
Personalized Feedback for Open-Response Mathematical
Questions using Long Short-Term Memory Networks

Joshua J. Michalenko
Rice University

jjm7@rice.edu

Andrew S. Lan
Princeton University

andrew.lan@princeton.edu

Richard G. Baraniuk
Rice University

richb@rice.edu

ABSTRACT
In this paper, we explore the problem of automatic grad-
ing and feedback generation for open-response mathemat-
ical questions. We resort to the long short-term memory
(LSTM) network to learn the simple task of polynomial fac-
torization and use the trained network for grading and feed-
back. We use Wolfram Alpha to synthetically generate a
training dataset that consists of step-by-step responses to
polynomial factorization questions to train the LSTM net-
work. Preliminary results validate the efficacy of LSTMs
in learning to factor low-order polynomials; we also demon-
strate how to leverage the trained network for automatic
grading and personalized feedback generation.

Keywords
Automatic grading, Feedback generation, Long short-term
memory networks, Mathematical expressions

1. INTRODUCTION
In spite of tremendous advances in technology for educa-
tion, learning today largely remains a “one-size-fits-all” ap-
proach. Personalized learning is the manifestation of dif-
ferentiation, the idea that all students access content and
develop mastery differently. The personalized learning ex-
perience necessitates a scalable approach since the number of
students is much larger than the number of teachers. Many
recent advances focus on using machine learning algorithms
to analyze student data, but mostly resort to limited utility
multiple-choice questions for grading a feedback [5].

The mathematical language processing (MLP) framework
proposed in [4] is the first automatic grading and feedback
generation tool for open-response mathematical questions.
MLP is capable of automatically grading a large number of
student responses requiring minimal human effort, but lacks
an effective feedback mechanism because it not capable of
truly understanding mathematics, and is therefore unable
to provide informative feedback. A series of recent tools
based on recurrent neural networks (RNNs) [3] have found
great success in various NLP tasks (e.g., machine transla-
tion, image captioning, etc.) and predicting the output of
simple computer code [7]. Natural language processing for
the purposes of grading and feedback has also made sub-
stantial progress in several restricted domains including es-
say evaluation and mathematical proof verification [2, 6].
These successes inspires us to use RNNs to analyze responses
to mathematical questions due to their sequential, step-by-
step format and their algorithmic nature. They support our

belief that LSTMs have the ability to learn simple mathe-
matical operations such as factoring polynomials from data
and providing relevant feedback.

1.1 Contributions
In this paper, we apply the LSTM network [3], a type of
RNN, to try to understand simple mathematics for auto-
matic grading and feedback generation for open-response
mathematical questions. In particular, we study the sim-
ple problem of polynomial factorization due to the fact that
responses to polynomial factorization questions are typically
short and require only simple mathematical operations. We
first generate a synthetic dataset using the Wolfram Al-
pha API consisting of responses (step-by-step solutions with
mathematical expressions and text explaining the mathe-
matical operations performed) to polynomial factorization
questions. We then train multiple LSTM networks on the
dataset and evaluate their performance on factoring previ-
ously unseen polynomials. Preliminary results show that
the trained character level networks can factor previously
unseen polynomials up to the second order with sufficient
accuracy, after training on enough examples. More impor-
tantly, we showcase how the trained networks have the po-
tential for automatic grading and feedback generation for
open-response mathematical questions.

We emphasize that our proposed method has the capabil-
ity to go beyond Wolfram Alpha. First, the ability of the
trained LSTM networks to generalize to previously unseen
examples enables transfer between domains, i.e., these net-
works have the capability of learning a rule in a certain con-
text and apply it in another context. This property enables
a LSTM network to build on its own knowledge as more
and more training data becomes available, which is a much
more scalable approach than the rules-based Wolfram Alpha
system, which requires new rules to be manually coded for
every new domain.

2. EXPERIMENTS

Experimental setup. We generate factorable polynomials
that are subsequently used by the Wolfram Alpha API to
produce responses on how to fully factor these polynomials.
The responses include step-by-step solutions that consist of
a series of mathematical expressions that end up in a fully-
factored final form, together with concise text describing
the mathematical operations involved. The data generation
process is limited to polynomials with a single variable, co-

Proceedings of the 10th International Conference on Educational Data Mining 350

Character Level % Error Expression Level % Error

units 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer
50 31.11 20.98 20.40 87.93 80.76 78.28
200 11.79 10.68 10.12 68.55 59.39 56.80
512 12.94 8.21 10.32 42.38 39.94 38.95

Table 1: Character and expression level misclassi-
fication errors on the test set. Performance of the
best models are highlighted in bold.

efficients that are less than 10 and up to the third order. We
construct a training dataset including 200,000 responses to
various factoring questions this way. A test dataset is con-
structed with 20 first, 20 second, and 20 third order poly-
nomials to be factored. We emphasize that, while for the
simple task of polynomial factorization, Wolfram Alpha is
able to generate the correct response, our aim is to develop a
method that can generalize to more complicated mathemat-
ical operations that are too complicated for a rules-based
system like Wolfram Alpha to cover. We train our LSTM
networks to operate on a character-by-character level, i.e.,
use each character in a response as input and output data
at each time instant. We train 9 different LSTM networks
with varying number of hidden units (N ∈ {50, 200, 512})
and layers (1, 2, and 3). We use 95% of the generated train-
ing dataset for training and 5% as the validation dataset;
We train the LSTM networks for a total of 50-150 epochs or
terminate the training process early if the validation error
shows minimal change across 10 epochs. In order to achieve
faster training, we apply the curriculum learning approach
[1], i.e., we start by training the LSTM networks on factor-
izations of first order polynomials until the validation error
cannot be further reduced, and then proceed to train on
responses factoring second order polynomials and beyond.

Results and discussion. We evaluate the performance of
our trained LSTM networks on factoring previously unseen
polynomials using two metrics. The first metric computes
the character-level misclassification error rate by comparing
every character in the correct factorization to the maximum-
likelihood predicted character by the trained LSTM net-
work. The second metric computes the expression-level mis-
classification error rate by comparing every full mathemat-
ical expression in the correct factorization to the full pre-
dicted expression by the trained LSTM network; a success-
ful classification means that the entire expression is correctly
predicted.

Experimental results for all 9 LSTM networks on both met-
rics are shown in Table 1. In general, LSTM networks with
more hidden units and layers achieves lower misclassifica-
tion error rates. We note that the expression-level misclas-
sification rate is much higher (the best model achieves an
error rate of 38.95%) than the character-level misclassifica-
tion rate (the best model achieves an error rate of 8.21%).
This observation is not surprising since correctly predicting
the entire expression is much more difficult than successfully
predicting a character. Moreover, we observe that the best
model achieves error rates of 0% and 15%, respectively, on
factoring first and second order polynomials but a 100% er-
ror rate on third order polynomials. This result is due to
the fact that factoring third order polynomials is hard since
it requires first factoring out a second order polynomial as
an intermediate step.

Figure 1: Illustration of how to use of a trained
LSTM network to detect when a student’s response
deviates from the correct response.

Using trained LSTM networks for grading and feed-
back. We now illustrate how the trained LSTM networks
can be used for automatic grading and feedback generation.
Figure 1 shows a typical use case with an actual student re-
sponse and a direct comparison to the maximum-likelihood
character the trained LSTM network predicts given the pre-
vious characters as input. For automatic grading, we can
calculate the predictive likelihood of every character in a
student’s response using a trained LSTM network. We can
then assign a grade to a response by its total predictive
likelihood; since our LSTM networks are trained on correct
responses, a correct response will have a higher predictive
likelihood than an incorrect one. For personalized feedback
generation, we can automatically alert a student that they
might have made an error if the predictive likelihood of the
next input character is lower than a certain threshold. In
Figure 1, such an error is shown in red where the student re-
sponse contains a character that the trained LSTM network
predicts as highly unlikely. Using these predictive probabil-
ities, we can also automatically provide hints to a student
about the most likely next expression in case they get stuck.

3. REFERENCES
[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.

Curriculum learning. In Proc. 26th Intl. Conf. Mach.
Learn., pages 41–48, June 2009.

[2] M. Cramer, B. Fisseni, P. Koepke, and D. Kühlwein.
The naproche project controlled natural language proof
checking of mathematical texts. In Cont. Nat. Lang.,
pages 170–186, 2009.

[3] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[4] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk.
Mathematical language processing: Automatic grading
and feedback for open response mathematical
questions. In Proc. 2nd ACM Conf. Learn. at Scale,
pages 167–176, Mar. 2015.

[5] A. S. Lan, A. E. Waters, C. Studer, and R. G.
Baraniuk. Sparse factor analysis for learning and
content analytics. J. Mach. Learn. Res., 15:1959–2008,
June 2014.

[6] A. Naumowicz and A. Kornilowicz. A brief overview of
mizar. In In Proc. 22nd Intl. Conf Theorem Proving in
Higher Order Logics, pages 67–72, 2009.

[7] W. Zaremba and I. Sutskever. Learning To Execute.
arXiv preprint arXiv:1410.4615, pages 1–25, Feb. 2015.

Proceedings of the 10th International Conference on Educational Data Mining 351

