
Using Student Logs to Build Bayesian Models of Student
Knowledge and Skills

Huy Nguyen
Lafayette College

nguyenha@lafayette.edu

Chun Wai Liew
Lafayette College

liewc@lafayette.edu

ABSTRACT
Recent works on Intelligent Tutoring Systems have focused
on more complicated knowledge domains, which pose chal-
lenges in automated assessment of student performance. In
particular, while the system can log every user action and
keep track of the student’s solution state, it is unable to de-
termine the hidden intermediate steps leading to such state
or what the student is trying to achieve. In this paper,
we show that this information can be acquired through data
mining, along with the type, frequency and context of errors
that students made. Our technique has been implemented
as part of the student model in a tutor that teaches red-black
trees. The system was evaluated on three semesters of stu-
dent data. Analysis of the results shows that the proposed
framework of error analysis can help the system in predicting
student performance with good accuracy and the instructor
in determining difficulties that students encounter, both in-
dividually and collectively as a class.

Keywords
Data structures, Bayesian Learning, Error analysis

1. INTRODUCTION
An important goal in assessing student performance is to
find out why the student makes certain errors, as it helps the
instructor adapt the teaching style/materials accordingly to
address the cause of such errors. With the rise of educational
technology, it is now often the tutoring system that performs
grading tasks in place of the instructor, thereby raising the
need for an automated error analysis mechanism. Tradition-
ally, tutoring exercises are often designed as multiple choice
questions, where there is a single correct option, while the
incorrect options are each worded in a way that targets a spe-
cific misconception (e.g., [6]). In this case, knowing which
option a student picked is sufficient to infer why she made
that decision. However, multiple-choice questions can be an-
swered by pure guessing, and the options presented might
not capture the full space of misconceptions that students

have, especially if each decision is not a simple primitive
choice. Furthermore, recent development of tutoring sys-
tems has moved on to more complicated knowledge domains,
such as protein folding [2], programming language [7], and
database [19]. These domains require students to engage in
high level problem-solving tasks instead of simple multiple-
choice and short-answer questions. In turn, they also pose
challenges to the tutoring system in assessing student per-
formance, namely (1) recognizing when the student is cor-
rect, (2) identifying the analyzing the errors made, and (3)
predicting when a previous error might occur again.

Tree data structure exercises are an example of problems
where the steps are best input graphically to show how
the data structure is transformed at each step. Conven-
tional question formats such as multiple-choice would there-
fore greatly constrain the student’s answer and allow for the
possibility of guessing. An ideal input mechanism, in this
case, should allow the student to freely and easily specify
the tree structure, reveal no clue or bias about the solution,
and support automated assessment of student answer. In
other words, it is to closely resemble a paper exam where
students construct their answers from scratch.

The solution to an insertion/deletion tree problem is a se-
quence of transformations (steps) to be applied to the initial
tree; alternatively, it can also be viewed as a list of trees,
each resulting from applying a transformation to the tree
before it. Determining if an answer is correct is straight-
forward - we simply check that the default solution’s final
tree matches that of the student’s answer. If they differ,
however, determining where and how the student made an
error is much more difficult. The primary reason is that
there can be multiple valid solutions, each with a different
partial ordering of the same set of transformations. Fur-
thermore, when unconstrained by the system, students also
tend to combine several base (primitive) steps together into
a macro-step, in which case their solution sequence can be
shorter than the default solution yet still correct. Despite
these difficulties, the assessment task plays an important
role in both assigning partial credits to test submissions and
informing the instructors about difficulties that students are
facing, so that necessary interventions may take place.

This paper presents our approach in solving the assessment
problem in the domain of red-black tree, a type of self-
balancing binary search tree. In particular, based on anal-
ysis of the tutoring system’s log data and student answers,



we have devised a framework to identify and categorize the
errors in their problem-solving process. The output is then
used to construct a Bayesian student model, which predicts
student performance throughout the tutoring session (i.e.,
whether the student’s next answer will be correct or not).
We show that categorizing the identified errors by not only
their types but also contexts can help the model achieve
good accuracy and provide insights into common patterns of
problem-solving behavior in our chosen domain. The con-
texts can be identified by mining the logs and judiciously
combining data to identify contexts that might be tempo-
rally connected. The mined data can help identify when
temporally adjacent contexts affect student decisions and
point out non obvious connections.

2. RED-BLACK TREES
A red-black tree is a self-balancing binary search tree with
a number of properties which guarantee an O(logN) height
when the tree has N nodes [5]:

1. The nodes of the tree are colored either red or black.

2. The root node is always black.

3. A red node cannot have any red children.

4. Every path from the root to a null node contains the
same number of black nodes.

Search in a red-black tree’s operation is identical to that in
a conventional binary search tree, while insertion and dele-
tion are performed differently. The top-down algorithm to
insert or delete a value from a red-black tree starts at the
root and, at every iteration, moves down to the next node,
which is a child of the current node. At each node, it applies
one or more transformation rules; there are six rules used in
insertion: color flip, single rotate, double rotate, insert node,
forward, and color root black. Deletion involves another two,
switch value and drop rotate. The role of these transforma-
tions is to change the tree in such a way that when the actual
insertion (or deletion) is performed at the leaf node, in most
cases no subsequent modifications to the tree are needed in
order to preserve its properties. Other types of balanced
trees also employ a similar approach. In our work we used
red-black tree as an exemplar to evaluate our ideas and im-
plementations, but they should be applicable to balanced
trees in general.

In a standard curriculum, students learn about red-black
trees right after finishing binary search tree, but often strug-
gle because the tree transformations are quite complicated,
especially on a medium-sized tree of more than 10 nodes.
Furthermore, the insertion and deletion version of the same
transformation (for example, color flip) operate differently,
causing another source of confusion. A previous study on
this domain by Liew & Xhakaj [15] found that red-black
trees can be taught and learned effectively using a granu-
larity approach - students should iteratively break down the
problem into three steps of (1) identifying the current node,
(2) selecting the applicable transformation, and (3) apply-
ing the selected transformation. Our tutoring system also
follows the same approach.

3. RELATED WORK
There are well-studied advantages and disadvantages of both
multiple-choice and free-response questions [10]. As the do-
main knowledge gets more complicated, it becomes more
difficult to design multiple-choice tests that accurately re-
flect the student’s level of understanding; on the other hand,
free-response questions are not scalable because of the need
for human graders. In practice, many intelligent tutoring
systems opted for the middle ground by using a restricted
language such as numerics for student answers. In this way,
there is still a large solution space that makes guessing inef-
fective while the information derived from students’ assess-
ment is accurate enough to be used in constructing a student
model. For example, physics tutors such as ANDES [4] and
OLAE [16] teach college-level Newtonian mechanics by hav-
ing students identify the forces acting on a physical object
and express them in a system of equations.

Several past works have explored automated assessment in
complex domains. For example, [3] uses an online judge sys-
tem for an introductory programming course that is capable
of detecting plagiarism and performing efficient, bias-free
assessment. [17] constructs an adaptive grading system that
can grade multiple and complex computer literacy assign-
ments while being able to “learn” the correct and incorrect
responses and add them to the rubric. Combining both hu-
man graders and computer graders, [8] introduces a collabo-
ration framework that aims to minimize human effort in the
domain of medical case analysis, using supervised machine
learning.

Efforts have also been made to output not only a binary re-
sult (correct/incorrect) or numerical score, but also to pro-
vide reasonable feedback for both the students and the in-
structors. Many research works in the domain of introduc-
tory programming have been following this direction [9, 20,
21]. In other domains, [14] shows that in the PHYSICS-
TUTOR system, where students enter algebraic equations
as answer, it is possible to check for dimensional correctness
and isolate errors by parsing the submitted answers into
binary expression trees. Finally, [11] proposes using case-
based reasoning to deliver past instructor feedback to new
students who are solving a similar problem, which has been
adapted in various tutoring systems.

Predicting student performance is one of the primary goals
of student modeling. Traditionally, Bayesian network and
its variations [1] are often used because of their accuracy
and interpretability. This line of technique has been shown
to be effective for tutoring systems that have no prior knowl-
edge about their students, such as the ANDES physics tutor.
Later on, ITSs are often deployed multiple times in succes-
sive semesters, and the data log from past student inter-
actions can be analyzed by data mining techniques to bet-
ter predict future students’ performance. For instance, [12]
builds a logistic regression model on the ANDES dataset to
correctly identify 70% of the student’s performance, while
[18] uses pattern classifier and genetic algorithm to improve
the tutoring system’s prediction accuracy, which helps iden-
tifying weak students early on even in large classes.

In the domain of red-black trees, [15] was among the first
tutoring systems developed. Its result shows that the gran-



ularity approach, which require students to follow explicit
small steps, helped significantly improve their performance
in insertion exercises. The system was built only for tutor-
ing, while the tests were conducted on paper and evaluated
by a human instructor. [13] proposes preliminary results in
automating the test environments and grading with an al-
gorithm that can detect the first error made by students in
tree insertion questions.

4. THE RED-BLACK TREE TUTOR
Our tutoring system has three sections - the pre-test, the
tutor, and the post-test. In the test sections, a typical inser-
tion (deletion) problem for red-black trees involves inserting
a sequence of numbers to a starting tree (or deleting from
it). Students have to show the state of the tree after every
insertion/ deletion; they are also encouraged to show any in-
termediate states (the trees that are created along the path
to the solution). To this end, the test interface displays a
“blank” binary tree canvas of 31 empty nodes. The student
can click on any node to specify its value and color - submit-
ting a tree is therefore equivalent to entering all of its nodes
to the corresponding position in the tree canvas; nodes that
are left empty are assumed to be null black nodes. The in-
terface is designed to look like a sheet of paper with blanks
to fill in - in this way, we ensure that (1) the tests do not
provide any hints or clues as to what the desired answer
would be, and (2) the student’s answer is always in a format
that can be interpreted and analyzed by the system.

In the tutoring section, students perform the same task of
inserting to (or deleting from) a starting tree. However,
a node-by-node modification of the current tree is not re-
quired; instead, students only need to select a node and the
transformation to apply at that node from a drop-down list.
The tutoring system has a solver module that can generate
a solution for any problem and also check the correctness of
the student’s selection. If it is correct, the system will auto-
matically apply the chosen transformation and update the
information shown in the interface; otherwise, a message is
displayed to the student indicating that the current selection
is incorrect. We chose this approach based on the finding
that learners often have difficulty identifying the transforma-
tions rather than applying them [15]; students also find the
task of repeated application of the transformations tedious
and time consuming.

5. PREDICTION OF STUDENT PERFOR-
MANCE

In order for the system to be dynamic (i.e., to generate dy-
namic exercises that address an individual student’s weak-
ness), it needs to have knowledge of what the student knows
and does not know at any given time. In the context of our
tutor, the system should be able to predict whether the stu-
dent’s next answer is correct, based on her performance so
far in the tutoring session and in the pre-test. To our knowl-
edge there has not been any prior work on performance pre-
diction in the domain of binary search tree. Therefore, to
get a better sense of how well the student model performs,
we implemented and evaluated three approaches.

5.1 Baseline prediction

Every time the student submits an answer in the tutoring
session, the system predicts that the answer is correct with
a fixed p = 0.5 probability. The performance of this method
will serve as a baseline to compare with that of the next two
methods.

5.2 Bayesian model with error contexts
We first analyze student answers in the pre-test and identify
the first error made (if any) each time the student attempts
to insert/delete a single node to/from a tree. Besides the
type of error - incorrect node selection/incorrect transfor-
mation selection/ incorrect transformation application - and
its location - how far did the student progress when the error
was made - we are also interested in its context. In insertion
exercises, an error context is the subtree surrounding the
node at which the error occurred, which includes its parent
and two children. In deletion exercises, the context sub-
tree also contains the node’s sibling and sibling’s children.
These definitions were devised based on the knowledge that
(1) the transformation to select and apply at each node de-
pends on the subtree surrounding it, and (2) even the same
tree transformation may operate differently in different con-
texts, so it’s important to recognize which specific context
poses problems for the student.

We then construct a two-part Bayesian network using Bayesian
Knowledge Tracing (BKT) [22] similar to that of the AN-
DES tutor [4]. This architecture is summarized in Figure 1.
The domain-general network encodes long-term knowledge
and represents the system’s assessment of the student’s rule
mastery after the last performed exercise. It consists of two
kinds of nodes: Rule node, which conveys the student’s rule
mastery in general, and Context-Rule node, which conveys
rule mastery in a specific context. Both have as value a mas-
tery probability 0 ≤ p ≤ 1, while the conditional probability
of each Context-Rule given its parent Rule is

P (Contexti | Rule = T ) = 1,

P (Contexti | Rule = F ) = diffi,

where diffi is the difficulty of context i, determined by the
number of errors in context i divided by the total number
of time that such context occurs (in the pre-test).

The task-specific network encodes the student’s rule mas-
tery in a specific exercise. We employ three kinds of nodes:
Context-Rule, Fact and Rule-Application. Each Fact node
expresses a property of the current tree, i.e., the current
node is black or the parent node is red. These nodes rep-
resent the hypotheses that the student is aware of what to
look for in the preconditions of the next step. The Rule-
Application node has a boolean value, which is set to True
if the student applies the rule correctly, and False other-
wise. In essence, the system analyzes the current context,
expressed by the Fact nodes, to bring up the correspond-
ing Context-Rule node, whose probability value is used to
predict the student answer’s correctness. After the student
submits the answer, the system records whether the predic-
tion is right or wrong and updates the posterior value of
the Context-Rule node, according to BKT. The rationale is
that if the student previously made an error in a particular
context, when that context shows up again in the current ex-
ercise, we would like to see whether the same error occurs.
If no error is made, the student’s mastery in this context



Figure 1: The structure of the domain-general net-
work (top) and task-specific network (bottom).

has improved. This mechanism is expressed by the weight
of the edge leading to each Rule-Application node:

P (Rule-Application = T | all parents = T ) = 1− P (S),

P (Rule-Application = T | at least one parent = F ) = P (G),

where P (S) and P (G) are the slip and guess probabilities,
which are part of the BKT parameters and set to a default
value of 20%.

Once the student finishes an exercise, its task-specific net-
work is discarded, but the context rule mastery probabilities
are saved back to the domain-general network, so that they
can be used as prior probabilities for future exercises.

5.3 Bayesian student model with extended er-
ror contexts

So far we have considered each transformation in isolation,
but the nature of the solution to a red-black tree problem is
a sequence of transformations, one following another. Our
third approach experiments with the idea that the correct-
ness of a student’s answer may also depend on her previous
answer. We perform pre-test analysis and Bayesian mod-

eling as described in Section 5.2, but now the error con-
text includes both the surrounding subtree and the previous
transformation. With this distinction, there will be more
contexts to analyze, and we would like to see how it affects
the sytem’s accuracy.

6. EVALUATION & RESULTS
We evaluated our approaches on four semesters of data from
students in a computer science class at our institution. The
semester enrollments are 20 (Fall 2016), 50 (Spring 2017),
26 (Fall 2017) and 33 (Spring 2018).

The pre and post tests are identical in content, both consist-
ing of a small number of exercises in which students attempt
to insert (delete) a node, given a starting tree. Problems in
the insertion tutor require students to insert 9 numbers to
an empty tree. Similarly, problems in the deletion tutor re-
quire students to delete all values from an initial tree with
9 nodes. The number of questions in each session is listed
in Table 1.

Pre-test Tutor Post-test
Insertion 4 20 4

Deletion 7

25 (F2017, S2018)

20 (others) 7

Table 1: Number of questions in each session. Each
question has 9 parts, each of which requires multiple
steps to solve.

In the tutoring section, Each time the student submits an
answer, the system attempts to predict whether that answer
is correct, based on the student model’s knowledge. Then
the actual grading is performed to check whether this predic-
tion is right. The accuracy of the student model is defined
as the number of correct predictions divided by the total
number of predictions. In all subsequent tables, unless oth-
erwise specified, the data are averaged across all students in
each semester.

6.1 Evaluating performance prediction accu-
racy

6.1.1 Baseline prediction
When predicting with fixed probability, the resulting aver-
age accuracies approximate 50% in all semesters, with small
standard deviations (5%).

6.1.2 Bayesian model with error contexts
We evaluate the Bayesian student model on both the inser-
tion tutor and deletion tutor (Table 2). The columns, from
top to bottom, respectively refer to the followings: num-
ber of average and total correct predictions, mean accuracy,
standard deviation of accuracy, lowest and highest accuracy
across all students in the semester.

Note that because we decided to add five more exercises in
Fall 2017 and Spring 2018, the number of answers submitted
(and the number of predictions) in this semester is higher
than in the others. We can see that data across the fall
semesters are consistent. There is more variation in Spring
2017 due to the larger number of students enrolled, but only



Insertion F2016 S2017 F2017 S2018
Correct/Total 268/372 259/399 267/371 272/375

Accuracy 72% 66% 72% 73%
Stdev Acc 4% 8% 5% 5%
Min Acc 63% 50% 62% 65%
Max Acc 81% 86% 83% 84%

Deletion F2016 S2017 F2017 S2018
Correct/Total 270/383 268/383 351/461 360/472

Accuracy 70% 70% 76% 74%
Stdev Acc 5% 4% 4% 4%
Min Acc 64% 61% 68% 65%
Max Acc 82% 80% 83% 81%

Table 2: System’s accuracy on the insertion tutor
and deletion tutor, using Bayesian modeling.

in the insertion tutor. The system achieves the highest accu-
racy (76%) when predicting performance in the deletion tu-
tor of Fall 2017 - this can be explained by the increased num-
ber of exercises, which allows the Bayesian network more op-
portunities to update itself and to yield better predictions
in turn. Overall, using Bayesian modeling yields a 20% im-
provement in accuracy, compared to baseline prediction.

6.1.3 Bayesian model with extended error contexts
Table 3 shows the model’s accuracy when accounting for
the previous transformations in the contexts. The average
accuracy is around 80%, while the maximum accuracy can
reach as high as 96% (in Fall 2017). Hence this approach
has by far yielded the best accuracy, about 10% more than
using Bayesian model with the standard error context, and
30% more than baseline prediction.

Insertion F2016 S2017 F2017 S2018
Correct/Total 310/372 325/399 322/371 330/375

Accuracy 85% 81% 87% 83%
Stdev Acc 7% 7% 7% 8%
Min Acc 63% 62% 58% 60%
Max Acc 92% 94% 96% 92%

Deletion F2016 S2017 F2017 S2018
Correct/Total 320/383 305/383 388/461 390/472

Accuracy 82% 79% 85% 81%
Stdev Acc 7% 8% 7% 7%
Min Acc 62% 57% 65% 61%
Max Acc 91% 87% 90% 88%

Table 3: System’s accuracy on the insertion tutor
and deletion tutor, using Bayesian modeling with
extended error context.

We then performed additional analysis in this direction to
see whether there is room for improvement and what problem-
solving patterns students might have. Table 4 breaks down
the accuracy in more detail; each prediction is categorized as
either correct (C), false positive (FP) or false negative (FN).
False positive occurs when the student answer is incorrect
but predicted to be correct; false negative occurs when the
student answer is correct but predicted to be incorrect. We
see that in most cases, if the student is correct, the system

can predict so. The majority of incorrect predictions occur
in the false positive condition, where the system thinks that
the student has mastered the transformation but in actuality
the student still has an erroneous model. This suggests that
we may be able to fine-tune the Bayesian network’s behav-
ior, in particular by decreasing the conditional probability
that the student can submit a correct answer if the system
thinks she understands the corresponding transformation.

Insertion F2016 S2017 F2017 S2018
C 85% 81% 87% 85%

FP 11% 14% 10% 13%
FN 4% 5% 3% 2%

Deletion F2016 S2017 F2017 S2018
C 82% 79% 85% 80%

FP 15% 16% 13% 14%
FN 3% 5% 2% 6%

Table 4: System’s prediction results on insertion tu-
tor and deletion tutor, averaged by students.

Next, we look at the cumulative statistics for each semester.
Specifically, we would like to know the transformations in-
volved in the answers that the system can predict accurately
and in those that the system cannot. Table 5 breaks down
this information from Fall 2017 based on the three categories
C, FP and FN mentioned above. Here the tree insertion
transformations of interest are Insert node (Insert), Color
flip (Cflip), Single rotate (SingleR), Double rotate (Dou-
bleR). Data from the other two semesters are also similar.

Insert Cflip SingleR DoubleR
C 3353 (90%) 792 (73%) 331 (79%) 348 (80%)

FP 327 (9%) 229 (21%) 59 (14%) 66 (15%)
FN 53 (1%) 71 (6%) 31 (7%) 23 (5%)

Total 3733 1092 421 437

Table 5: System’s prediction result count for inser-
tion tutor, cumulative in Fall 2017.

Delete Cflip SingleR
C 3413 (89%) 786 (71%) 341 (74%)

FP 385 (10%) 243 (22%) 79 (17%)
FN 52 (1%) 78 (8%) 41 (9%)

Total 3850 1107 461

DoubleR DropR Switch
C 367 (80%) 292 (68%) 795 (95%)

FP 54 (12%) 101 (24%) 27 (3%)
FN 33 (7%) 36 (8%) 15 (2%)

Total 454 429 837

Table 6: System’s prediction result count for dele-
tion tutor, cumulative in Fall 2017.

Table 6 presents the same kind of data for the deletion tutor
in Fall 2017. Here the tree transformations of interest are
Delete node (Delete), Color flip (Cflip), Single rotate (Sin-
gleR), Double rotate (DoubleR), Drop rotate (DropR) and
Switch value (Switch).



We also look at, among all the error contexts identified,
which pair of sequential transformations (i.e., the current
transformation following a previous transformation) occurs
the most, since our analysis includes the previous transfor-
mation in the error contexts. Table 7 shows that, in red-
black tree insertion, students are most likely to make mis-
takes in rotation operations if they previously performed an
insert node operation. This pattern can be explained by the
fact that in most tree insertion problems, the final step is to
insert a new node at a leaf node’s child. However, in some
cases, this leaf is already red; adding a red child to it would
then yield two consecutive red nodes, violating the proper-
ties of red-black trees. Hence another rotation at the newly
inserted node is required to remedy the situation, which stu-
dents tend to forget. It should be noted that a color flip may
also result in consecutive red nodes, thereby forcing a rota-
tion to follow; the third and fourth row in Table 7 represent
this case. In general, from our teaching experience, all four
cases occur very often, but this is the first time we obtain a
relative ranking of their frequencies.

Transformation Previous Trans Count
SingleR Insert 90
DoubleR Insert 72
SingleR Cflip 65
DoubleR Cflip 50

Table 7: Most common pairs of insertion transfor-
mations in students’ errors across three semesters.

Table 8 shows that, in red-black tree deletion, students are
most likely to make mistakes in delete node following switch
value. Interestingly, as we previously analyzed, students
usually perform switch value correctly. However, after this
step, they tend to move straight to the leaf whose value
was switched and delete it - this is correct in normal binary
search trees, but in red-black trees, we still have to traverse
down one node at a time until reaching the leaf, performing
necessary transformations along the way before the actual
deletion. Another noteworthy point is that students tend to
forget to execute the drop rotate operation, but only when
it is necessary to do so at the root (in this case, drop rotate
is the first transformation in the solution sequence, so it has
no previous transformation).

Transformation Previous Trans Count
Delete Switch 98

DoubleR Cflip 78
SingleR Cflip 76

Drop rotate - 27

Table 8: Most common pairs of deletion transfor-
mations in students’ errors across three semesters.

6.2 Assessing students’ test performances
While the previous study by Liew & Xhakaj [15] reported an
improvement in individual student performance from pre-
test to post-test, it was conducted on a small sample of
12 students. To measure this effect on a larger scale, we
performed a paired samples t-test to compare the student’s
number of first errors in the pre-test epre and in the post-
test epost. Results show that in tree insertion, there was a
significant difference between epre (M = 2.81, SD = 1.35)

and epost (M = 1.72, SD = 1.35); t(137) = −8.23, p =
2.95 · 10−13. Similarly, in deletion, there was a significant
difference between epre and epost (M = 3.63, SD = 1.08)
and epost (M = 2.68, SD = 1.48); t(137) = −5.33, p =
3.12 · 10−7. Hence the impact of the tutoring system on
reducing student errors is statistically significant at the 1%
level, which is consistent with [15].

Further analysis on the total number of errors overall and
per each transformation rule reveals that the errors in node
selection decrease across all semesters; in insertion exercises
there is a steady 50% reduction from pre test to post test,
whereas the differences vary more in deletion exercises. In-
terestingly, the number of errors in applications do not seem
to decrease by much; in particular, errors in single rotation
and double rotation do not decrease significantly, and even
increase in some cases, between the pre and post test. The
reason is that in the pre-test, because most students for-
get about color flip, they do not have many opportunities
to apply single rotation or double rotation, resulting in few
application errors reported. On the other hand. in the post-
test, students have already mastered color flip, which then
prompted them to apply rotations on more occasions, in
which case more application errors were likely to occur. On
further analysis, if we only consider students who did make
rotation errors in the pre-test, then their number of rota-
tion errors in the post-test also decreased significantly, by
almost 75%. A more detailed breakdown of students’ test
performance is presented in [13].

7. CONCLUSION
This paper has described how we have mined logs of stu-
dent actions on red-black tree operations to build a Bayesian
model of their mastery of the skills involved. The analysis
of the logs has helped us to determine (1) the most frequent
errors that the students make, and (2) the contexts in which
the errors are made. This knowledge can and will be used
to improve both the tutoring system and the classroom in-
struction. The instructors can use the data to modify and
customize their instruction to focus more attention on the
problematic areas.

Results from this study also open up several future direc-
tions. First and foremost, the student model has demon-
strated a reasonable performance and can now be used to
build an adaptive learning system, which can potentially fur-
ther reduce the number of errors. Second, gathering more
student data would allow the implementation of more so-
phisticated techniques, such as hierarchical Bayesian learn-
ing or deep learning, in student model construction, which
would in turn enhance the model’s accuracy. Finally, bal-
anced trees in general share many common properties and
transformations; an adaptation of the current system to a re-
lated domain (e.g., AVL trees, AA trees, splay trees), could
therefore provide insights on how general the underlying
framework is.

8. REFERENCES
[1] Almond, R. G., Mislevy, R. J., Steinberg, L. S.,

Yan, D., and Williamson, D. M. Bayesian
networks in educational assessment. Springer, 2015.

[2] Bauer, A., and Popović, Z. Collaborative problem
solving in an open-ended scientific discovery game.



Proc. ACM Hum.-Comput. Interact. 1, CSCW (Dec.
2017), 22:1–22:21.

[3] Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C.
On automated grading of programming assignments in
an academic institution. Computers & Education 41, 2
(2003), 121–131.

[4] Conati, C., Gertner, A., and Vanlehn, K. Using
bayesian networks to manage uncertainty in student
modeling. User modeling and user-adapted interaction
12, 4 (2002), 371–417.

[5] Cormen, T. H. Introduction to algorithms. MIT
press, 2009.

[6] Forlizzi, J., McLaren, B. M., Ganoe, C.,
McLaren, P. B., Kihumba, G., and Lister, K.
Decimal point: Designing and developing an
educational game to teach decimals to middle school
students. In 8th European Conference on Games-Based
Learning: ECGBL2014 (2014), pp. 128–135.

[7] G H Al-Bastami, B., and Abu Naser, S. Design
and development of an intelligent tutoring system for
c# language. 8795–8809.

[8] Geigle, C., Zhai, C., and Ferguson, D. C. An
exploration of automated grading of complex
assignments. In Proceedings of the Third (2016) ACM
Conference on Learning@ Scale (2016), ACM,
pp. 351–360.

[9] Helmick, M. T. Interface-based programming
assignments and automatic grading of java programs.
In ACM SIGCSE Bulletin (2007), vol. 39, ACM,
pp. 63–67.

[10] Kastner, M., and Stangla, B. Multiple choice and
constructed response tests: Do test format and scoring
matter? Procedia-Social and Behavioral Sciences 12
(2011), 263–273.

[11] Kyrilov, A., and Noelle, D. C. Using case-based
reasoning to improve the quality of feedback provided
by automated grading systems. International
Association for Development of the Information
Society (2014).

[12] Lee, Y.-J. Analyzing log files to predict students’
problem solving performance in a computer-based
physics tutor. Journal of Educational Technology &
Society 18, 2 (2015).

[13] Liew, C. W., and Nguyen, H. Determining what
the student understands - assessment in an
unscaffolded environment. In Proceedings of the
Fourteenth International Conference on Intelligent
Tutoring Systems (ITS) (2018).

[14] Liew, C. W., and Smith, D. E. Checking for
dimensional correctness in physics equations. In
FLAIRS Conference (2002), pp. 299–303.

[15] Liew, C. W., and Xhakaj, F. Teaching a complex
process: Insertion in red black trees. In International
Conference on Artificial Intelligence in Education
(2015), Springer, pp. 698–701.

[16] Martin, J., and VanLehn, K. Student assessment
using bayesian nets. International Journal of
Human-Computer Studies 42, 6 (1995), 575–591.

[17] Matthews, K., Janicki, T., He, L., and
Patterson, L. Implementation of an automated
grading system with an adaptive learning component
to affect student feedback and response time. Journal

of Information Systems Education 23, 1 (2012), 71.

[18] Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer,
G., and Punch, W. F. Predicting student
performance: an application of data mining methods
with an educational web-based system. In Frontiers in
education, 2003. FIE 2003 33rd annual (2003), vol. 1,
IEEE, pp. T2A–13.

[19] Mitrovic, A., Ohlsson, S., and Barrow, D. K.
The effect of positive feedback in a constraint-based
intelligent tutoring system. Computers & Education
60, 1 (2013), 264–272.

[20] Piech, C., Huang, J., Nguyen, A.,
Phulsuksombati, M., Sahami, M., and Guibas, L.
Learning program embeddings to propagate feedback
on student code. arXiv preprint arXiv:1505.05969
(2015).

[21] Singh, R., Gulwani, S., and Solar-Lezama, A.
Automated feedback generation for introductory
programming assignments. ACM SIGPLAN Notices
48, 6 (2013), 15–26.

[22] Yudelson, M. V., Koedinger, K. R., and
Gordon, G. J. Individualized bayesian knowledge
tracing models. In International Conference on
Artificial Intelligence in Education (2013), Springer,
pp. 171–180.


	Introduction
	Red-black Trees
	Related Work
	The Red-black Tree Tutor
	Prediction of student performance
	Baseline prediction
	Bayesian model with error contexts
	Bayesian student model with extended error contexts

	Evaluation & Results
	Evaluating performance prediction accuracy
	Baseline prediction
	Bayesian model with error contexts
	Bayesian model with extended error contexts

	Assessing students' test performances

	Conclusion
	References

