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ABSTRACT

Knowledge Tracing plays a key role to personalize learning in
an Intelligent Tutoring System including funtoot. Bayesian
Knowledge Tracing, apart from other models, is the sim-
plest well-studied model which is known to work well. Re-
cently, Deep Knowledge Tracing based on Deep Neural Net-
works, was proposed with huge promises. But, soon after,
it was discovered that the gains achieved by DKT were not
of significant magnitude as compared to Performance Fac-
tor Analysis [13] and BKT and its variants proposed in [6].
In the quest of examining and studying these models, we
experiment with them on our dataset. We also introduce
a logical extension of DKT, Multi-Skill DKT, to incorpo-
rate items requiring knowledge of multiple skills. We show
that PFA clearly outperforms all the above mentioned mod-
els when the AUC results were averaged on skills while PFA
and DKT, both were equally good, when they were averaged
on all data points.
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1. INTRODUCTION

An Intelligent Tutoring System’s main aspect is to deliver
the instruction and provide feedback as and when required.
To do that, the system requires to measure the knowledge
state of a student with respect to the content available. The
system continuously monitors the student’s performance,
updates the knowledge state and based on that takes fur-
ther decisions. The techniques capable of performing these
functions are called Knowledge Tracing models.

Bayesian Knowledge Tracing [2] has been one of the most
predominantly researched models in the educational data
mining domain. BKT is a 2-state skill specific model, where
the student’s knowledge state can take either of the two
values: learned or unlearned. Moreover, a skill once learned
cannot be unlearned. These assumptions make it a very
simple and constrained model and has led lots of researchers
to extend the model by enhancing it with new features to
improve its performance; making it less constrained so to
say. For instance [10] extend BKT in the scenario where the
students do not necessarily use the system in the same day.

Authors of [14] proposed an individualized BKT model
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which fits not only the skill specific parameters, but also stu-
dent specific parameters and have reported significant gains
over standard BKT.

Educational data mining techniques can now very accurately
predict how much a student has learned a Knowledge Com-
ponent (KC). But it doesn’t give information about the ex-
act moment when the KC was learnt. [3] discusses a tech-
nique about finding a moment of learning.

Another model Performance Factor Analysis (PFA) is a lo-
gistic regression model proposed in [7] which showed better
performance than standard BKT. Unlike BKT, PFA can in-
corporate items with multiple skills. PFA makes predictions
based on the item difficulty and historical performances of a
student. [4] has compared BKT and PFA by using various
model fitting parameter models like Expectation Maximiza-
tion (EM) and Brute Force (BF). Knowledge tracing models
with EM have shown performance comparable to PFA[4].

The most recently published model - DKT [9] is the newest
technique in this area of research. DKT is an LSTM [5] net-
work, a variant of recurrent neural network [11] which takes
as input a series of exercises attempted by the student and
correspondingly a binary digit suggesting if the exercise was
answered correctly or not. DKT has shown significant gains
over BKT which is a very tempting gain for any researcher
in this community to look into and study further. Papers
like [6], [13] and [12] did just that.

Authors in [13] have pointed out few irregularities in the
dataset used by authors in [9] which, when accounted for,
reduce the gain reported by using DKT. They also reported
that DKT doesn’t quite hold an edge when the results are
compared with PFA.

Another standard framework for modelling student re-
sponses, Temporal extension of Item Response Theory (IRT)
is compared with DKT in [12]. Authors have reported that
the variants of IRT consistently matched or outperformed
DKT.

Recent paper [6] studies DKT even further and explains why
DKT might be better. It has been pointed out that DKT
inherently exploits the characteristics of the data which stan-
dard models like BKT cannot. So, in order to make a fair
comparison between the two, authors have presented three
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different variants of BK'T with forgetting, skill discovery and
latent abilities which might help BKT make use of informa-
tion from the data the way DKT does.

Having introduced these variants, the authors also make a
point that Knowledge Tracing might not require the “depth”
that deep learning models offer.

Being an Intelligent Tutoring System, funtoot’s tutor mod-
ule requires sophisticated knowledge tracing technique which
models the process of knowledge acquisition and helps stu-
dents achieve mastery. One such model operates at the level
of LGs (discussed in section 2) which models the commit-
tance and avoidance of them with time and practice. In the
context of this paper, these LG models are of prime impor-
tance to us and henceforth we will refer LGs as skills. Also,
considering user experience, we need a model which can be
used for predictions in real time without compromising on
user latency.

In this paper, we test standard BKT, the variants of BKT,
DKT and PFA on the funtoot dataset and examine the
results. We also introduce a logical and trivial extension
of DKT to accommodate the items which involve multiple
skills. Out of all the models considered in this article, PFA
is one such model which allows items with multiple skills.
But in our dataset, each of the skills in the item has its own
response and hence it is modelled separately in PFA.

The rest of the paper is organized as follows: section 2 gives
a brief introduction to our product funtoot and its knowl-
edge graph. Section 3 discusses the experiments on funtoot
dataset and results. Section 4 discusses the future work and
conclusion.

2. FUNTOOT

Funtoot® is a personalized digital tutor which is currently
being used actively in around 125 schools all over India with
the total of 99,842 students registered. The curriculum of
math and science for grades 2 to 9 is covered by funtoot.

Schools in India are typically affiliated with one of the boards
of education®. Curriculum for math and science from the
following boards of education are included in funtoot:

e CBSE? board for grades 2 to 9,

e Karnataka State Board? for grades 2 to 8,

e ICSE® board for grades 2 to 8 and

e IGCSE® board for grades 2 to 3.

"http://www.funtoot.com/
’https://en.wikipedia.org/wiki/Boards_of _
Education_in_India
Shttps://en.wikipedia.org/wiki/Central_Board_of_
Secondary_Education
‘https://en.wikipedia.org/wiki/Karnataka_
Secondary_Education_Examination_Board
Shttps://en.wikipedia.org/wiki/Indian_Certificate_
of _Secondary_Education
Shttps://en.wikipedia.org/wiki/International_
General_Certificate_of_Secondary_Education
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2.1 Funtoot Knowledge Graph

Pedagogy team at funtoot has created a funtoot ontology
around the subjects Math and Science. This ontology rep-
resents the various learning units of any subject and their
relationships, which is created based on human expertise in
the subject matter. All the above mentioned curricula are
later derived from this funtoot ontology based on the age
group and grade.

An ontology for a subject is created as follows:

1. a subject is broken down into the smallest teachable
sub-sub-concepts

2.1t is then mapped to determine inter-
dependencies/connections between concepts, sub-
concepts (sc) and sub-sub-concepts (ssc) as shown in
the figure 1,
Consider the example shown in figure 1. Subject
Math contains a concept Triangle, and Triangle
contains a sub-concept Congruency. Sub-concept
contains two sub-sub-concepts: Rules of Congruency
and Applications of Congruency. Sub-sub-concepts
are connected by “depends-on” relationship. Here,
Applications of Congruency is dependent on Rules
of Congruency, which suggests that the latter is a
prerequisite for the former.

3. learning gaps (definition 1) are determined in the
sub-sub-concepts

DEFINITION 1. Learning Gap (LG): “A learning gap
is a relative performance of a student in a specific skill,
i.e. difference of what a student was supposed to learn,
and what he actually learned in a skill. 7”7

“A misunderstanding of a concept or a lack of knowl-
edge about a concept that is required for a student to
solve or answer a particular question is also a learning

2

gap

For instance, a question “Solve 12 + 18” is given to
student Alice. If Alice makes a mistake while adding
carry and answers 20, we say that a LG (carry-over
error) has been committed. Had she answered 30, this
LG would have been said to be avoided. This question
might also have other LGs which could have been com-
mitted simultaneously with the LG mentioned above.
If the response is correct, all the LGs of a question are
said to have been avoided.

In figure 1, Applications of Congruency is an ssc con-
taining LG1, LG2> and LG3. Learning gaps can have
“induce” relationships. In our example, LG induces
LGs.

4. inter-dependencies get refined based on the data-points
received by funtoot through the user’s interaction

5. an SSC is further divided into six Bloom’s Taxon-
omy Learning Objectives (btlos) using Bloom’s Tax-
anomy [1]. Each learning objective has five difficulty

"http://edglossary.org/learning-gap/
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BTLO
Difficulty Level

Remember | Understand | Apply | Analyze | Evaluate

Create

1

Y | W N

Table 1: Btlos, Difficulty levels = Complexities

levels as shown in table 1. Each cell (for instance,
Rememberl, Apply2 and so on) in table 1 is called a
complexity in funtoot.

-_induces

ncept. Sub-concept

Sub-sub-
concept

QSubject ‘ Co

Learning Gaps

Figure 1: Funtoot Knowledge Graph

2.2 Dataset

During a student’s interaction with funtoot, informa-
tion like: session, the scope of the question (which in-
cludes grade — subject — topic — subtopic — subsubtopic —
complexity — question), question identifier, start time, to-
tal attempts allowed based on the student’s performance,
time taken, attempts taken, information about hints, LGs
committed in each attempt, assistance provided and so on
is logged.

In the study presented in this paper, we model LG as a skill.
We aim to predict a student’s proficiency in a particular LG.
When a student is presented with an item, several attempts
are provided to solve it. In an unsuccessful attempt a stu-
dent might commit more than one LG as explained in sec-
tion 2 and the same LG can also be committed in several
attempts. We know apriori the set of LGs that are exposed
by a question. With this information at hand, we need an
impression of each of these LGs for the student in the con-
text of this item.

Consider a hypothetical example. Alice attempts an item ¢
from a subtopic Rules of Congruency having skills s1, s2, s3.
The series of attempts is shown in table 2.
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Attempt no. s1 | s2 | s3

1 0 1 1

2 0 1 1

3 0 0 1

4 1 1 1
Overall Outcome | 0 | 0 | 1

Table 2: Attempts made by Alice while solving ¢

In the above table, 1 represents avoidance and 0 represents
committance. As shown in the table, Alice committed s in
attempts 1, 2 and 3. Alice committed ss in attempt 3. Alice
avoided s3 in all attempts. The overall outcome of Alice in
LGs s1, s2 and sz is (0,0,1) which is a logical AND over
all attempts. This means that s; and s are committed and
s3 is avoided. From now on, we will refer these outcomes
as committances and avoidances and they will be used for
modelling. So this problem attempt of Alice gives rise to
three data points.

For this experiment we have used data of 6" grade CBSE
math from date 2015 — 07 — 25 to 2017 — 01 — 30. Syl-
labus descendant hierarchy for this dataset is as follows: 22
topics, 69 subtopics, 119 sub-sub-topics, 541 complexities
and 1,524 problems. This dataset has 26, 06,022 entries of
problem attempts involving 442 skills. This data is about
176 schools with 11, 820 students and 1, 524 problems. From
this dataset, the data of students having less than 100 prob-
lem attempts were excluded. This gives us 24,47, 027 prob-
lem attempts involving 442 skills with 7780 students and
1,523 problems. Finally, we have 56,04,227 data points
where 42, 68,503 are avoidances (class 1) and 13, 35,724 are
committance (class 0).

In the context of the example shown in table 2, the length
of Alice's attempt to solve a question g can be said as three,
as there are three skills involved. Given this definition, of
length of the problem attempt, figure 2 shows the distribu-
tion of the length of the problem attempts in the dataset.
38.18% of the total problem attempts have 1 skill, i.e., length
is 1 and 29.47% of the problem attempts have length 2.

3. EXPERIMENTS

In this section, we discuss the experiments done on our
dataset and report the results. Consider a hypothetical
dataset of student Alice attempting questions ¢1 and ¢z in
the same order. Question ¢; has three skills A, B and C,
question ¢z has two skills B and C. Alice gets only one
attempt for both the questions wherein she commits skill
B and C and skill B in questions g1 and g2 respectively.
This example is used in this section to explain the training
datasets for each of the techniques.
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Figure 2: Data Distribution

3.1 Bayesian Knowledge Tracing

After DKT [9], authors in [6] have explored and hypothe-
sized the properties of the data which DKT exploits while
the standard BKT cannot. To equip BKT with those capa-
bilities, the authors have proposed three variants of BKT:
BKT with forgetting (BKT+F), BKT with skill discovery
(BKT+S) and BKT with latent-abilities (BKT+A).

We have used the author’s implementation of BKT
and its three variants published on https://github.com/
robert-lindsey/WCRP/tree/forgetting to train on our
dataset. The data format required by these BKT variants
is as shown in table 3. As discussed in the earlier section 1,

skill ID | response series
A 1
B 0,0
C 0,1

Table 3: BKT data format

BKT is a skill specific model and thus, three models need to
be built one each for skills A, B and C. Each model needs
the time series of responses as shown in the table 3.

All variants of BKT except the ones where skill discovery
is involved, namely BKT, BKT+F, BKT+A and BKT+FA
operate on the skills provided by the data. The remaining
variants: BKT+S and BKT+FSA completely ignore the ex-
pert tagged skills available in the data. This is achieved
by setting the non-parametric prior, 5 on the expert tagged
skills as 0.

3.2 Performance Factor Analysis

Like BKT, PFA being a skill specific model requires a dif-
ferent model to be built for each skill. Logistic Regression
model of [8] is used in the implementation of PFA. For each
skill, the response is a function of the skill difficulty, number
of prior student success (avoidances) responses and num-
ber of prior student failure (committances) responses for the
skill. From the implementation point of view, the decision
function has two variables - the number of prior success in-
stances and the number of prior failure instances for the skill.
Also, a bias is added in the decision function (achieved by
the intercept) which serves as the skill difficulty. The data
format needed by PFA is as shown in figure 4.
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skill ID | no. of failures | no. of successes | response
A 0 0 1
B 0 0 0
C 0 0 0
B 1 0 0
C 1 0 1

Table 4: PFA data format

3.3 Deep Knowledge Tracing

The implementation of LSTM based DKT published on
https://github.com/mmkhajah/dkt is used to train our
dataset. The neural network of DKT requires the input
as one hot encoding of skills as well as responses for each of
them, while output is the probability of correctness of each
of the skills. Hence the size of the input is twice the num-
ber of skills and that of the output is the number of skills.
The serial number in the table 5 shows the order in which
the inputs are fed into the network. The input in the table
signifies the previous output while the response shows the
expected output out of the network. The odd bits in the
input represent one hot encoding of the skills while the even
bits represent their responses. X in the output shows that
the bit can take either 0 or 1.

serial no. input response
1 0,0,0,0,0,0| 1, X, X
2 1,1,0,0,0,0 | X,0,X
3 0,0,1,0,0,0 | X, X, 0
4 0,0,0,0,1,0| X,0,X
5 0,0,1,0,0,0 | X, X, 1

Table 5: DKT data format

As discussed in subsection 2.2 that to figure out the final
outcomes for the LGs in an item attempt, there is no clear
or fixed ordering. But the time series to be fed into the net-
work of DKT requires us to establish the ordering between
them. We sample the orderings randomly and average the
results on them. The sample dataset in the table 5 is one
such ordering. Another random ordering can be seen in the
table 6. The skills of the item ¢ are in the order A, B, C'
in table 5 while their order is B, A, C in table 6. The other
way to get an ordering is to get rid of the ordering itself
by merging the data points of the skills in an item which is
explained in the following subsection.

serial no. input response
1 0,0,0,0,0,0| X,0,X
2 0,0,1,0,0,0 | 1,X, X
3 1,1,0,0,0,0 | X, X,0
4 0,0,0,0,1,0 | X, X, 1
5 0,0,0,0,1,1 | X,0,X

Table 6: Shuffled skills DKT data format

3.4 Multi-skill DKT

As explained in the context of DKT, the orderings among the
skills in the item are sampled randomly. In order to get rid
of such orderings, we introduce an extension of DKT: Multi-
skill DKT which can incorporate the items having multiple
skills efficiently. It can be seen from the table 7 that the
three data points of ¢g1 and two data points of g2 are con-
solidated and we are left with two data points in total. The
size and structure of the inputs and outputs still remain the
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serial no. input response
1 0,0,0,0,0,0 1,0,0
2 1,1,1,0,1,0 | X,0,1

Table 7: Multi-Skill DKT data

same. The only difference is that the input and output can
have the information about multiple skills simultaneously.

3.5 Results

For all the algorithms, we use three replications of 2-fold
cross validation, which gives us 6 folds in total on which
the results are averaged. We use Area under the curve of
Receiver Operating Characteristics (ROC), which we will
refer as the AUC. Paper [6] discusses the inconsistent pro-
cedures used to compute and compare performance of BKT
and DKT. We therefore compute AUC both by averaging
on all data points and by averaging on skills. The results of
our experiments on funtoot dataset are shown in figure 3.

When AUC is averaged on all the data points, the relative
difference in performance between algorithms is very low,
0.83 being the lowest and 0.88 being the highest. PFA and
DKT share the highest performance of 0.88 AUC. Multi-skill
DKT lags a bit behind DKT by 0.03 AUC units (0.85 AUC).
All the variants of BKT also lag behind DKT and PFA by
not a very big margin, the highest being 0.05 AUC units.
BKT has the lowest AUC of 0.83, BKT+FSA has the highest
AUC of 0.85 and the rest of them have an AUC of 0.84, which
depicts that they all show equivalent performance.

The relative difference in performance between algorithms is
higher when AUC is averaged on skills, the lowest being 0.64
AUC of BKT+F and highest being 0.88 AUC of PFA which
is 37.5% gain. PFA with an AUC of 0.88 outperforms all
the methods by having a minimum gain of 17% (0.75 AUC
of DKT and BKT+FSA) and maximum gain of 37.5% (0.64
AUC of BKT+F). Here also, the magnitude of difference
between DKT and Multi-skill DKT is very less, 0.04 AUC
units to be precise with Multi-skill DKT lagging behind.

With BKT, BTK+F, BKT+A and BKT+FA having AUCs
of 0.65, 0.64, 0.68 and 0.67 respectively, it is clear that For-
getting adds no value. The number of skills discovered by
both BKT+S and BKT+FSA are in the range of 145 — 175
compared to 442 original skills. The Skill Discovery ex-
tension provides reasonable gains which are evident from
the AUCs of BKT and BKT+S (9% gain) and BKT+FA
and BKT+FSA (12% gain). The magnitude of the gains
achieved by Abilities extension is very less, 0.003 AUC units
in the case of BKT, BKT4+A and BKT+F, BKT+FA. Fi-
nally, the different variants of BKT achieve a gain of maxi-
mum 15% over standard BKT. Notably, the best version of
BKT, that is, BKT+FSA and DKT, perform equally.

4. DISCUSSION AND FUTURE WORK

Our aim of this study was to explore the performance of
standard BKT, all of its variants proposed in [6], PFA and
DKT on funtoot dataset. The results we have got are in
sync with the results in [6]. When the AUC results were
computed by averaging over skills, DKT and BKT+FSA
perform equally well while DKT outperforms standard BK'T
with the gain of 15%. Also, BKT+S gave a performance

M AUC Averaged over Skills Overall AUC
0.9 0.88 0.88
0.85 - 085 g3 084 o084 o084 o084 0%
0.8 -
0.75 0.75
0.75
0.71 0.71
0.7 - 0.68 0.67
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Figure 3: A comparison of PFA, DKT, Multi-skill DKT, BKT
and its variants

which was very close to DKT. Though DKT does perform
better when the AUC results are averaged over all data
points, the magnitude of the gain is significantly low.

Similar kind of results hold true for PFA. PFA achieves a
high gain compared to all the models when AUC results
are averaged over skills. When AUC results are averaged
over all data points, PFA equals DKT’s performance and
outperforms the rest of the models, though not with a very
high margin. This is not consistent with the results in [13]
where DKT outperforms PFA though, not overwhelmingly.

The above results reinforce the hypothesis proposed in [6]
that the domain of knowledge tracing seems to be shallow
and may not require the depth that the deep neural net-
works offer. The predictive or the explanatory power of a
model can also be characterized in terms of the number of
parameters the model fits. One of the reasons why DKT is
expected to be more successful than other models, at the
cost of interpretability, is that it has weights in the order
of hundreds of thousands. Moreover, being made up of a
layer of LSTM cells, DKT has the capability of looking back
arbitrary number of timesteps. On the contrary, variants
of BKT and PFA are very simple and interpretable mod-
els. Their simplicity can easily be attributed to the small
number of parameters they fit.

Standard BKT needs four parameters: pInit (the probabil-
ity that the student is in learned state before the first prac-
tice), pLearn (the probability that the student transitions
from not learned state to the learned state at each prac-
tice), pGuess (the probability that the student guesses the
answer being in the unlearned state) and pSlip (the prob-
ability that the student accidentally makes a mistake be-
ing in the learned state). In PFA| it is even better, only
three parameters are learned per skill - item difficulty and
one coefficient each for prior failures and successes. With
this, the total parameters for a few hundred skills (which
is true in our case) would be a few hundred parameters:
three X number of skills. Hence, in our context, it seems
appropriate to say that few hundred parameters are better
than few hundred thousand parameters.

Both BKT and DKT, in an abstract sense, are the models
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which maintain the knowledge state of the student. With
each response of the student, the knowledge states are up-
dated and those states are used to generate future predic-
tions. They both require the time series data of the student’s
responses. This is significantly different than the type of
data required by PFA. PFA operates on abstract features
of student’s interactions like total number of prior successes
and failures. It occurs to us that the abstract features are
smoother than the time series data of responses. It seems
the domain of knowledge tracing can be deciphered better
if the abstract features are used instead of detailed trail of
responses which might be noisy. More studies and experi-
ments are required to validate this point.

The skills used in our experiment are the LGs from the fun-
toot Knowledge Graph which are tagged at the level of sub-
subtopic which acts as a context of LG. Also, an LG can
occur in multiple subsubtopics. The discovered skills in our
experiments of BKT+S and BKT+FSA were in the range
of 145 — 175 which is close to the number of subsubtopics
(119) in our dataset. We suspect that there is some relation
between the subsubtopics in our dataset and the skills dis-
covered. We would like to investigate this further in future.
DKT also supports skill discovery as proposed in [9] which
we would look into in future to compare the skills discovered
by several algorithms.

Funtoot dataset has items with multiple skills which forced
us to extend DKT and come up with Multi-skill DKT. This
variant of DKT underperformed marginally as compared to
DKT. We do not have a clear understanding about why
this is so and hence this also requires further study. Since
we have used a very crude dataset, that is, does not contain
features about attempts, time durations, hints, item context,
etc., it would be interesting to use them with DKT and see
if the depth of DKT can exploit them.
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