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ABSTRACT
An important, yet largely unstudied problem in student data
analysis is to detect misconceptions from students’ responses
to open-response questions. Misconception detection enables
instructors to deliver more targeted feedback on the mis-
conceptions exhibited by many students in their class, thus
improving the quality of instruction. In this paper, we pro-
pose a new natural language processing-based framework
to detect the common misconceptions among students’ tex-
tual responses to short-answer questions. We propose a
probabilistic model for students’ textual responses involving
misconceptions and experimentally validate it on a real-world
student-response dataset. Experimental results show that our
proposed framework excels at classifying whether a response
exhibits one or more misconceptions. More importantly, it
can also automatically detect the common misconceptions
exhibited across responses from multiple students to multiple
questions; this property is especially important at large scale,
since instructors will no longer need to manually specify all
possible misconceptions that students might exhibit.

Keywords
Learning analytics, Markov chain Monte Carlo, misconcep-
tion detection, natural language processing

1. INTRODUCTION
The rapid developments of large-scale learning platforms
(e.g., MOOCs (edx.org, coursera.org) and OpenStax Tutor
(openstaxtutor.org)) have enabled not only access to high-
quality learning resources to a large number of students, but
also the collection of student data at very large scale. The
scale of this data presents a great opportunity to revolu-
tionize education by using machine learning algorithms to
automatically deliver personalized analytics and feedback to
students and instructors in order to improve the quality of
teaching and learning.

1.1 Detecting misconceptions from data
The predominant form of student data, their responses to as-
sessment questions, contains rich information on their knowl-
edge. Analyzing why a student answers a question incorrectly
is of crucial importance to deliver timely and effective feed-
back. Among the possible causes for a student to answer a
question incorrectly, exhibiting one or more misconceptions
is critical, since upon detection of a misconception, it is
very important to provide targeted feedback to a student

to correct their misconception in a timely manner. Exam-
ples of using misconceptions to improve teaching include
incorporating misconceptions to design better distractors for
multiple-choice questions [10], implementing a dialogue-based
tutor to detect misconceptions and provide corresponding
feedback to help students self-practice, preparing prospective
instructors by examining the causes of common misconcep-
tions among students [19], and incorporating misconceptions
into item response theory (IRT) for learning analytics [18].

The conventional way of leveraging misconceptions is to rely
on a set of pre-defined misconceptions provided by domain
experts [10, 19]. However, this approach is not scalable, since
it requires a large amount of human effort and is domain-
specific. With the large scale of student data at our disposal,
a more scalable approach is to automatically detect miscon-
ceptions from data.

Recently, researchers have developed approaches for data-
driven misconception detection; most of these approaches
analyze students’ response to multiple-choice questions. Ex-
amples of these approaches include detecting misconceptions
in multiple-choice mathematics questions and modeling stu-
dents’ progress in correcting them [9] via the additive fac-
tor model [3], and clustering students’ responses across a
number of multiple-choice physics questions [20]. However,
multiple-choice questions have been shown to be inferior to
open-response questions in terms of pedagogical value [8].
Indeed, students’ responses to open-response questions can
offer deeper insights into their knowledge state.

To date, detecting misconceptions from students’ responses to
open-response questions has largely remained an unexplored
problem. A few recent developments work exclusively with
structured responses, e.g., sketches [17], short mathematical
expressions [11], group discussions in a chemistry class [16],
and algebra with simple syntax [4].

1.2 Contributions
In this paper, we propose a natural language processing
framework that detects students’ common misconceptions
from their textual responses to open-response, short-answer
questions. This problem is very difficult, since the responses
are, in general, unstructured.

Our proposed framework consists of the following steps. First,
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we transform students’ textual responses to a number of
short-answer questions into low-dimensional textual feature
vectors using several well-known word-vector embeddings.
These tools include the popular Word2Vec embedding [12],
the GLOVE embedding [15], and an embedding based on
the long-short term memory (LSTM) neural network [6]. We
then propose a new statistical model that jointly models
both the transformed response textual feature vectors and
expert labels on whether a response exhibits one or more
misconceptions; these labels identify only whether or not a
response exhibits one or more misconceptions but not which
misconception it exhibits.

Our model uses a series of latent variables: the feature vectors
corresponding to the correct response to each question, the
feature vectors corresponding to each misconception, the
tendency of each student to exhibit each misconception, and
the confusion level of each question on each misconception.
We develop a Markov chain Monte Carlo (MCMC) algorithm
for parameter inference under the proposed statistical model.
We experimentally validate the proposed framework on a
real-world educational dataset collected from high school
classes on AP biology.

Our experimental results show that the proposed frame-
work excels at classifying whether a response exhibits one
or more misconceptions compared to standard classification
algorithms and significantly outperforms a baseline random
forest classifier. We also compare the prediction performance
across all three embeddings. More importantly, we show ex-
amples of common misconceptions detected from our dataset
and discuss how this information can be used to deliver tar-
geted feedback to help students correct their misconceptions.

2. DATASET AND PRE-PROCESSING
In this section, we first detail our short-answer response
dataset, and then detail our pre-processing approach to con-
vert responses into vectors using word-to-vector embeddings.

2.1 Dataset
Our dataset consists of students’ textual responses to short-
answer questions in high school classes on AP Biology admin-
istered on OpenStax Tutor [14]. Every response was labeled
by an expert grader as to whether it exhibited one or more
misconceptions. A total of N = 386 students each responded
to a subset of a total of Q = 1668 questions; each response
was manually labeled by one or multiple expert graders, re-
sulting in a total of ∼ 60, 000 labeled responses. Since there
is no clear rubric defining what is a misconception, graders
might not necessarily agree on what label to assign to each
response. Therefore, we trim the dataset to only keep re-
sponses that are labeled by multiple graders and they also
assigned the same label, resulting in 13, 099 responses. We
also further trim the dataset by filtering out students who
respond to less than 5 questions and questions with less than
5 responses in every dataset. This subset contains 6, 152
responses.

The questions in our dataset are drawn from the OpenStax
AP biology textbook; we divide the full dataset into smaller
subsets corresponding to each of the first four units [13],
since different units correspond to entirely different sub-areas
in biology. These units cover the following topics: Unit

N Q Sparsity (%)

Unit 1 47 77 0.280

Unit 2 101 104 0.243

Unit 3 73 91 0.236

Unit 4 43 75 0.315

Table 1: Dataset statistics.

1—The Chemistry of Life, Chapters 1-3, Unit 2—The Cell,
Chapters 4-10, Unit 3—Genetics, Chapters 11-17, and Unit
4—Evolutionary Processes, Chapters 18-20. To summarize,
we show the dimensions of the subsets of the data correspond-
ing to each unit in Table 1. Since not every student was
assigned to every question, the dataset is sparsely populated;
Table 1 also shows the portion of responses that are observed
in the trimmed data subsets, denoted as “sparsity”.

2.2 Response embeddings
We first perform a pre-processing step by transforming each
textual student response into a corresponding real-valued
vector via three different word-vector embeddings. Our first
embedding uses the Word2Vec embedding [12] trained on the
OpenStax Biology textbook (an approach also mentioned
in [2]), to learn embeddings that put more emphasis on the
technical vocabulary specific to each subject. We create
the feature vector for each response by mapping each in-
dividual word in the response to its corresponding feature
vector, and then adding them together. Concretely, denote
xi,j = {w1, w2, ..., wTi,j} as the collection of words in the
textual response of student j to question i, where Ti,j de-
notes the total number of words in this response (excluding
common stopwords). We then map each word wt to its corre-
sponding D-dimensional feature vector r(wt) ∈ RD using the
trained Word2Vec model. We use D = 10 for the Word2Vec
embedding. We then compute the student response feature

vector as fi,j =
∑Ti,j

t=1 r(wt).

Our second word-vector embedding is a pre-trained GLOVE
embedding with D = 25 [15]. The GLOVE embedding is
very similar to the Word2Vec embedding, with the main
difference being that it takes corpus-level word co-occurrence
statistics into account. Moreover, the quality of the GLOVE
embedding for common words is likely higher since it is pre-
trained on a huge corpus (comparing to only the OpenStax
Biology textbook for Word2Vec).

Both the Word2Vec embedding and the GLOVE embedding
do not take word ordering into account, and for misconcep-
tion classification, this drawback can lead to problems. For
example, responses “If X then Y” and “If Y then X” may
have completely different meanings depending on the context,
where it’s possible for one to exhibit a common misconcep-
tion while the other one does not. Using the Word2Vec and
GLOVE embeddings, these responses will be embedded to
the same feature vector fi,j , making them indistinguishable
from each other. Therefore, our third word-vector embed-
ding is based on the long short-term memory (LSTM) neural
network, which is a recurrent neural network that excels at
capturing long-term dependencies in sequential data. There-
fore, it can take word ordering into account, a feature that
we believe is critical for misconception detection. We im-
plement a 2-layer LSTM network with 10 hidden units and
train it on the OpenStax Biology textbook. For each student
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Figure 1: Visualization of the statistical model.
Black nodes denote observed data; white nodes de-
note latent variables to be inferred.

response, we use the text as character-by-character inputs
to the LSTM network and use the last layer’s hidden unit
activation values (stacked in a D = 10 dimensional vector)
as its textual feature fi,j .

3. STATISTICAL MODEL
We now detail our statistical model; its graphical model
is visualized in Figure 1. Concretely, let there be a total
of N students, Q questions, and K misconceptions. Let
Mi,j ∈ {0, 1} denote the binary-valued misconception label
on the response of student j to question i provided by an
expert grader, with j ∈ {1, . . . , N} and i ∈ {1, . . . , Q}, where
1 represents the presence of (one or more) misconceptions,
and 0 represents no misconceptions.

We transform the raw text of student j’s response to ques-
tion i into a D-dimensional real-valued feature vector, de-
noted by fi,j ∈ RD, via a pre-processing step (detailed in the
previous section). Let Ω ⊆ {1, . . . , Q} × {1, . . . , N} denote
the subset of student responses that are labeled, since every
student only responds to a subset of the questions.

We denote the tendency of student j to exhibit misconcep-
tion k, with k ∈ {1, . . . ,K} as ck,j ∈ R, and the confusion
level of question i on misconception k, as di,k ∈ R. Then,
let Pi,j,k ∈ {0, 1} denote the binary-valued latent variable
that represents whether student j exhibits misconception k
in their response to question i, with 1 denoting that the
misconception is present and 0 otherwise. We model Pi,j,k
as a Bernoulli random variable

p(Pi,j,k = 1) = Φ(ck,j + di,k), (i, j) ∈ Ω, (1)

where Φ(x) =
∫ x
−∞N (t; 0, 1)dt denotes the inverse probit

link function (the cumulative distribution function of the
standard normal random variable). Given Pi,j,k ∀k, we model
the observed misconception label Mi,j as

Mi,j =

ß
0 if Pi,j,k = 0 ∀k,
1 otherwise,

(i, j) ∈ Ω. (2)

In words, a response is labeled as having a misconception if
one or more misconceptions is present (given by the latent
misconception exhibition variables Pi,j,k). Given Pi,j,k ∀k,
the textual response feature vector that corresponds to stu-
dent j’s response to question i, fi,j , is modeled as

fi,j ∼ N (γi +
∑

k

Pi,j,kθk,ΣF ), ∀(i, j) ∈ Ω, (3)

where γi denotes the feature vector that corresponds to the
correct response to question i, θk denotes the feature vector
that corresponds to misconception k, and ΣF denotes the

covariance matrix of the multivariate normal distribution
characterizing the feature vectors. In other words, the feature
vector of each response is a mixture of the feature vectors
corresponding to the correct response to the question and
each misconception the student exhibits. In the next section,
we develop an MCMC inference algorithm to infer the values
of the latent variables γi, θk, ΣF , Pi,j,k, ck,j , and di,k, given
observed data fi,j and Mi,j .

4. PARAMETER INFERENCE
We use a Gibbs sampling algorithm [5] for parameter in-
ference under the proposed statistical model. The prior
distributions of the latent variables are listed as follows:

γi ∼ N (µγ ,Σγ),θk ∼ N (µθ,Σθ),ΣF ∼ IW (hF ,VF ),

ck,j ∼ N (µc, σ
2
c ), di,k ∼ N (µd, σ

2
d),

where IW (·) denotes the inverse-Wishart distribution and µγ ,
Σγ , µθ, Σθ, hF , VF , µc, σ

2
c , µd, and σ2

d are hyperparameters.

We start by randomly initializing the values of the latent
variables γi, θk, ΣF , Pi,j,k, ck,j , di,k, aj , and µi by sampling
from their prior distributions. Then, in each iteration of our
Gibbs sampling algorithm, we iteratively sample the value
of each random variable from its full conditional posterior
distribution. Specifically, in each iteration, we perform the
following steps:

a) Sample Pi,j,k: We first sample the latent misconception
indicator variable Pi,j,k from its posterior distribution
as

Pi,j,k=





0 if Mi,j = 0,

1 if Mi,j = 1 and Pi,j,k′ = 0 ∀ k′ 6= k,
r
r+1

if Mi,j = 1 and ∃ k′ 6= k s.t. Pi,j,k′=1,

where

r =
p(fi,j |γi,θk, ∀k,ΣF , Pi,j,k′ 6=k, Pi,j,k = 1)

p(fi,j |γi,θk, ∀k,ΣF , Pi,j,k′ 6=k, Pi,j,k = 0)
·

p(Pi,j,k = 1|ck,j , di,k)

p(Pi,j,k = 0|ck,j , di,k)
.

Terms in these expressions are given by (1) and (3).

b) Sample γi: We then sample the feature vector that corre-
sponds to the correct response to each question, γi,
from its posterior distribution as γi ∼ N (µγi ,Σγi)
where

µγi = Σγi

(
Σ−1
γ µγ + Σ−1

F

∑

j:(i,j)∈Ω

(fi,j −
∑

k

Pi,j,kθk)

)
,

Σγi = (Σ−1
γ + niΣ

−1
F )−1,

where ni =
∑

j I ((i, j) ∈ Ω).

c) Sample θk: We then sample the feature vector that cor-
responds to each misconception, θk, from its posterior
distribution as θk ∼ N (µθk ,Σθk ) where

µθk =Σθk

Ñ
Σ−1
θ µθ+Σ−1

F

∑

i,j:Pi,j,k=1

(fi,j−γi−
∑

k′ 6=k

Pi,j,k′θk′)

é
,

Σθk = (Σ−1
θ + nkΣ

−1
F )−1,

where nk =
∑

i,j I (Pi,j,k = 1).

Proceedings of the 10th International Conference on Educational Data Mining 210



(a) Unit 1 (b) Unit 2 (c) Unit 3 (d) Unit 4

Figure 2: Comparison of the prediction performance of the proposed model against RF on our AP Biology
dataset using the ACC metric as the number of latent misconceptions K varies, with the LSTM embedding.

d) Sample ΣF : We then sample the covariance matrix ΣF

from its posterior distribution as

ΣF ∼ IW (hF + n,VF + M)) ,

where n=
∑

i,j I ((i, j) ∈ Ω) and M =
∑

i,j:(i,j)∈Ω(fi,j−
γi −

∑
k Pi,j,kθk)(fi,j − γi −

∑
k Pi,j,kθk)T .

e) Sample ck,j and di,k: In order to sample ck,j and di,k, we
first sample the value of the auxiliary variable zi,j,k
(following the standard approach proposed in [1]) as

zi,j,k ∼ N±(ck,j + di,k, 1), ∀(i, j) ∈ Ω,

where N±(·) denotes the truncated normal random
distribution truncated to the positive side when Pi,j,k =
1 and negative side when Pi,j,k = 0. We then sample
ck,j from its posterior distribution as

ck,j ∼ N (µck,j , σ
2
ck,j

),

where nj =
∑

i I ((i, j) ∈ Ω), σ2
ck,j

= 1/(1/σ2
c + nj),

and µck,j=σ
2
ck,j

(
µc/σ

2
c +
∑

i:(i,j)∈Ω(zi,j,k − di,k)
)
. We

then sample di,k from its posterior distribution as

di,k ∼ N (µdi,k , σ
2
di,k ),

where σ2
di,k

=1/(1/σ2
d + ni), and µdi,k = σ2

di,k
(µd/σ

2
d +∑

j:(i,j)∈Ω(zi,j,k − ck,j)).

We run the iterations detailed above for a number of T
total iterations with a certain burn-in period, and use the
samples of each latent variable to approximate their posterior
distributions.

Parameter inference under our model suffers from the label-
switching issue that is common in mixture models [5], mean-
ing that the mixture components might be permuted between
iterations. We employ a post-processing step to resolve this
issue. We first calculate the augmented data likelihood at
each iteration, (indexed by `) we then identify the iteration
`max with the largest augmented data likelihood, and per-
mute the variables θ`k, c`k,j , and d`i,k that best match the

variables θ`max
k , c`max

k,j , and d`max
i,k . After this post-processing

step, we can simply calculate the posterior means of each one
of these sets of variables by taking averages of their values
across non burn-in iterations.

5. EXPERIMENTS
We experimentally validate the efficacy of the proposed frame-
work using our AP Biology class dataset. We first compare
the proposed framework against a baseline random forest

(RF) classifier that classifies whether a student response ex-
hibits one or more misconceptions. We then show common
misconceptions detected in our datasets and discuss how
the proposed framework can use this information to deliver
meaningful targeted feedback to students that helps them
correct their misconceptions.

5.1 Experimental setup
We run our experiments with K ∈ {2, 4, 6, 8, 10} latent mis-
conceptions with hyperparameters µγ = µθ = 0D, Σγ =
Σγ = VF = ID, hF = 10, µc = µd = 0, and σ2

c = σ2
d = 1,

for a total of T = 500 iterations with the first 250 iterations
as burn-in. We compare the proposed framework against
a baseline random forest (RF) classifier1 using the textual
response feature vectors fi,j to classify the binary-valued
misconception label Mi,j , with 200 decision trees.

We randomly partition each dataset into 5 folds and use 4
folds as the training set and the other fold as the test set. We
then train the proposed framework and RF on the training
set and evaluate their performance on the test set, using
two metrics: i) prediction accuracy (ACC), i.e., the portion
of correct predictions, and ii) area under curve (AUC), i.e.,
the area under the receiver operating characteristic (ROC)
curve of the resulting binary classifier [7]. Both metrics take
values in [0, 1], with larger values corresponding to better
prediction performance. We repeat our experiments for 20
random partitions of the folds.

For the proposed framework, the predictive probability that
a response with its feature vector fi,j exhibits a misconcep-
tion, i.e., the probability that at least one of the K latent
misconception exhibition state variables take the value of 1,
is given by 1− p̂i,j , where

p̂i,j = p(Mi,j = 0 | fi,j ,γi,ΣF ,θk,∀k, ck,j , di,k)

=
p(fi,j|θk, Pi,j,k = 0, ∀k)

∏
k p(Pi,j,k = 0|ck,j , di,k)∑

Pi,j,k, ∀k(p(fi,j |θk, Pi,j,k∀k)
∏
k p(Pi,j,k|ck,j , di,k))

,

where in the last expression we omitted the conditional de-
pendency of fi,j on γi and ΣF due to spatial constraints.
For RF, the predictive probability is given by the fraction of
decision trees that classifies Mi,j = 1 given fi,j .

5.2 Results and discussions
The number of latent misconceptions K is an important pa-
rameter controlling the granularity of the misconceptions that

1The RF classifier achieves the best performance among
a number of off-the-shelf baseline classifiers, e.g., logistic
regression, support vector machines, etc. Therefore, we do
not compare it against other baseline classifiers.
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Unit 1 Unit 2 Unit 3 Unit 4

ACC AUC ACC AUC ACC AUC ACC AUC

Proposed framework 0.789±0.014 0.762±0.027 0.774±0.015 0.758±0.023 0.779±0.019 0.752±0.020 0.887±0.011 0.774±0.029
RF 0.762±0.019 0.645±0.025 0.735±0.011 0.676±0.014 0.758±0.017 0.630±0.024 0.873±0.009 0.604±0.034

Proposed framework 0.867±0.014 0.762±0.048 0.870±0.010 0.821±0.024 0.893±0.017 0.794±0.039 0.953±0.015 0.892±0.047
RF 0.876±0.014 0.697±0.022 0.859±0.013 0.771±0.040 0.883±0.008 0.616±0.043 0.948±0.019 0.731±0.006

Proposed framework 0.873±0.042 0.772±0.093 0.865±0.025 0.829±0.044 0.873±0.027 0.792±0.061 0.936±0.032 0.832±0.094
RF 0.865±0.035 0.711±0.086 0.838±0.028 0.722±0.043 0.854±0.028 0.697±0.057 0.931±0.025 0.709±0.105

Table 2: Performance comparison on misconception label classification of a textual response in terms of the
prediction accuracy (ACC) and area under the receiver operating characteristic curve (AUC) of the proposed
framework against a random forest (RF) classifier, using the AP Biology dataset and the Word2Vec (top),
GLOVE (middle), and LSTM (bottom) embeddings.

we aim to detect. Figure 2 shows the comparison between
the proposed framework using different values of K and RF
using the ACC metric with the LSTM embedding. We see
an obvious trend that, as K increases, the prediction perfor-
mance decreases. The likely cause of this trend is that the
proposed framework tends to overfit as the number of latent
misconceptions grows very large since some of our datasets
do not contain very rich misconception types. Moreover, the
number of common misconceptions varies across different
units, with Unit 2 likely containing more misconception types
than Units 1 and 4.

We then compare the performance of the proposed framework
against RF on misconception label classification in Table 2
using K = 2 and all three embeddings. The proposed frame-
work significantly outperforms RF (1–4% using the ACC
metric and 4-18% using the AUC metric) on almost all 4
data subsets using every embedding. The only case where
the proposed framework does not outperform RF is on Unit 1
using the GLOVE embedding. We postulate that the reason
for this result is that this unit is about chemistry and has a
lot of responses with more chemical molecular expressions
than words; therefore, the proposed framework does not
have enough textual information to exhibit its advantages
(grouping responses that share the same misconceptions into
clusters) over the RF classifier.

Both the proposed framework and RF perform much better
using the GLOVE and LSTM embeddings than the Word2Vec
embedding. This result is likely due to the fact that these
embeddings are more advanced than the Word2Vec embed-
ding: the GLOVE embedding considers additional word
co-occurrence statistics than the Word2Vec embedding, is
trained on a much larger corpus, and has a higher dimension
D = 25, while the LSTM embedding is the only embed-
ding that takes word ordering into account. Moreover, both
algorithms perform best on Unit 4, which is likely due to
two reasons: i) the Unit 4 subset has a larger portion of its
responses labeled, and ii) Unit 4 is about evolution, which
results in responses that are much longer and thus contains
richer textual information.

5.3 Uncovering common misconceptions
We emphasize that, in addition to the proposed framework’s
significant improvement over RF in terms of misconception
label classification, it features great interpretability since
it identifies common misconceptions from data. As an il-
lustrative example, the following responses from multiple
students across two questions are identified to exhibit the
same misconception in the Unit 4 subset using the Word2Vec

embedding:

Question 1: People who breed domesticated animals
try to avoid inbreeding even though most domesticated
animals are indiscriminate. Evaluate why this is a good
practice.
Correct Response: A breeder would not allow close rel-
atives to mate, because inbreeding can bring together
deleterious recessive mutations that can cause abnor-
malities and susceptibility to disease.
Student Response 1: Inbreeding can cause a rise in
unfavorable or detrimental traits such as genes that
cause individuals to be prone to disease or have unfa-
vorable mutations.
Student Response 2: Interbreeding can lead to harm-
ful mutations.

Question 2: When closely related individuals mate with
each other, or inbreed, the offspring are often not as fit
as the offspring of two unrelated individuals. Why?
Correct Response: Inbreeding can bring together rare,
deleterious mutations that lead to harmful phenotypes.
Student Response 3: Leads to more homozygous
recessive genes thus leading to mutation or disease.
Student Response 4: When related individuals mate
it can lead to harmful mutations.

Although these responses are from different students to dif-
ferent questions, they exhibit one common misconception,
that inbreeding leads to harmful mutations. Once this mis-
conception is identified, course instructors can deliver the
targeted feedback that inbreeding only brings together harm-
ful mutations, leading to issues like abnormalities, rather
than directly leading to harmful mutations.

Moreover, the proposed framework can automatically dis-
cover common misconceptions that students exhibit without
input from domain experts, especially when the number of
students and questions are very large. Specifically, in the
example above, we are able to detect such a common mis-
conception that 4 responses exhibit by analyzing the 1016
responses in the AP Biology Unit 4 dataset; however, it
would not likely be detected if the number of responses was
smaller and fewer students exhibited the misconception. This
feature makes it an attractive data-driven aid to domain ex-
perts in designing educational content to address student
misconceptions.

We show another example that the proposed framework can
automatically group student responses to the same group
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according to the misconceptions they exhibit. The example
shows two detected common misconceptions among students’
responses to a single question in the Unit 2 subset using the
LSTM embedding:

Question: What is the primary energy source for cells?
Correct response: Glucose.
Student responses with misconception 1:
a) sunlight b) sum c) The sun d) he sun?
Student responses with misconception 2:
a) ATP b) adenosine triphosphate
c) ATPPPPPPPPPPPPP d) atp mitochondria

We see that the proposed framework has successfully iden-
tified two common misconception groups, with incorrect
responses that list “sun” and “ATP” as the primary energy
source for cells. Note that the LSTM embedding enables
the framework to assign the full and abbreviated form of
the same entity (“adenosine triphosphate” and “ATP”) into
the same misconception cluster, without employing any pre-
processing on the raw textual response data. The likely
reason for this result is that our LSTM embedding is trained
on a character-by-character level on the OpenStax Biology
textbook, where these terms appear together frequently, thus
enabling the LSTM to transform them into similar vectors.
This observation highlights the importance of using good,
information-preserving word-vector embeddings for the pro-
posed framework to maximize its capability of detecting
common misconceptions.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a natural language processing-
based framework for detecting and classifying common mis-
conceptions in students’ textual responses. Our proposed
framework first transforms their textual responses into low-
dimensional feature vectors using three existing word-vector
embedding techniques, and then estimates the feature vec-
tors characterizing each misconception, among other latent
variables, using a proposed mixture model that leverages
information provided by expert human graders. Our ex-
periments on a real-world educational dataset consisting of
students’ textual responses to short-answer questions showed
that the proposed framework excels at classifying whether
a response exhibits one or more misconceptions. Our pro-
posed framework is also able to group responses with the
same misconceptions into clusters, enabling the data-driven
discovery of common misconceptions without input from
domain experts. Possible avenues of future work include i)
automatically generate the appropriate feedback to correct
each misconception, ii) leverage additional information, such
as the text of the correct response to each question, to further
improve the performance on predicting misconception labels,
iii) explore the relationship between the dimension of the
word-vector embeddings and prediction performance, and
iv) develop embeddings for other types of responses, e.g.,
mathematical expressions and chemical equations.
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