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ABSTRACT
This paper attempts to quantify the accuracy limit of “next-
item-correct” prediction by using numerical optimization to
estimate the student’s probability of getting each question
correct given a complete sequence of item responses. This
optimization is performed without an explicit parameterized
model of student behavior, but with the constraint that a
student’s likelihood of getting a problem correct only in-
creases or remains unchanged with additional practice (i.e.,
no forgetting). We present results for this method for the
Assistments 2009–2010 data where it suggests that there is
only modest opportunity for improvement beyond the state
of the art predictors. Furthermore, we describe a frame-
work for applying this method to datasets where problems
can be tagged with multiple skills and problem difficulties.
Lastly, we discuss the limitations of this method, specifically
its inability to give tight bounds on short sequences.

1. INTRODUCTION
Student modeling is a fundamental building block of educa-
tional systems that are intelligent or adaptive. With a model
of a student, such a system can consider all of the actions
it has available and make a prediction about which ones are
likely to be the most profitable for a particular student at
the current time.

One class of student models tries to predict next-item-correct,
i.e., what is the probability that a student’s attempt on the
next item presented will be correct given the student’s re-
sults on all previous items. For a number of years, this topic
saw vigorous research with non-trivial improvements using
improved model parameterizations [1, 6, 7, 11] and recurrent
neural networks [10]. Yet, performance of next-item-correct
predictors has seemed to reach an asymptote that is far be-
low perfect prediction.

This gap between the current state of the art and perfect
prediction raises the question of how much headroom re-

mains for further improvements to next-item-correct predic-
tion. Previous work by Beck and Xiong [2] has attempted
to characterize the accuracy limit by analyzing the perfor-
mance of a collection of “cheating” prediction algorithms
that employ a partial knowledge of future results. They
conclude that further large improvements in prediction ac-
curacy are unlikely.

Estimating a tight bound to prediction accuracy is challeng-
ing, because one needs to utilize some information about
future correctness without merely regurgitating the stream
of actual outcomes as one’s predictions, which would yield
the tautological bound of 100% accuracy. Beck and Xiong
navigate this conundrum by allowing their cheating model
to correctly predict the transitions from giving an incorrect
response to giving a correct response (e.g., learning), but
not those from giving an correct response to giving a in-
correct response (in their words, “forgetting”). We found
this approach to be unsatisfying in two respects. First, the
time period in which the data is collected is too short for
true forgetting to take place, it is rather more likely to be
slipping, so we feel that the model is a mismatch for the phe-
nomena at hand. Second, we feel that perfectly predicting
incorrect-to-correct transitions but not correct-to-incorrect
transitions seems arbitrary.

Instead, we posit that the limits of accuracy for next-item-
correct prediction derive from the fact that learning is not
a binary transition from a state of not knowing to a state
of knowing, but rather that there is a continuum of knowl-
edge levels that a student could be at. For example, there
is a point on this continuum where a student will get 50%
of the problems attempted correct and the other 50% in-
correct. The challenge for next-item-correct prediction for
such a student is precisely determining whether the next at-
tempt will be correct or incorrect, much like the hopeless
task of trying to consistently predict the outcome of flipping
a fair coin. More precisely, it is the student responses as
they transition from not knowing to knowing that are hard
to predict, as the behavior of perfectly knowledgeable and
perfectly unknowledgeable students is trivial to predict.

Thus, the limit for prediction should primarily derive from
the fraction of a data stream during which students are in
this transitional phase where they are intermingling correct
and incorrect responses. This can be viewed as the amount
of entropy in the data, and this entropy can and does vary
from dataset to dataset. As such, we believe that a method
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Figure 1: Illustrative example of the input to the
next-item-correct prediction problem. For this ex-
ample, n = 10 and x1, . . . , xn = 0, 0, 1, 0, 0, 1, 1, 0, 1, 1.

that can estimate the limits of predictability as a function
of this entropy can serve as a less arbitrary estimate of the
accuracy limit for next-item-correct prediction and serve as
a useful means for characterizing and comparing datasets.

This paper is organized as follows. We first formalize the
next-item-correct prediction problem in Section 2. We then
describe our model-free bounding method in Section 3. We
show experimental results of our method in Section 4. Fi-
nally, we discuss the limitations of our method in Section 5
and future directions in Section 6.

2. NEXT-ITEM-CORRECT PREDICTION
We formalize the next-item-correct prediction problem as
follows. We are given a length-n sequence x1, . . . , xn, where
xi = 1 if the student answered the ith attempted item cor-
rectly and xi = 0 otherwise, as shown in Figure 1. Given this
information, we want to produce n reals p1, . . . , pn where
pi is the probability of the student answering the ith at-
tempted item correctly. Typically models are required to
produce p1, . . . , pn in order and they are only allowed to
look at x1, . . . , xt−1 when producing pt, as future observa-
tions should not be available during prediction. Some of the
notable models for this task are Bayesian Knowledge Trac-
ing (BKT) [3], Performance Factor Analysis (PFA) [8], and
Deep Knowledge Tracing (DKT) [10].

In efforts to improve their performance, many models use
the knowledge components required by each item, denoted
as ~s1, . . . , ~sn. Each ~si is a d dimensional vector where d
is the number of knowledge components in the correspond-
ing dataset. Each entry of ~si is typically boolean, indicat-
ing whether the item requires the corresponding knowledge
component. The entries of ~si can be real valued as well, in-
dicating the degree of mastery required on each component
in order to answer the item correctly.

With the ground truth x1, . . . , xn and predictions of a model
p1, . . . , pn, a performance metric L is typically used to mea-
sure how good the predictions are. The most widely used
metrics for this task are root mean squared error (RMSE)
and area under the curve (AUC) [9]. Log likelihood (LL) has
also been proposed [9] though it has not been widely used on
this task. This paper will use average LL instead of LL since
the former does not depend on the size of the data. Mod-
els with better L(p1, . . . , pn;x1, . . . , xn) are to be preferred.
The meaning of “better” depends on the metric; larger val-
ues are better for average LL and AUC while smaller values
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Figure 2: Results of the model-free bounding
method when all items require the same knowledge
component.

are better for RMSE.

3. MODEL-FREE ACCURACY BOUNDS
The core idea of our method is that the probability of a stu-
dent correctly answering items that require the same knowl-
edge components should be non-decreasing over the short
term. More precisely, if the current item is no more difficult
than a previous item that requires the same knowledge and
there hasn’t been sufficient time or interference for forget-
ting to occur, the student’s probability of getting the current
item correct should be at least as high as the previous item.

This idea is illustrated in Figure 2, where the dashed line seg-
ments correspond to the probability of the student correctly
answering each item. One could interpret this sequence as
having three phases: (1) items 1 and 2 as a region of unknow-
ing where the student gets every item incorrect, (2) items 3
through 8 as a region of learning where correct and incorrect
responses are interleaved, and (3) items 9 and 10 as a region
of mastery where the student gets every item correct. Even
though the second region includes both correct and incor-
rect responses, we are interpreting those merely as events
from an underlying probability distribution and that proba-
bility of correct responses is non-decreasing throughout the
sequence.

Based on this idea, our proposed bounding method finds
correctness probabilities for each item p∗1, . . . , p

∗
n that opti-

mize L(p∗1, . . . , p
∗
n;x1, . . . , xn) subject to the constraint that

the p∗i sequence is non-decreasing on appropriate item se-
quences. These p∗i provide the best local estimate of the
likelihood that a student will get an item correct given an
assumption that only learning is occuring. To do better,
one would have to predict the precise sequence of correct
and incorrect responses and we believe that this problem is
akin to predicting the precise sequence of heads and tails
from repeated flips of a coin. As such, we expect this to be
a practical bound to next-item-correct prediction.

We refer to this method as being “model free”, because it
does not rely on any parameterized model of student behav-
iors and does not require training. Instead, the p∗i values are
derived directly from the sequence x1, . . . , xn and, therefore,
can be potentially applied on any dataset.

3.1 Single knowledge component case
Before diving into the case where multiple knowledge com-
ponents are involved, we first explain our method in the



simplest case where the sequence of items require the same
knowledge component. In this case, since all of the items
are equivalent in terms of knowledge components, the afore-
mentioned constraint is equivalent to constraining p1, . . . , pn
to be non-decreasing. Thus our method reduces to solv-
ing the following numerical optimization problem to obtain
p∗1, . . . , p

∗
n:

optimize: L(p1, . . . , pn;x1, . . . , xn)

subject to: 0 ≤ pi ≤ 1 for all i

pi ≤ pj for all i < j.

(1)

This numerical optimization problem can be solved efficiently
by an interior point method if (1) L is convex and smaller
L is better, or (2) L is concave and larger L is better. Out
of the three metrics mentioned previously, average LL and
RMSE satisfy this criterion while AUC is not even continu-
ous (and hence not convex or concave). Thus this formula-
tion as a numerical optimization problem is only applicable
when L is average LL or RMSE. There are various tools
that can solve this sort of numerical optimization problem.
In our implementation we used used Matlab’s fmincon with
L-BFGS as the Hessian method.

To give a sense of what this method produces, Figure 2 shows
as the dashed line the values p∗1, . . . , p

∗
n that minimize RMSE

for the given observed item responses x1, . . . , xn (solid black
dots).

3.2 Partial order of items
In order to handle sequences of items with different combi-
nations of multiple knowledge components, we need to be
able to compare the items and decide which previously at-
tempted items provide information useful for predicting the
outcome of the current item. The intuition is that if item a
is the same difficulty or easier with respect to the required
knowledge components than item b, then a student should
do item a at least as well as item b. We compare items by
defining a partial order � over the knowledge component
vectors as follows:

~sa � ~sb ⇐⇒ ~sa,k ≤ ~sb,k for all k, (2)

where ~sa,k is the kth coordinate of ~sa. This partial order
essentially states that item a should be considered easier
than or equal to item b if the required mastery level of each
knowledge component of item a is less than or equal to that
of item b. Intuitively, given ~sa � ~sb, then a student should
be able to answer item a correctly if the student can answer
item b correctly.

Given this definition of partial order, we can induce a di-
rected acyclic graph (DAG) on the set of items, where there
is an edge from the jth item to the ith if and only if i < j
and ~sj � ~si. The intuition of the requirement i < j is that
being able to solve a “harder” item in the past implies being
able to solve an “easier” item in the future. However, being
able to solve a “harder” item in the future does not imply
being able to solve an “easier” item in the past since the stu-
dent might have learned a lot in between. To illustrate this,
we show the DAG induced by a sequence of 6 items with 3
knowledge components in Figure 3. In such a DAG, an edge
from the jth item to the ith means that the student should
be able to do the jth item at least as well as the ith item.

s1

[ ]101
s2

[ ]100
s3

[ ]100
s4

[ ]010
s5

[ ]010
s6

[ ]001
Figure 3: A directed acyclic graph induced by the
partial order. An arrow from the jth item to the
ith item means that the student should do the jth
item at least as well as the ith item. There are two
connected components in this induced graph, which
are {x1, x2, x3, x6} and {x4, x5}.

3.3 Multiple knowledge components case
Given the partial order on items as described above, we can
generalize the non-decreasing constraints for a single knowl-
edge component to handle any combination of knowledge
components. Specifically, given i < j and ~sj � ~si, the prob-
ability pj of the student answering the jth item correctly
should not be lower than the probability pi of the ith item
since the jth item is no harder than the ith item. That
is, pi ≤ pj when there is an edge from the jth item to the
ith item in the induced DAG on the sequence. Thus the
optimization problem can be reformulated as

optimize: L(p1, . . . , pn;x1, . . . , xn)

subject to: 0 ≤ pi ≤ 1 for all i

pi ≤ pj for all i < j that satisfy ~sj � ~si.
(3)

This complicated optimization problem can usually be bro-
ken down into smaller ones by dividing the sequence x1, . . . , xn
into shorter subsequences based on the connected compo-
nents they belong to in the induced DAG. In the example
depicted by Figure 3, there are two connected components
which correspond to {x1, x2, x3, x6} and {x4, x5}. We can
then optimize on each subsequence separately.

Another trick to accelerate the optimization is removing re-
dundant constraints since the partial order is transitive. For
example, the constraint corresponding to the edge from ~s3
to ~s1 in Figure 3 can be safely removed since it is implied
by constraints corresponding to ~s3 � ~s2 and ~s2 � ~s1.

3.4 Metrics that cannot be directly optimized
As mentioned before, our method is not applicable to AUC
since it is not continuous. To compute a bound for AUC, we
first solve the optimization problem by either maximizing
average LL or minimizing RMSE. Once we obtained p∗i for
the entire dataset, we can calculate AUC using these p∗i .

In general, we can always optimize on one metric L for p∗i
and evaluate the p∗i with any metric L′ even though the
optimization is done with respect to L. We refer to this as
the bound obtained by optimizing L.

4. EXPERIMENTAL RESULTS
We applied BKT, DKT, and our method to the Assistments
2009–2010 dataset. We chose this dataset because it has
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Figure 4: Results of applying BKT, DKT, and our method to Assistments 2009–2010 dataset.

relatively long sequences of attempts. We used the same
train/test split for this dataset as in Khajah et al. [5]. We
used the BKT implementation by Yudelson1 [11] with the
default parameters and Baum-Welch as the training method.
We used Khajah et al.’s [5] implementation of DKT2 with
default parameters. We only applied our method to the test
set for meaningful comparisons.

For the rest of this paper, we only report bounds obtained
by maximizing average LL. Throughout our experiments,
we found that the bounds for all of average LL, RMSE, and
AUC obtained by minimizing RMSE differed by less than
0.5% from those obtained by maximizing average LL. In fact,
it can be proved that minimizing RMSE and maximizing
average LL will yield the same p∗i in the single knowledge
component case (Equation 1). See the Appendix for the
proof.

We show our results on Assistments 2009–2010 for average
LL, RMSE, and AUC in Figure 4. The performance of DKT
is roughly half way between BKT and the bound produced
by our method for all of the metrics. This suggests that the
room for further improvements on Assistments 2009–2010 is
limited.

5. LIMITATIONS
The major limitation of our method is its optimistic nature,
meaning that it can produce a bound that is too loose. This
optimism manifests in two ways: first, our method can pre-
dict the precise location of learning transitions, which will
be difficult for any realistic model, and, second, more gen-
erally when the sequence of predictions to be made is short
the model isn’t significantly constrained.

5.1 Predicting Particular Events
The proposed technique appears to provide a reasonable
bound of prediction performance when student behavior fol-
lows a non-instantaneous learning of a topic involving an
interleaving of correct and incorrect responses as shown in
Figure 1. However, when students transition instantly from
consistently answering incorrectly to consistently answering
correctly, the model will likely produce a bound that is too
loose. Consider the item response sequences of two students
shown in Figure 5. Both of these students only transition

1https://github.com/IEDMS/standard-bkt
2https://github.com/mmkhajah/dkt

0

1

1 2 3 4 5 6 7

i

x

0

1

1 2 3 4 5 6 7

i

x

Figure 5: Two sequences that our method predicts
perfectly. A real predictor, however, might have
trouble predicting the precise location of the upward
transition.
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Figure 6: Our method can predict initial behav-
ior perfectly in some circumstances. A real pre-
dictor, however, might have trouble predicting pre-
cisely which students would get a problem correct
on their first attempt.

from incorrect responses to correct responses, meaning that
the optimization is free to generate predictions that precisely
match the data, resulting in 100% accuracy. A real model,
however, must predict the point of the transition, know-
ing that after observing the first three incorrect responses it
should predict correct for the first student’s fourth attempt
and incorrect for the second student’s fourth attempt. While
it isn’t impossible to imagine that there are features to guide
such a prediction, it is difficult to believe that it could be
done consistently with 100% accuracy.

A special case of predicting such a transition is predicting
whether or not the very first attempt is going to be cor-
rect. As shown in Figure 6, our method can perfectly pre-
dict whether or not a student gets their first attempt correct,
provided the student gets all other attempts correct. A real
system might be challenged to predict precisely which stu-
dents would perform in this manner, although some knowl-
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Figure 7: Upper bounds produced by our method versus theoretical bounds for attempt results that are i.i.d.
with fixed q for various sequence lengths. The solid curves correspond to the results of our method and the
dashed lines correspond to the theoretical bounds.

edge about the students will certainly enable such predic-
tions to be performed at a rate better than just the average
frequency that students get a given question correct on their
first attempt. Nevertheless, these features of the data lead
our system to be optimistic, and these features occur more
frequently and have larger impact on short sequences.

5.2 Short Sequences
In general, our method struggles with short sequences, be-
cause the optimization is largely unconstrained. For exam-
ple, consider the case where every student has made exactly
one attempt. In such a case our method will always produce
p∗1 that is exactly the same as x1, which results in a trivial
bound of 100% accuracy. However, as the sequence length
increases, the constraints will generally prevent our method
from being perfectly accurate, and thus it will provide a
more useful bound.

To understand how the amount of optimism in our method
depends on the sequence length, we used independent and
identically distributed (i.i.d.) coin tosses to study this. Such
sequences allow us to compute a theoretical bound that we
can compare to the one produced by our method. When
attempt results x1, . . . , xn are i.i.d. with probability q of
being correct, the theoretical bound is q log q+(1−q) log(1−
q) for average LL,

√
q(1− q)2 + (1− q)q2 for RMSE, and 0.5

for AUC.

Specifically, we generated i.i.d. results with sequence lengths
ranging from 1 to 100 and with q ranging from 0.1 to 0.9
and same ~s for every attempt. For each length, we generated
10,000 sequences and computed the bound for average LL,
RMSE, and AUC using our method.

We plotted the bounds computed by our method and the
theoretical bound in Figure 7. We chose to not plot the
results for q from 0.1 to 0.4 in the figure since we found
that q and 1 − q yield the same results. The solid curves
in the figure correspond to the results of our method for
each q while the dashed lines correspond to the theoretical
bound for each q. As the figure shows, our method starts off
wildly optimistic when the sequence length is 1 and grad-
ually converges to the theoretical bounds as the sequence
length increases. At a sequence length of 100, the bounds
by our method are close to the theoretical bound for average

LL and RMSE but not AUC. These trends suggest that our
method works reasonably well for average LL and RMSE
when the sequence length is large enough, however it is too
optimistic on AUC even with long sequences.

6. DISCUSSION AND CONCLUSION
In this paper, we presented a model-free bounding method
to find the limit of the next-item-correct prediction task.
The method assumes that forgetting is absent and uses the
constraint that the probability of students correctly answer-
ing a set of similar items should not decrease as they practice
more. We applied our method to the Assistments 2009–2010
dataset and found that DKT’s performance on this dataset
is fairly close to the bound produced by our method. This
suggests that the room for improvement on this dataset is
small.

The main shortcoming of our method is its optimistic na-
ture. In other words, our method will produce a bound that
is too loose, especially for short sequences. While we can
conceive of many ways to potentially compensate for this op-
timism (motivated by the scenarios discussed in Section 5),
we fear that any attempts we make to estimate compensa-
tion factors has the potential to yield a result that no longer
serves as a bound (i.e., that a real implementation could
potentially achieve a performance exceeding our “bound”).
Furthermore, we view the parameter-free simplicity of our
method to be one of its virtues, and it is not clear how
to preserve that while introducing such compensation. The
other shortcoming is that our method does not incorporate
forgetting by default. However, this could potentially be
incorporated by relaxing constraints when forgetting is sus-
pected to have occurred.

The intuition behind our method is based on the reason why
next-item-correct prediction is feasible. Since independent
identically distributed (i.i.d.) coin tosses are inherently un-
predictable, next-item-correct prediction is feasible only if
there are regularities in the data. Learning is undoubtedly
the most important regularity that we would like to observe
in any educational system. Thus the difficulty of the next-
item-correct prediction task depends on how much students’
performance deviates from i.i.d. and shows non-decreasing
behavior. Our method tries to capture such regularities due
to learning.
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APPENDIX
To prove that minimizing RMSE is equivalent to maximizing
average LL in the case of Equation 1, we first recall the
concept of a scoring rule [4], which is a function that scores a
predictive probability distribution P against an observation
xi drawn from a target probability distribution Q that we
are trying to recover. In this context a larger score indicates
a better P . In the case of binary variables with range {0, 1},
both P and Q are Bernoulli distributions and a scoring rule
can be simply denoted as S(p, x), where p is the probability
of observing 1 in P and x is an observation drawn from Q.

A strictly proper scoring rule is a scoring rule such that the
expected score over a set of observations drawn from Q is
uniquely maximized when P = Q [4]. The quadratic score
and the logarithmic score are two commonly used strictly
proper scoring rules. In the case of Equation 1, maximizing
the quadratic score is equivalent to minimizing RMSE and
maximizing the logarithmic score is equivalent to maximiz-
ing average LL.

In the binary case, a strictly proper scoring rule S(p, x) has
the Savage representation S(p, x) = G(p) + G∗(p)(x − p)
where G is strictly convex and G∗ is a subdifferential of
G [4]. Define the cost function F (p;x1, . . . , xn) by F (p) =
1
n

∑n
i=1 S(p, xi) = G(p)+G∗(p)(x̄−p) where x̄ = 1

n

∑n
i=1 xi.

Lemma 1. F (p) has a unique maximum at p = x̄ and is
strictly quasiconcave, thus unimodal.

Proof. First observe that F (p) = G(p)+G∗(p)(x̄−p) ≤
G(x̄) = F (x̄) by the definition of the subdifferential, with
equality if and only if p = x̄. Thus p = x̄ is the unique
maximum.

To establish quasiconcavity, we will show that for any α ∈
(0, 1), F (αp + (1 − α)q) > min{F (p), F (q)}. Let r = αp +
(1 − α)q and, without loss of generality, assume p < q, so
either p < r ≤ x̄ or x̄ ≤ r < q. In the first case:

F (r)− F (p) = G(r)−G(p) +G∗(r)(x̄− r)−G∗(p)(x̄− p)
> G∗(p)(r − p) +G∗(r)(x̄− r)−G∗(p)(x̄− p)
= (G∗(r)−G∗(p))(x̄− r)
≥ 0.

The last step is due to monotonicity of G∗, which states that
(G∗(r)−G∗(p))(r−p) ≥ 0, and because (x̄−r) has the same
sign as (r−p) we have (G∗(r)−G∗(p))(x̄−r) ≥ 0. This estab-
lishes that F (r) > F (p) in the first case. Similarly, F (r) >
F (q) in the second case, thus F (r) > min{F (p), F (q)}.

For any solution to Equation 1, we can partition p1, . . . , pn
into blocks (subsets) where each member of a block has equal

value and no two blocks share a value. Because Equation 1
requires monotonicity, each block must have consecutive in-
dices.

Lemma 2. If L is a strictly proper scoring rule, then ev-
ery solution to Equation 1 consists of blocks of the form
pi = . . . = pj = {xi, . . . , xj} =

∑j
k=i xk/(j − i+ 1).

Proof. Consider any block p = pi = . . . = pj in a solu-
tion to the optimization problem described by Equation 1
when L is a strictly proper scoring rule. Because blocks have
distinct values, p is locally unconstrained and so Lemma 1
implies p = {xi, . . . , xj}.

Algorithm 1

1: i← 1
2: while i ≤ n do
3: find the largest j with i ≤ j ≤ n that minimizes

{xi, . . . , xj}
4: pi, . . . , pj ← {xi, . . . , xj}
5: i← j + 1
6: end while

Theorem 1. If L is a strictly proper scoring rule, then
Algorithm 1 gives the unique solution to Equation 1.

Proof. Let p∗1, . . . , p
∗
n be the output of Algorithm 1. As-

sume that p1, . . . , pn is a distinct solution to Equation 1. Let
k be the first index for which p∗k 6= pk and let p∗i , . . . , p

∗
j be

the block with i ≤ k ≤ j.

If pk < p∗k, then monotonicity implies k = i. Let {pk, . . . , p`}
be the following block, so p∗k > pk = {xk, . . . , x`}, which
contradicts Line 3 in Algorithm 1.

If pk > p∗k, then p∗k < pk ≤ {xk, . . . , xj} because the opti-
mization subproblems for blocks in {pk, . . . , pj} are locally
unconstrained below. But by Lemma 2 we have:

p∗k = {xi, . . . , xj}

=
k − i

j − i+ 1
{xi, . . . , xk−1}+

j − k + 1

j − i+ 1
{xk, . . . , xj}

>
k − i

j − i+ 1
p∗k +

j − k + 1

j − i+ 1
p∗k

= p∗k,

which is again a contradiction.

Note that Algorithm 1 does not depend on L, so all strictly
proper scoring rules give the same solution to Equation 1.
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