot
vector”). Stated differently, the rows of the identity matrix,
IK×K , must be in Q for this matrix to be complete.

And the heart of the current investigation is based on the
following proposition:

Proposition (Chen et al., 2015) Under the DINA and
DINO models, with Q, s and g being known, the popula-
tion proportional parameter p is identifiable if and only if Q
is complete.

We show an example of Q-matrix that is not complete below
for better illustration. 

k1 k2 k3

q1 1 0 0
q2 0 1 1
q3 1 0 1


This Q-matrix does not contain e2 : [0, 1, 0] or e3 : [0, 0, 1],
and is therefore not complete, even though its items (rows)
cover all skills (columns). Using this Q-matrix under DINA
model setting entails that the model parameters are not
identifiable according to the proposition above, and would
in turn compromise student profile diagnosis. In fact, stu-
dents who only master skill 2 and students who only master
skill 3 are indistinguishable under this Q-matrix.

But while the use of a non identifiable Q-matrix should be
avoided according to the proposition, the question remains:

among all the complete Q-matrix, which ones are most effi-
cient for student profile diagnosis?

In the next section, we investigate empirically the Q-matrix
design options in light of the completeness requirement,
using synthetic student performance data with the DINA
model. Synthetic data is essential for this investigation be-
cause we need to know the underlying ground truth. We
return to the issue of using real data in the conclusion.

3. EXPERIMENT
The Q-matrix design problem is essentially an optimization
problem. Basically, we have a pool of Q-matrices, and each
of them is formed by a selection with replacement from a
pool of q-vectors. Each Q-matrix will yield some capacity
to diagnose students, as measured by a loss function. We
aim to choose a Q-matrix that minimizes the loss function.

Our experiments follow a Bayesian framework to diagnose
students under DINA Q-matrices. First, we use one-hot
encoding to denote all profile categories. Set M to be the
number of profile categories. Then, in the 3-skill case, the
M = 8 profile categories pci are:

k1 k2 k3

pc1 0 0 0
pc2 1 0 0
pc3 0 1 0
pc4 0 0 1
pc5 1 1 0
pc6 1 0 1
pc7 0 1 1
pc8 1 1 1


Therefore, a student belonging to profile pc1 is encoded as
a binary unit vector α1 = (1, 0, 0, 0, 0, 0, 0, 0), and so on for
pc2 encoded as α2 = (0, 1, 0, 0, 0, 0, 0, 0), ..., and pc8 encoded
as α8 = (0, 0, 0, 0, 0, 0, 0, 1). The DINA model parameter p
is represented as a probability vector p = (p1, p2, ..., p8) =
(P (α1), P (α2), ..., P (α8)). Then, we set the prior of each
student profile to be:

α0 = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8)

With the conditional independence assumed (i.e, condi-
tioned on a given profile category, the probability to answer
each question correct is independent), the likelihood is given
by (De La Torre, 2009; Chen et al., 2015):

L(p,Q, s, g|X) = P (X|p,Q, s, g)

=

I∏
i=1

∑
α

pαP (Xi|α,Q, s, g)

=

I∏
i=1

∑
α

pα

J∏
j=1

Pj(α)Xij [1− Pj(α)]1−Xij

(1)

in which X is the response matrix and Xi is the i-th row,
I is the number of records (students), J is the number of
questions. Pj(α) is the probability of student profile α to
answer correctly of question j, notice α in 3-skill case has
only 8 possible values, for any of them αm,m = 1, ..., 8, the
probability is given by DINA model

Pj(αm) = P (Xij = 1|αm) = g
1−ηmj

j (1− sj)ηmj



in which ηmj is the latent response of profile αm to question
j, that is, the response when slip and guess is 0. It can be
calculated by

ηmj =

K∏
k=1

α
qjk
mk

where K is the number of skills and qjk is the (j, k)-th ele-
ment of Q-matrix Q.

Given the prior and likelihood, the posterior α̂ for each stu-
dent can be calculated. It has the form:

α̂ = (p̂1, p̂2, p̂3, p̂4, p̂5, p̂6, p̂7, p̂8)

and we then calculate the loss between this posterior and
the true profile αtrue, which is one of the one-hot encoding
vector.

For any Q-matrix configuration, the loss function is defined
by

loss(Q) =
∑

i∈students

‖α̂i − αtrue‖2

To implement the experiment, for each Q-matrix configu-
ration, we generate a response matrix based on the DINA
model given fixed slip and guess parameters, using function
’DINAsim’ from the R package DINA (Culpepper, 2015).
Then, we calculate the posterior estimation for all students
and evaluate the total loss. The reported result is an average
loss of 100 runs.

In our experiments, we consider the 3-skills and 4-skills
cases. For the 3-skills case, experiments are conducted with
N = 200 students, of which 25 students fall into each of
8 categories. For the 4-skills case, we use N = 400 students,
of which 25 students fall into each of 16 categories.

3.1 Experiment 1: Comparison of three
strategies

In the first experiment, we compare three different Q-matrix
design strategies. They are all based on repetition of a spe-
cific pool of q-vectors.

• Strategy 1 (Q-matrix 1): Using the identifiability con-
dition (definition (1)) by using only combinations of
the vectors {ei : i = 1, ...,K} (binary unit vectors, or
one-hot encodings).

• Strategy 2 (Q-matrix 2): Using the vectors {ei : i =
1, ...,K} plus an all-one vector (1, 1, 1) (in 3-skill case)
or (1, 1, 1, 1) (in 4-skill case). This is inspired by or-
thogonal array design, which is a commonly seen de-
sign of experiments (Montgomery, 2017).

• Strategy 3 (Q-matrix 3): Repeatedly using all q-
vectors.

For the 3-skills case, all these three Q-matrices are shown in
Figure 1. The general pattern is to recycle the rows above
the lines denoted by ...[..., ..., ...].

The 4-skills case is similar, which is omitted here. Results
of these two cases are shown in Figure 2a and Figure 2b.

Q-matrix 1
(binary unit vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
... ... ... ...
q19 1 0 0
q20 0 1 0
q21 0 0 1



Q-matrix 2
(binary unit + all-1s vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 1
... ... ... ...
q17 1 0 0
q18 0 1 0
q19 0 0 1
q20 1 1 1
q21 1 0 0



Q-matrix 3
(all combinations)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 0
q5 1 0 1
q6 0 1 1
q7 1 1 1
... ... ... ...
q15 1 0 0
q16 0 1 0
q17 0 0 1
q18 1 1 0
q19 1 0 1
q20 0 1 1
q21 1 1 1



Figure 1: Q-matrix design strategies

3.2 Experiment 2: Find best configuration
The second experiment takes the brute force approach. We
directly examine all possible Q-matrix configurations. First,
for a given pool of q-vectors to choose from and an integer
indicating the number of questions, we need to know the
number of possible configurations of Q-matrices we have.
This is equivalent to a classical combinatorial problem, that
is, to allocate marbles (q-vectors) to bins (questions). It can
be easily computed by combinatorial coefficients and inter-
preted by using stars and bars methods. For example, in
3-skills case, we have 7 q-vectors, and if we have 4 ques-
tions to allocate them, then we have

(
4+7−1
7−1

)
= 210 possible

configurations. This number grows up sharply as a number
of questions increases or number of patterns increases. As
a comparison, in the 4-skills case, if we have 5 questions
to allocate them, then we have

(
5+15−1
15−1

)
= 11628 possible

configurations.

For each configuration, we calculate the MAP estimation for
all categories of each student, and compare with the one-hot
encoding for their true categories. The total loss is reported
as the performance index.

Figure 3 shows the results of 6 combinations of different
numbers of skills and questions:

• 3-skills case, 4 questions: Figure 3a, Figure 3b

• 3-skills case, 8 questions: Figure 3c, Figure 3d

• 4-skills case, 5 questions: Figure 3e, Figure 3f
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Figure 2: Experiment 1: Three Strategy Comparison on 3- and 4-skills cases

4. DISCUSSION
From the result of experiment 1 we can see that strategy 1
always works better than the other two strategies, mean-
ing that simply repeating the vectors {ei : i = 1, ...,K} in
Q-matrix design, without using any combination of skills,
yields better student diagnosis performance.

From the result of experiment 2, when slip and guess pa-
rameters are as low as 0.01, we can see obvious graded pat-
terns among different configurations. This can be explained
by the the distinguishability of a Q-matrix. For example,
in Figure 3a, we can see there are 7 layers. In fact, the
first layer consisted of Q-matrix that can only cluster stu-
dents into 2 categories. One example of such a Q-matrix is

k1 k2 k3

q1 1 0 0
q1 1 0 0
q1 1 0 0
q1 1 0 0


This Q-matrix can only discriminate between a student that
mastered skill 1 or not. We know that there are in fact 8
categories of students, the 7 layers in Figure 3a from top
to bottom correspond to the Q-matrix that can separate
students into 2 to 8 categories. We can see that complete
Q-matrices always fall in the bottom layer, which concurs
with the proposition of Section 2. The 4-skills case is similar
in Figure 3e.

When slip and guess parameter increase, the points become
more divergent, as can be seen by comparison between fig-
ures 3a and 3b. In order to see some greater details, we
distinguish three types of Q-matrices.

• Type I: Complete and confined, meaning it is only con-
sisted of vectors {ei : i = 1, ...,K}.

• Type II: Complete but not confined, meaning it not
only contains all vectors {ei : i = 1, ...,K}, but also

contains at least one other q-vector.

• Type III: Incomplete Q-matrix.

Type I and Type II Q-matrices performs the same when slip
and guess are low (figures 3a, 3e), but when they get higher,
Type I Q-matrices show a better performance (figures 3b,
3f).

However, when more questions are involved in a high slip and
guess condition, the performance becomes more unstable.
Therefore, we again consider more subtypes. In 3-skills case
for 8 questions, we consider three subtypes below.

• Subtype 1: Q-matrix contains each component of {ei :
i = 1, ...,K} at least twice.

• Subtype 2: Other situations (e.g A complete Q-matrix
but all the other vectors are just repeated e1).

• Subtype 3: Q-matrix contains all q-vectors.

From Figure 3d we can see that the subtype 1 (denoted by
triangle) shows better performance than subtype 2, meaning
that repeating the whole set of {ei : i = 1, ...,K} is a better
strategy just like the strategy 1 we used in experiment 1.
Subtype 3 corresponds to the strategy 3 in experiment 1, it
has only 7 possible configurations in 8-question setting and
we can see that they do not perform well.

Therefore, we argue that the best Q-matrix design is to use
only the vectors {ei : i = 1, ...,K} since it offers quicker
convergence speed (as shown in experiment 1) and better
robustness against slip and guess (as shown both in experi-
ments 1 and 2).

5. CONCLUSION
This work is still in an early stage and has limitations, in
particular because it is conducted with synthetic data. But
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Figure 3: Experiment 2: Configurations of different slip and guess parameters and number of skills, J .



the main finding is wide reaching and warrants further in-
vestigations. The support for designing Q-matrices that sat-
isfy the identifiability condition by single-skill items is com-
pelling in the experiments conducted with synthetic data.
The results clearly show such matrices yield more accurate
student skills assessment. In particular, they show that Q-
matrices that contains items that span the whole range of
potential combinations of skills tend to yield lower skills as-
sessment than Q-matrices that simply repeat the pattern of
single-skill items.

The finding that tests composed of single-skill items are bet-
ter for skills assessment is somewhat counter-intuitive, as
intuition suggests that a good test should also include items
with combinations of skills. But intuition also suggests that
items that involve combination of skills are more difficult,
and it may not simply be because they involve more than one
skill. It might be that solving items that combine different
skills in a single problem is a new skill in itself. This conjec-
ture is in fact probably familiar to a majority of educators,
and the current work provides formal evidence to support
it. And the immediate consequence is that Q-matrices, as
we currently conceive them, fail to reflect that a task that
combines skill involves a new skill.

Ideally, future work should be conducted with real data.
However, given that we do not know the real Q-matrix that
underlies real data, investigating the questions raised by
the current study is non trivial. Meanwhile, further experi-
ments with synthetic data can be considered with different
choices on student profiles distribution, and different num-
ber of skills involved. Besides, the case where slip and guess
are unknown should also be considered, which involves a
different identifiability requirement (G. Xu & Zhang, 2015).
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