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ABSTRACT 

Expertise in a domain of knowledge is characterized by a greater 

fluency for solving problems within that domain and a greater 

facility for transferring the structure of that knowledge to other 

domains. Deliberate practice and the feedback that takes place 

during practice activities serve as gateways for developing domain 

expertise. However, there is a difficulty in consistently aligning 

feedback about a learner’s practice performance with the intended 

learning outcomes of those activities – especially in situations 

where the person providing feedback is unfamiliar with the 

intention of those activities. To address this problem, we propose 

an intelligent model to automatically label opportunities for 

practice (assessment questions) according to the learning outcomes 

intended by the course designers. As a proof of concept, we used a 

reduced version of Bloom’s Taxonomy to define the intended 

learning outcomes. Using a factorial design, we employed term 

frequency-inverse document frequency (TF-IDF) and latent 

Dirichlet allocation (LDA) to transform questions from text to word 

weightages with support vector machine (SVM) and extreme 

learning machine (ELM) to train and automatically label the 

questions. We trained our models with 120 questions labeled by the 

subject matter expert of an undergraduate engineering course. 

Compared to existing works which create models based on a self-

generated dataset, our proposed approach uses 30 untrained 

questions from online/textbook sources to validate the performance 

of our models. Exhaustive comparison analysis of the testing set 

showed that TF-IDF with ELM outperformed the other 

combinations by yielding 0.86 reliability (F1 measure) with the 

subject matter expert.  
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1. INTRODUCTION 
Increasingly, modern curriculum design in tertiary and adult 

learning settings has become a collaborative endeavor between 

subject matter experts, learning designers, and learning 

technologists. While these teams employ a variety of process 

models for the planning, execution, and revision of their curriculum 

and activity designs, often greater attention is paid to the 

construction of a course design and the course content rather than 

the assessment practices that measure learning and their ongoing 

maintenance.  

The algorithms and use case described in this paper exist in a 

particular context of outcome-based education. In this context, 

learning is defined by observable changes in a learner’s behavior. 

These changes commensurate with Krathwohl’s model of learning 

objectives [1] but learning outcomes go beyond objectives. 

Learning outcomes are predicated on having learners observably 

demonstrate their growing understanding of a topic or proficiency 

within a field [2]. When learning activities become more open-

ended and exploratory, and when learners are offered choices for 

how to proceed, learners often look to how they will ultimately be 

assessed to gauge which learning strategies they should employ [3]. 

When a course’s learning activities support its assessment practices 

and the assessment practices support the types of outcomes that are 

relevant to learners in the future, the course’s activities and 

intended learning outcomes exhibit constructive alignment with 

each other [2]. Adhering to constructive alignment creates a 

seamless path from learning, to applying, to transferring concepts 

and relationships when solving novel problems. 

However, the promise of constructive alignment is not easily 

delivered upon. Oftentimes, a course’s learning outcomes cannot 

be measured by its assessment practices, or its assessment practices 

are decontextualized from the types of activities and practices 

learners are actually preparing for [4]. Whether in the context of 

higher learning or professional development, when thinking about 

developing flexible, life-long learners it is paramount to have 

mechanisms in place to support learners as they work to gain 

domain expertise. These processes should reliably measure 

learning and link assessment practices to authentic activities. 

1.1 Learning design for domain expertise 
Prior work in designing for adaptive domain expertise, the kind of 

expertise necessary for learners to function in changing 

environments and flexible job scopes, has shown that learning 

design teams need to be cognizant of three elements which will be 

discussed in turn.  

1.1.1 Levels of learning outcomes 
Learning outcomes range in sophistication and vary by field. In 

medicine, Miller’s Pyramid [5] lists learning outcomes beginning 

with knowing about a subject, progressing to knowing how to do 

something, to being able to actually demonstrate it in a contrived 

setting like a role-play with actors, and to being able to demonstrate 

it in a real environment like a surgical theater [6]. The idea is based 

on the belief that the development of expertise is a progression from 
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the recall of facts to the execution of skills. However, as research 

on problem based learning has shown, demonstration of skill and 

the recall of facts can proceed independently of each other 

depending on the learning environment [7]. 

In [8], a field agnostic method of classifying learning outcomes 

based on their quality is presented. Essentially, the Structure of 

Observed Learning Outcomes (SOLO) taxonomy identifies the 

level of cognitive sophistication a learning outcome requires. 

Lower level learning outcomes indicate a learner is capable of 

remembering facts in isolation. More sophisticated levels require 

learners to assimilate information from various sources to make 

connections and transform that understanding into something new. 

Perhaps the most popular listing of learning outcomes is Bloom’s 

Taxonomy. Similar to Miller’s Pyramid, Bloom’s Revised 

Taxonomy also begins with the retrieval of facts and information 

as its foundation and builds up to application of knowledge and 

further to analyzing, evaluating, and creating. Because of its 

simplicity and familiarity with learning designers and subject 

matter experts alike, Bloom’s Taxonomy can easily be used to 

identify the levels of learning outcomes in a course [9].  

1.1.2 Opportunities for deliberate practice 
Along with identifying a learning activity’s intended outcomes, 

expertise development requires opportunities for deliberate 

practice. In contrast to repetitive practice intended for learners to 

develop automaticity in either the recall of information or the 

application of a skill, often during time-limited tasks, deliberate 

practice focuses on mastering the nuances of the domain itself to 

fine-tune performance [10]. In fact, a learner’s level of grit, a 

combination of perseverance and passion, predicts how close to 

expert performance a learner will eventually show [11].  

The key difference in processes between repetitive practice and 

deliberate practice leads to different forms of expertise: adaptive 

and routine [12]. Routine forms of expertise allow a learner to 

conduct a task at an optimal level. Adaptive expertise allows 

learners to learn new tasks or solve novel problems at an 

accelerated rate. In an industrial setting, routine expertise helps a 

worker complete a particular job function. Adaptive expertise 

enables that same worker to retrain to fill new job functions. 

Typically, the amount of time necessary to achieve expert 

performance in a domain is in the order of years to decades [13]. 

However, incremental improvement can be seen in a few practice 

cycles when activities align to the intended learning outcomes. 

1.1.3 Formative assessments and actionable 

feedback 
Hand in hand with creating opportunities for deliberate practice is 

providing formative feedback to the learner about how to improve 

that practice while that improvement is still relevant. Imagine 

students who diligently answer every question in an engineering 

textbook but never receive feedback on the quality of their 

solutions. In this case, the learners would be unable to gauge their 

performance in relation to the course learning outcomes or have an 

idea about how to improve their performance in the future. Now 

imagine if those same students do receive feedback, but that 

feedback arrives after the course’s final examination. If the content 

of the course is mostly self-contained and will not be revisited, the 

feedback is mostly irrelevant.  

Formative feedback consists of two parts: 1) an interpretable 

indication of a learner’s performance on an assessment of learning 

with respect to a standard of performance (learning outcome) and 

2) the opportunity to improve performance before the final 

evaluation [14].  

Cognitive tutors provide a clear example of the power of coupling 

formative assessment and actionable feedback together in the 

domain of mathematics learning [15]. By presenting learners with 

a series of structured problems, cognitive tutors are capable of 

intervening at any point during the problem-solving process to 

provide students with feedback about their performance. This 

feedback may be the identification of an error, the presentation of 

a hint, or the request for more information about the learner’s 

reasoning. After the feedback, learners have the opportunity to 

adjust their problem-solving heuristics to improve their 

performance going forward.  

Such an interaction sequence works with highly structured tasks 

with application-oriented learning outcomes. However, the 

feedback cycle is more difficult to manage when the learning 

outcomes are aligned to higher-order reasoning like evaluation, 

analyzing and creating. These outcomes have multiple paths for 

reaching a satisfactory answer.  

With this difficulty in mind, we looked at techniques to automate 

the process of identifying the reasoning level of text-based 

assessment items (questions) with the intention of better aligning 

questions to learning outcomes as a first step toward being able to 

provide opportunities for deliberate practice. Subsequently, the 

outcome of our proposed work is to link actionable feedback to a 

learner’s performance on assessment items. 

1.2 Automated question classification 

techniques 
Prior work has shown the viability of automatically labeling 

questions in accordance with a course’s learning outcomes. 

However, our work goes beyond labeling existing content to 

helping course instructors promote deliberate practice and expertise 

development by providing a method of finding new questions that 

align to the course designer’s original intended learning outcomes. 

We highlight the drawbacks of prior work and how our proposed 

approach addresses those limitations. 

1.2.1 Labeling questions based on difficulty level 
Early attempts at automatically labeling questions relied on subject 

matter experts to pre-define the difficulty levels of questions. 

Artificial neural network trained by backpropagation then used the 

question features and assigned difficulty levels in the training set to 

classify new questions. A five-dimensional feature vector that 

consisted of query-text relevance, mean term frequency, length of 

questions and answers, term frequency distribution (variance), 

distribution of questions and answers in a text were used. The 

method yielded an F1 measure, a classification reliability metric 

that measures a test’s accuracy, of 0.78 [16]. However, a major 

pitfall this method is its lack of semantic analysis.  

Entropy-Based Decision Tree has also been used to label questions 

[17]. The weakness in this strategy is that there is high possibility 

of overfitting the model during the training phase that then 

negatively affects the subsequent prediction performance. 

1.2.2 Labeling questions based on Bloom’s 

Taxonomy using Natural Language Processing 
Natural Language Processing (NLP) has been used for the 

generation of assessments, answering questions, supporting users 

in Learning Management Systems and preparing course materials. 

The Wordnet package has been used to detect semantic similarity. 

By performing a rule-based approach, the accuracy of labeling a 
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question based on Bloom’s Taxonomy reaches 82% [18]. To 

improve the rule-based approach, a hybrid technique of using an N-

gram classifier with a rule-based approach has also been explored. 

Rules were based on combining parts-of-speech tagging, and the 

N-gram classifier found the probabilities of predicting certain 

words. Such a hybrid method yielded an F1 measure of 0.86 [19].  

1.2.3 Labeling questions based on Bloom’s 

Taxonomy using machine learning techniques 
Machine learning algorithms can be broadly split into either 

supervised or unsupervised training implementations. Generally, 

supervised training is adopted when, during training, labels have 

been pre-determined and questions are labeled by an expert. The 

most commonly used method in such cases is the term frequency-

inverse document frequency (TF-IDF). The algorithm assigns 

weightages to individual words in a question statement to define a 

custom vector space to each question.  

Machine learning techniques such k-nearest neighbors, Naïve 

Bayes and support vector machine (SVM) have been implemented 

for labeling questions. When doing a performance comparison 

among these three techniques, an F1 measure of 0.71 was achieved 

using SVM [20]. To increase the accuracy level, additional features 

were incorporated in future versions of the work. Three different 

feature selection processes, namely: Odd Ratio, Chi-square statistic 

and Mutual Information were used with the three machine learning 

techniques. The F1 measure result reached 0.9 [21].  

Furthermore, an integrated approach of feature extraction has been 

proposed by using headword, semantic, keyword and syntactic 

extractions, which are fed into SVM [22]. However, this work has 

not yet been completed by using a testing dataset to quantify the 

reliability of prediction. 

A major downside in existing works is that both the training as well 

as testing questions are part of the same course curriculum; the 

questions are generated by the same author/instructor. Even when 

a high F1 measure is achieved, it does not enable the algorithm to 

label questions written by another subject matter expert. Our work 

increases the flexibility of labeling methods by testing our models 

with a new set of questions compiled from textbook and online 

resources.  

In addition, our work introduces extreme learning machine (ELM), 

which has been shown to outperform SVM during similar labeling 

tasks [23]. Moreover, we introduce LDA as an alternative technique 

to TF-IDF for transforming question statements into numerical 

word weightages.  

By comparing combinations of these new techniques with more 

traditional techniques, we aim to gauge which combination attains 

the highest labeling reliability with the subject matter expert when 

automatically labeling untrained questions. For our purposes, using 

the combination with the highest F1 measure (fewest false 

negatives and false positives) becomes paramount. In our use case, 

a mislabeling by the algorithm will lead to the wrong set of practice 

questions to be given to students and diminish the impact of 

deliberate practice on reaching the intended learning outcomes.  

2. METHODS 

2.1 Materials 
2.1.1 Labeling scheme 
The core of this study centers on a labeling scheme for identifying 

the sophistication of learning outcomes based on a simplified 

version of Bloom’s Taxonomy. In this labeling scheme, the first 

two levels of Bloom’s Taxonomy (Remembering and 

Understanding) were collapsed into Remember. Applying 

remained its own category. All of the higher-order reasoning 

categories (Analyzing, Evaluating, and Creating) were collapsed 

into Transfer. Figure 1 shows how our labeling scheme categories 

map onto the original categories from Bloom’s Revised Taxonomy.  

 

 Figure 1: Mapping of Bloom's Revised Taxonomy [24] 

We collapsed the taxonomy into three categories for two reasons. 

First, the subject matter expert tasked with labeling the questions 

was unsure about how reliably the questions could be labeled by 

someone without a background in learning design, educational 

psychology, or curriculum development. Collapsing the categories 

to Remember, Apply, and Transfer made manually labeling 

hundreds of questions to train the machine learning algorithms 

more tractable. Second, collapsing the categories had the effect of 

making Bloom’s Taxonomy more analogous to the successful use 

cases of Miller’s Pyramid by subject matter experts in both higher 

education and professional development settings [5]. 

2.1.2 Question dataset 
The dataset consists of a total of 150 questions used for training and 

testing the machine learning algorithms based on the content of an 

undergraduate electrical and electronic engineering course.  

For this study, we formed a training set of 120 questions by 

randomly selecting 40 Remember, Apply, and Transfer items from 

the larger question pool of more than 200 questions used in that 

course. The pool came from a repository of four years’ worth of 

assignment, homework, quiz and exam questions presented to 

students. These questions prompt students for a range of answer 

types (i.e., open-ended, multiple-choice, short-structured, essay).  

We then created a testing set of 30 new questions compiled from 

external sources such as textbooks and online question banks. This 

set was also balanced with equal representation of Remember, 

Apply, and Transfer questions. 

2.2 Data pre-processing procedures 
We pre-processed the raw questions in two phases. First, the subject 

matter expert labeled every question according to the labeling 

scheme described above. Second, we transformed the text of every 

question into a machine-readable format before passing them 

through the machine learning algorithms. 

2.2.1 Subject matter expert pre-processing 
The subject matter expert manually labeled each question in the 

training set based on its intended learning outcome (Remember, 

Apply or Transfer). The subject matter expert then labeled the 30 

new questions in the testing set in the same manner. These new 

questions are labeled for the purpose of knowing the ground truth 

for performance evaluation. Table 1 below shows some examples 

of the labeled questions. 
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Table 1 - Examples of labeled questions 

Remember 

Consider a signal described by y[n] = 2n +4. What would be the 

amplitude of the signal at sample index n=3? 

Apply 

Consider the following input and output signals: find the transfer 

function and state the poles and zeros of this transfer function. 

Transfer 

Describe how the bandpass filter can be utilized for radar 

applications. 

2.2.2 Text pre-processing 
The text transformation began by excising all equations, 

mathematical symbols and diagrams from the questions. We only 

kept the core of the question prompts by removing the descriptive 

and explanatory text from scenario and hypothetical questions. For 

example, if a question began by setting the stage with “Peter has 

been asked to perform…”, followed by the question prompt “How 

much voltage should Peter expect in the circuit?”, all of the 

descriptive text prior to the question prompt was removed to 

improve the consistency of word length and usage between items. 

For the remaining words in the questions, we changed all of the 

characters to lower case, removed all punctuation marks, numbers, 

and non-unicode characters. We then stemmed the remaining 

words to obtain a list of root words. From this list of root words, we 

removed all words with fewer than three letters. Because we were 

unsure of the relationship between the words and the labels, we did 

not create a list of stopwords for removal. 

3. TECHNIQUES 
We tested four combinations (in no particular order) of word 

weighting and question labeling algorithms, as shown in Figure 2, 

to identify the techniques with the highest reliability for our 

automated learning outcome labeler.  

 

Figure 2: Four combinations of algorithms 

Every word in each question prompt was assigned a weightage 

value based on either term frequency-inverse document frequency 

(TF-IDF) or latent Dirichlet allocation (LDA). Subsequently, the 

vector values for each question were passed through either support 

vector machine (SVM) or extreme learning machine (ELM) to 

assign a label. All algorithms were implemented in R Studio. 

3.1 Term frequency-inverse document 

frequency 
Term frequency-inverse document frequency (TF-IDF) is a 

technique for finding the relative frequency of words in a given 

document, and comparing those frequencies with the inverse of 

how often each of those words appear in the complete document 

corpus. The resulting ratio can be used to signify the relevance of 

each unique word within a single document.  

We implemented a modified version of TF-IDF that used individual 

questions as the source of the analysis instead of complete 

documents. This focused the model on finding the relevance of each 

word within each single question. By converting each question into 

a vector of weightages based on word frequencies, the machine 

learning algorithms were then used to label the questions. The 

modified TF-IDF model can be described by 

               𝑇𝐹 − 𝐼𝐷𝐹(𝑤𝑖 , 𝑞𝑘) = #(𝑤𝑖 , 𝑞𝑘) × log
𝑇𝑅

#𝑇𝑅(𝑤𝑖)
                   (1) 

where wi refers to a particular word i, qk refers to a particular 

question k, #(wi,qk) refers to number of times wi occurs in qk, TR 

refers to total number of questions and #TR(wi) refers to question 

frequency, or the number of questions in which wi occurs [20].  

In the case where the term frequency (TF) count is biased towards 

longer questions, the TF count is normalized as 

                                       𝑇𝐹𝑖,𝑘 =  
𝑛𝑖,𝑘

∑ 𝑛𝑗,𝑘𝑗
                                           (2) 

where ni,k refers to the number of times wi occurs in qk, the 

denominator term (size of each question) refers to the sum of the 

number of times each word appears in qk  [25].  

For our work, the pre-processing procedures registered a total of 

465 unique stemmed words in our compilation of 120 training 

questions and 30 testing questions. This led to each question being 

represented as a vector of 1 row and 465 columns arranged in 

alphabetical order by stemmed word. When a word is present in a 

question, the normalized weight of that word is assigned to that 

question’s vector element. If a word is not present in the question, 

the weight is zero.  

After determining the unique word weightage vectors for all 150 

questions, the entire matrix is sorted such that for each question, the 

weightages are arranged in ascending order. The top ten weightages 

are chosen for each question. The 10 weightages may correspond 

to different words in each question, but their combinations remain 

question-specific and give a numerical representation of each 

question statement. This new vector of 10 columns per question 

serves as the input to the machine learning algorithms.  

As an example, we will use the pre-processed question prompt: 

for signal which begin when the one side unilateral ztransform given 

Table 2 below shows the weightages assigned to the above example 

after the application of the TF-IDF technique. The weightages are 

then arranged in ascending order and the top 10 values are taken. 

Table 2 - TF-IDF weightage arrangement 

Word (alphabetical order) Weightage 

begin 0.392 

for 0.140 

given 0.140 

one 0.222 

side 0.356 

signal 0.116 

the 0.007 

unilateral 0.392 

when 0.279 

which 0.230 

ztransform 0.216 
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3.2 Latent Dirichlet allocation 
Latent Dirichlet allocation (LDA) is a probabilistic technique for 

topic modeling based on the Bayesian model. The essential idea of 

LDA is that each document consists of a mixture of topics, with the 

continuous-valued mixture properties distributed in a Dirichlet 

random variable, a continuous multivariate probability distribution. 

Again, in the context of our work, we applied LDA to questions in 

the dataset by substituting the original notion of documents in the 

LDA algorithm with questions in our modified model. Therefore, 

the modified model attempted to find k number of topics (k is a 

user-defined parameter to determine the desired number of topics, 

or dimensionality of the Dirichlet distribution) for a given set of 

question statements based on the choice and usage of words in each 

question. The joint distribution of a topic mixture, a set of topics 

and a set of words can be represented by 

            𝑝(𝜃, 𝑡, 𝑤|𝛼, 𝛽) = 𝑝(𝜃|𝛼) ∏ 𝑝(𝑡𝑖|𝜃)𝑝(𝑤𝑖|𝑡𝑖 , 𝛽)𝑀
𝑖=1              (3) 

where parameter α is a k-vector with components more than zero, 

parameter β refers to the matrix of word probabilities, θ refers to a 

k-dimensional Dirichlet random variable, ti refers to a topic, wi 

refers to a word [26]. 

Figure 3 shows a graphical model representation of LDA. The 

bigger circle refers to questions while the smaller circle refers to 

the repeated choice of topics and words within each question. 

 

Figure 3: Graphical model representation of LDA 

Since LDA involves topic modeling, an appropriate k value chosen 

for our work was ten. This allowed a standard comparison between 

LDA and the top ten weightages from the TF-IDF method. The 

generated unique topics (based on the stemmed words) are shown 

in Table 3. 

Table 3 - Topic names generated by LDA 

Topic number Stemmed topic name 

1 differ 

2 discrete 

3 impulse 

4 signal 

5 filter 

6 apply 

7 dft 

8 output 

9 sample 

10 system 

Out of the entire set of stemmed words detected, ten words have 

been identified as topic names. Hence, LDA automatically 

associates the remaining words the above-mentioned ten topics. 

Based on the words that appear in each question, LDA displays the 

number of topics per question. Based on the topic assignments, the 

topic weightages for each question is generated. For topics not 

present in a question, a minimal weightage is given to those topics 

in lieu of a zero value. The value ensures that the topic weightages 

for a question sum to one. Similar to the TF-IDF output, the new 

vector of 10 columns per question becomes the input for the 

machine learning algorithms. 

3.3 Extreme learning machine 
Extreme learning machine (ELM) is a learning algorithm for 

single-hidden layer feedforward neural networks (SLFNs). ELM 

can be used for classification, regression, clustering, compression 

and feature learning. ELM randomly chooses the hidden nodes and 

determines the output weights of the neural networks.  

The following three-step learning model explains ELM. Given a 

training set that is labeled (information about the target nodes), 

hidden node activation function and number of hidden nodes, 

Step 1: Randomly assign hidden node parameters 

Step 2: Calculate the hidden layer output matrix, H 

Step 3: Calculate the output weight 𝛾 

Given a set of inputs with unknown labels, the objective is to find 

the target outputs [27]. Once the inter-layer weights have been 

found, the same weights are used during the testing phase. For a 

given set of input samples xk, the target/output is given by tk. For 

number of hidden nodes L and with a certain activation function 

f(x), the SLFN is modeled as 

  ∑ 𝛾𝑗
𝐿
𝑗=1 𝑓𝑗(𝑥𝑘) =  ∑ 𝛾𝑗𝑓(𝑤𝑗 ∙ 𝑥𝑘 + 𝑏𝑗) =  𝑜𝑘 , 𝑘 = 1, … , 𝐿 𝐿

𝑗=1    (4) 

where wj refers to the weight vector that stores the weights between 

input and hidden nodes, 𝛾j refers to the weight vector that stores the 

weights between the hidden and output nodes, bj refers to the 

threshold of the jth hidden nodes. The objective is that ok and tk 

(original target) should have zero difference [23] using possible 

activation functions that include sigmoid, sine, radial basis and 

hard-limit. 

In our case, the output of the ELM are three continuous values that 

represent the values assigned to the three learning outcome 

categories (Remember, Apply and Transfer). To convert the three 

values into a binary value for comparing the predicted labels with 

the actual labels, we set the learning outcome category with the 

highest value to one and the remaining two to zero. 

3.4 Support vector machine 
Support vector machine (SVM) is a mapping of data samples such 

that these samples can be distinctly labeled. The concept of SVM 

is derived from margins and subsequently separating data into 

groups with large gaps between them. Deriving an optimal 

hyperplane for identifying linearly separable patterns is the key to 

SVM. This idea is extended to cases where the patterns are non-

linearly separable, by using a kernel function to transform the 

original data samples to map onto a new space [28]. Possible 

kernels are: linear, polynomial, radial basis and sigmoid. 

For our work, we used the C-support vector classification type. 

Given a set of inputs and targets, the cost function is given by [29] 

                                min
𝑝,𝑚,𝜉

1

2
𝑝𝑇𝑝 + 𝐶 ∑ 𝜉𝑗 

𝑘
𝑗=1                                          (5) 

subject to 𝑦𝑗(𝑝𝑇𝜙(𝑣𝑗) + 𝑚) ≥ 1 − 𝜉𝑗 , 𝜉𝑗 ≥ 0, 𝑗 = 1, … , 𝑘  
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where C>0 is the regularization parameter, m is a constant, p is the 

vector of coefficients, 𝜉𝑗 refers to parameters that handle the inputs, 

index j refers to labeling the k training cases, v refers to the 

independent variables, y refers to the class labels, 𝜙 refers to the 

kernel used that transforms data from the input to the chosen feature 

space. 

Fundamentally, support vectors are data points that lie close to the 

decision boundary, which are the hardest to classify. SVM 

maximizes the margin around the hyperplane that separates these 

points. The cost function is determined based on the training 

samples (support vectors). These support vectors are the basic 

elements of a training set that would change the position of the 

hyperplane dividing the dataset. SVM becomes an optimization 

problem for determining the optimal hyperplane. 

3.5 Performance metrics 
To evaluate the reliability of our four technique combinations with 

the subject matter expert’s labels, we looked at using the F1 

measure. Accuracy is the number of correct labels divided by the 

size of testing data. The F1 measure is a harmonic mean of two 

other metrics: precision and recall. Precision refers to the 

correctness of questions that have been selected as a particular 

category. Recall refers to the correctness of selection of the correct 

category given all the questions that were correctly classified.  

Because minimizing the number of false positives and false 

negatives was important for accurately assigning new questions to 

the correct practice sets, we used the F1 measure as the basis for 

our algorithm comparisons. To explain the F1 measure, we will step 

through the confusion matrix used to describe the performance of a 

labeling model on a set of testing data. There are four concepts used 

to construct the confusion matrix: 

True positive (TP) refers to the number of questions that the 

algorithm correctly identifies as presenting a label. 

False positive (FP) refers to the number of questions that the 

algorithm identifies as presenting a label while the subject matter 

expert indicates the label was absent. 

True negative (TN) refers to the number of questions that the 

algorithm correctly identifies as having a label absent. 

False negative (FN) refers to the number of questions that the 

algorithm identifies as having a label absent while the subject 

matter expert indicates the label was present. 

The F1 measure is calculated as follows [30] 

                            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                           (6) 

                               𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                           (7) 

                   𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                           (8) 

4. RESULTS AND ANALYSIS 

4.1 Insights by subject matter expert 
When looking at every question presented to students over the 

course of a semester, the subject matter expert identified the 

number of questions corresponding to Remember, Apply and 

Transfer as shown in Table 4. Just by labeling the course questions, 

the subject matter expert realized how misaligned the course’s 

learning outcomes were with its assessment practices. A large 

emphasis on Apply questions was expected, but the dearth of 

Transfer questions was surprising. Of those 23 Transfer items, most 

were presented during the final exam.  

Table 4 - Frequency of questions aligned to learning outcomes 

Learning outcome Frequency (number of questions) 

Remember 62 

Apply 131 

Transfer 23 

 

One of the stated learning outcomes of the course was to prepare 

students to flexibly transfer course content to novel problems and 

new situations. However, waiting until the final exam to present 

students with such opportunities denied them actionable feedback 

during the semester. In response to the pre-processing labeling 

efforts, the subject matter expert then added 42 new transfer 

questions throughout the course for the next semester. 

4.2 Model reliability with subject matter 

expert 
The objective of this implementation is to evaluate whether the 

trained model is able to predict the type of question (Remember, 

Apply or Transfer). Based on the trained model using questions 

from the undergraduate course, the testing questions from 

textbooks and online sources were passed through our model to 

determine the level of reliability of labeling new questions that 

were not generated by the subject matter expert. In our intended use 

case, the testing dataset would not need to be manually labeled. 

However, to determine the level of reliability of our labeling 

algorithms, the subject matter expert’s manual labels served as a 

ground truth for the F1 measure calculations.  

4.2.1 Parameter selection 
We first determined the best set of parameters based on 10-fold 

cross validation of the training dataset. As there were 120 

questions, 90% of the questions (108 questions) were used for 

training and 10% of the questions (12 questions) were used as a 

validation set. This process was done 10 times using 10 different 

bundles of the 120 questions. The best set of parameters were 

chosen based on a grid search for both ELM and SVM. 

The parameters that were varied for ELM were: 

1. Number of hidden nodes 

2. Activation function (sigmoid / radial basis / hard-limit) 

The parameters yielding the best results corresponded to 72 hidden 

nodes using hard-limit activation function. 

The parameters that were varied for SVM were: 

1. Kernel (sigmoid / radial basis) 

2. Cost value 

3. Gamma value 

The parameters yielding the best results corresponded to sigmoid 

kernel, cost value = 1, gamma value = 0.26 

4.2.2 Comparing four combinations 
With respect to the F1 measure, calculations were done separately 

for the three labels. The mean of those calculations was then used 

as the algorithm’s overall performance measure. With respect to 

ELM, the calculation was repeated 10 times because the 

initialization weights are randomly assigned in each iteration. The 

mean value of the F1 measure was taken.  

Table 5 below shows the F1 measure values (for each individual 

class and overall F1 mean) for the four combinations. “R” refers to 

Remember, “A” refers to Apply, “T” refers to Transfer and “s.d.” 

refers to standard deviation. 
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Table 5 - F1 measure values for four combinations 

Combination R A T Mean s.d. 

1. TF-IDF 

with SVM 
0.870 0.737 0.667 0.758 0.084 

2. LDA with 

SVM 
0.400 0.593 0.556 0.516 0.084 

3. TF-IDF 

with ELM 
0.926 0.815 0.840 0.860 0.048 

4. LDA with 

ELM 
0.467 0.520 0.647 0.545 0.076 

 

TF-IDF with ELM achieved the highest mean F1 measure value 

and the lowest standard deviation – indicating that it was the most 

reliable combination. It can be seen that the Remember label yields 

the highest F1 values out of the three labels in Combination 3. In 

general, Remember-labeled questions are short, resulting in about 

four to five zero values in the TF-IDF vector of 10 columns that is 

passed as an input into the ELM. Hence, the algorithm identifies 

Remember-labeled questions very accurately due to their size.  

The result of high reliability in using ELM is as expected because 

it has already been demonstrated that ELM outperforms SVM when 

comparing in terms of standard deviation of training and testing 

root-mean-square values, time taken, network complexity, as well 

as performance comparison in real medical diagnosis application 

[23]. On the other hand, although LDA has been shown to achieve 

higher performance as it groups words together in terms of topics 

instead of looking at combinations of individual words which may 

not link together, in the context of our work, TF-IDF outperforms 

LDA instead. This is because for LDA, the goal is to correctly 

assign each document (or question) to a class label in a reduced 

dimensional space [31]. However, in our corpus of questions, there 

are several technical terms involved, without any prior labeling of 

topics. Hence, LDA is not appropriate for our analysis.  

5. CONCLUSIONS 
Based on the comparison of our four algorithms, our most reliable 

model (TF-IDF with ELM) is able to accurately label new course 

questions for the undergraduate electrical and electronic 

engineering course with 0.86 reliability in terms of F1 measure. 

Any novice instructor who takes over this course in the future or 

teaching assistants tasked with refreshing the course assignments 

would be able to extract new questions from any external source 

and pass them to the algorithm to automatically label the questions 

as the original course coordinator would. This allows members of 

the course design team without a strong background in learning to 

make curriculum decisions regarding the alignment of the course’s 

learning outcomes.  

As discussed earlier, outcome-based learning environments 

facilitate transforming the model of instruction from instructor-

centric and lecture-based to being more learner focused filled with 

a variety of activities and learning pathways. However, in learner-

centered environments, assessment is still the key driver, and often 

the key inhibitor of learning [3]. If the assessments require shallow 

understanding, then learners calibrate their efforts to achieve this 

low bar. When assessments require deep understanding or great 

proficiency, learners are likely to put in more effortful practice. 

In line with this assessment philosophy, our TF-IDF with ELM 

model is theoretically capable of matching any learning activity to 

any set of learning outcomes as long as the course designers or 

subject matter experts provide enough examples that are explicitly 

aligned to the intended learning outcomes when training the model. 

For the convenience of the subject matter expert in our context, we 

used a reduced version of Bloom’s Taxonomy in this study. 

However, the final algorithm is capable of using the full Bloom’s 

model, a different model, or a custom set of learning outcomes as 

its labeling framework.  

Hence, with the high reliability of the prediction algorithm 

presented in our work, our process for calibrating the algorithm can 

be used in any academic or industrial setting to provide the right set 

of formative assessment opportunities to students (enhancing 

subject knowledge) or employees (professional development). 

Once the learning outcomes of activities are labeled reliably, it is 

then easier to think about how to engage learners in deliberate 

practice to reach those outcomes and develop their expertise. Once 

opportunities for deliberate practice that align to the course learning 

outcomes are implemented into a course, it becomes easier to think 

about how to align the feedback regarding those opportunities to 

support the development of domain expertise.  

This work provides a first step at being able to regularly introduce 

learning activities that promote the development of adaptive 

expertise into a course by matching external sources of activities 

with the course’s learning outcomes. Deliberate practice requires 

repetition that varies in ways that highlight the structural elements 

of a domain. Having a way to incorporate new sources of questions 

and problems into a course that align with the course’s goals 

provides learners more opportunities for internalizing when to 

apply their domain specific skills and knowledge.  Finally, our 

algorithm is potentially useful for designing courses to reach non-

content-based learning outcomes, making policies that support 

constructive alignment, and evaluating course assessment of 

learning plans. 

6. FUTURE WORK 
Building off of our machine learning labeling work, we would like 

to explore constructing a new version of LDA that can be tailor-

made to label questions. There are situations in which weightages 

given to words are the same, with different words representing 

those weightages. Similarly, the same words can have different 

weightages. We are keen to continue working on features based on 

word arrangement, word context and word order that affect 

weightage assignments. In addition, ELM can be enhanced by 

using kernels. 

From the learning aspect, we would like to extend our question 

label categories to all six outcomes described in Bloom’s 

Taxonomy and expand the model to label outcomes based on the 

types of sentences used in forum conversations and other 

collaborative learning activities. Eventually, we aim to determine 

the proficiency level of learners so we can put learning supports in 

place to guide their learning journeys. Ultimately, we wish to 

provide learners with learning activities and opportunities for 

deliberate practice embedded with actionable feedback to develop 

their adaptive expertise.  

7. ACKNOWLEDGMENTS 
This work was conducted within the Delta-NTU Corporate Lab for 

Cyber-Physical Systems with funding support from Delta 

Electronics Inc and the National Research Foundation (NRF) 

Singapore under the Corp Lab@University Scheme. 

8. REFERENCES 
[1]  Krathwohl, D.R. 2002. A Revision of Bloom's Taxonomy: 

An Overview. Theory into Practice. 41, 4 (2002), 212-218. 

DOI= http://dx.doi.org/10.1207/s15430421tip4104_2  

Proceedings of the 10th International Conference on Educational Data Mining 62



[2]  Biggs, J. 1996. Enhancing teaching through constructive 

alignment. Higher Education. 32, 3 (1996), 347-364. DOI= 

http://dx.doi.org/10.1007/BF00138871  

[3]  Boud, D. 2010. Sustainable Assessment: Rethinking 

assessment for the learning society. Studies in Continuing 

Education. 22, 2 (2010), 151-167. DOI= 

http://dx.doi.org/10.1080/713695728  

[4]  Boud, D. and Falchikov, N. 2006. Aligning assessment with 

long-term learning. Assessment & Evaluation in Higher 

Education. 31, 4 (2006), 399-413. DOI= 

http://dx.doi.org/10.1080/02602930600679050  

[5]  Miller, G. E. 1990. The Assessment of Clinical 

Skills/Competence/Performance. Academic Medicine. 65, 9 

(1990), S63-S67. DOI= 

http://dx.doi.org/10.1097/00001888-199009000-00045  

[6]  Wass, V. et al. 2001. Assessment of clinical competence. 

The Lancet. 357, 9260 (2001), 945-949. DOI= 

http://dx.doi.org/10.1016/S0140-6736(00)04221-5   

[7] Hmelo-Silver, C.E. 2004. Problem-based learning: What 

and how do students learn? Educational Psychology 

Review. 16, 3 (2004). 235-266. DOI= 

http://dx.doi.org/10.1023/B:EDPR.0000034022.16470.f3  

[8]  Biggs, J. B. and Collis, K.F. 2014. Evaluating the quality of 

learning: The SOLO taxonomy (Structure of the Observed 

Learning Outcomes). Academic Press.  

[9]  Crowe, A. et al. 2008. Biology in bloom: implementing 

Bloom's taxonomy to enhance student learning in biology. 

CBE-Life Sciences Education. 7, 4 (2008), 368-381. DOI= 

http://dx.doi.org/10.1187/cbe.08-05-0024  

[10]  Ericsson, K.A. et al. 1993. The Role of Deliberate Practice 

in the Acquisition of Expert Performance. Psychological 

Review. 100, 3 (1993), 363-406. DOI= 

http://dx.doi.org/10.1037/0033-295X.100.3.363   

[11]  Duckworth, A. L. et al. 2007. Grit: perseverance and 

passion for long-term goals. Journal of personality and 

social psychology. 92, 6 (2007), 1087. DOI= 

http://dx.doi.org/10.1037/0022-3514.92.6.1087  

[12]  Schwartz D. L. et al. 2005. Efficiency and innovation in 

transfer. Transfer of learning from a Modern 

Multidisciplinary Perspective. Information Age Publishing. 

1-51. 

[13]  Chi, M. T. 2006. Two approaches to the study of experts' 

characteristics. The Cambridge Handbook of expertise and 

expert performance. Cambridge University Press. 21-30.   

[14]  Black, P. and William, D. 1998. Assessment and Classroom 

Learning. Assessment in Education Principles Policy and 

Practice. 5, 1 (1998), 7-74. DOI= 

http://dx.doi.org/10.1080/0969595980050102  

[15]  Ritter, S. et al. 2007. Cognitive Tutor: Applied research in 

mathematics education. Psychonomic bulletin & review. 14, 

2 (2007), 249-255. DOI= 

http://dx.doi.org/10.3758/BF03194060  

[16]  Fei, T. et al. 2003. Question Classification for E-learning by 

Artificial Neural Network. In Proceedings of the 2003 Joint 

Fourth International Conference on Information, 

Communications and Signal Processing and the Fourth 

Pacific Rim Conference on Multimedia (Singapore, 2003), 

1-5. DOI= http://dx.doi.org/10.1109/ICICS.2003.1292768  

[17]  Cheng, S. C. et al. 2005. Automatic Leveling System for E-

Learning Examination Pool Using Entropy-Based Decision 

Tree. In Advances in Web-Based Learning – ICWL 2005 

(Hong Kong, 2005), 273-278. DOI= 

http://dx.doi.org/10.1007/11528043_27  

[18]  Jayakodi, K. et al. 2015. An Automatic Classifier for Exam 

Questions in Engineering: A Process for Bloom's 

Taxonomy. In 2015 IEEE International Conference on 

Teaching, Assessment, and Learning for Engineering 

(TALE) (Zhuhai, China, 2015). DOI= 

https://dx.doi.org/10.1109/TALE.2015.7386043  

[19]  Haris, S. S. and Omar, N. 2015. Bloom's taxonomy question 

categorization using rules and N-gram approach. Journal of 

Theoretical and Applied Information Technology. 76, 3 

(2015), 401-407.  

[20]  Yahya, A. A. et al. 2013. Analyzing the cognitive level of 

classroom questions using machine learning techniques. In 

The 9th International Conference on Cognitive Science 

(Kuching, Sarawak, Malaysia, 2013). 587-595. DOI= 

http://dx.doi.org/10.1016/j.sbspro.2013.10.277  

[21]  Abduljabbar, D. A. and Omar, N. 2015. Exam questions 

classification based on Bloom's taxonomy cognitive level 

using classifiers combination. Journal of Theoretical and 

Applied Information Technology. 78, 3 (2015), 447-455. 

[22]  Sangodiah, A. et al. 2014. A Review in Feature Extraction 

Approach in Question Classification Using Support Vector 

Machine. In 2014 IEEE International Conference on 

Control System, Computing and Engineering (Penang, 

Malaysia, 2014), 536-541. DOI= 

http://dx.doi.org/10.1109/ICCSCE.2014.7072776  

[23] Huang, G. B. et al. 2006. Extreme learning machine: 

Theory and applications. Neurocomputing. 70, 1-3 (2006), 

489-501. DOI= 

http://dx.doi.org/10.1016/j.neucom.2005.12.126 

[24] Trinity University Course Assessment and Outcomes: 2016 

https://inside.trinity.edu/collaborative/collaborative-

grants/course-redesign-stipends/course-assessment-and-

outcomes. Accessed: 2017-02-24. 

[25]  Bernardi, R. Term Frequency and Inverted Document 

Frequency. University of Trento, Trentino. 

[26]  Blei, D. M. et al. 2003. Latent Dirichlet Allocation. Journal 

of Machine Learning Research. 3 (2003), 993-1022.  

[27]  Huang, G. B. 2015. What are Extreme Learning Machines? 

Filling the Gap Between Frank Rosenblatt’s Dream and 

John von Neumann’s Puzzle. Cognitive Computation. 7, 3 

(2015), 263-278. DOI= http://dx.doi.org/10.1007/s12559-

015-9333-0   

[28]  Weston, J. Support Vector Machine (and Statistical 

Learning Theory). NEC Labs America, Princeton. 

[29]  Chang, C. C. and Lin, C. J. 2011. LIBSVM: A Library for 

Support Vector Machines. ACM Transactions on 

Intelligent Systems and Technology (TIST). 2, 3 (2011), 1-

39. DOI= http://dx.doi.org/10.1145/1961189.1961199  

[30]  Santra, A. K. and Christy, C. J. 2012. Genetic Algorithm 

and Confusion Matrix for Document Clustering. IJCSI 

International Journal of Computer Science Issues. 9, 1 

(2012), 322-328.  

[31]  Hu, D. J. 2009. Latent Dirichlet Allocation for Text, 

Images, and Music. 

Proceedings of the 10th International Conference on Educational Data Mining 63


