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ABSTRACT 
Few attempts have been made to create student models that cluster 
student and school level traits as a means to design personalized 
learning interventions. In the present work, data from 
ASSISTments was enriched with publicly available school level 
data and K-Means clustering was employed. Results revealed the 
importance of school locale, measures of district wealth, and 
system interaction patterns as potential foci for personalization. 
Clusters were then applied to a test set of held out data and cluster 
assignments were used to help predict end-of-year standardized 
mathematics test scores. Findings suggest that while cluster 
interpretations were not generalizable to held out data, clustering 
was generally helpful in predicting standardized test scores.  
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1. INTRODUCTION 
The focus of research using vast educational data often lends itself 
to the development of learner models, or various sophisticated 
predictive models that help to pinpoint when and how learning 
occurs on a personalized level. Popular approaches include 
Bayesian Networks (i.e., Bayesian Knowledge Tracing) [3], 
Performance Factors Analysis [6], and Neural Networks (i.e., 
Deep Learning) [4]. However, it is valuable to ask if simpler 
models built to leverage student, school, and district level data can 
be useful in establishing learner profiles.   

The use of clustering to group similar students within various 
types of online learning environments has typically been a 
successful endeavor [1, 2, 7, 8]. The present work seeks to 
balance the complexity of working with high volumes of 
educational data and building simple predictive learner models 
through clustering by answering the following research questions: 
1. Are there distinct types of learners within ASSISTments [5] 

that can be identified by clustering student, school, and 
district level characteristics and measures of student/system 
interaction? 

2. What student types are defined via cluster interpretation? Do 
interpretations generalize to unseen data? 

3. Can clusters help predict significant differences in end-of-
year test scores? 

2. METHODOLOGY 
The present work assessed log files from students in the state of 

Maine working in ASSISTments [5], an online learning system 
focused on middle school mathematics, during the 2014-2015 
academic year. This data was extended by merging additional 
school and district level data from the Common Core of Data 
supported by the NCES and IES (https://nces.ed.gov/ccd/). 
Students’ scores on the standardized, end-of-year TerraNova 
mathematics test were also included in the dataset.  

For each student, the dataset contained averages for the following 
student/system interaction features: problem count, time spent on 
problems, percent correct across assignments, hints used per 
problem, number of problems per assignment for which hints 
were used, and assignment completion rate. Additionally, each 
student’s data included continuous measures retrieved from the 
NCES/IES data (i.e., the percentage of students in the school 
eligible for free or reduced lunch) as well as one-hot encoded 
forms of categorical features like school locale. The cleaned 
dataset represented 1,557 unique students from 21 schools, with 
171,983 unique student/assignment pairs stemming from 35,127 
assignments. Each observation or row represented the overall 
performance and characteristics of a single student and their 
school or district. De-identified data is available at 
tiny.cc/EDM2017Clustering for further reference. 

The modeling approach used in the present work was adapted 
from that in [1]. An initial 70% of the data was randomly selected 
to form the training set. The training set was used for initial K-
Means clustering and cluster interpretation. The K-Means 
algorithm was sourced from R’s statistics package, implementing 
Euclidean distance as the default distance measure. The remaining 
30% of the data was used to form the test set. The test set was 
used to build models predicting TerraNova scores. First, 
predictions were made to assign students in the test set to a 
cluster. Following student assignment, clusters were reinterpreted 
to verify whether trained interpretations generalized to unseen 
data. Cluster membership was then used to help predict 
TerraNova scores alongside student-system interaction features 
using cluster-specific stepwise linear regressions. These 
regression models were then ensembled and measures of model 
accuracy were compared to a traditional approach where K = 1.  

3. TRAINING  
In order to determine the optimal value for K, 10-fold cross 
validation was implemented on the training set to build scree 
plots. To determine the most appropriate value from this set, the 
mean and median of optimal K values across folds were 
considered (M = 4.1, Med. = 4).  As such, four clusters were 
forced using K-Means on the training data. The four resulting 
clusters were characteristic of unique types of students, ultimately 
labeled as “proficient,” “struggling,” “learning,” and “gaming.” 
Graphics and additional information on cluster characteristics are 
available at tiny.cc/EDM2017Clustering for further reference.
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Table 1. Coefficients, Standard Errors, and Model Statistics per cluster on test set data when K=1 and K=4. 

  K = 1  K = 4 
  1 (n = 442)  1 (n=127) 2 (n=160) 3 (n=124) 4 (n=31) 

IVs  b SE  b SE b SE b SE b SE 
Intercept  631.94*** 20.37  712.95*** 51.78 504.41*** 30.36 567.63*** 34.66 680.14*** 63.13 
Percent Correct  110.66*** 22.76  81.95 61.70 268.30*** 33.92 131.02*** 35.16 18.73 68.74 
Ave. Time  -0.08** 0.03  -0.10 0.07 0.01 0.04 0.09 0.06 -0.09 0.09 
Completed  0.35 12.13  -63.05 39.89 8.47 15.55 22.10 18.68 -18.80 34.25 
Total Hints   1.73 2.69  7.01 6.08 8.00* 3.66 -38.84*** 8.02 -52.73* 19.80 
Hint Instances  -0.11 3.53  -9.34 11.25 -4.13 4.13 49.75*** 9.68 71.09** 24.23 
Model Stats             
F (DF)  17.55*** (5, 436)  1.30 (5, 121) 22.87*** (5, 154) 8.18*** (5, 118) 2.00 (5, 25) 
R2  (Adj. R2)  0.168 (0.158)  0.051 (0.012) 0.426 (0.408) 0.257 (0.226) 0.286 (0.143) 
 

4. TESTING & MODEL EVALUATION 
Using the remaining 30% of the data that had been held out from 
the training set, student, school, and district level features 
(excluding TerraNova test score) were used to predict student 
assignment to one of the four clusters developed in training. 
Following student assignment, clusters were interpreted to verify 
whether initial cluster labels generalized to this unseen data. 
Cluster characteristics varied for the test set, suggesting that 
cluster interpretations did not generalize. Graphics and additional 
information on cluster characteristics are available at 
tiny.cc/EDM2017Clustering for further reference. 

Cluster membership was then used to help predict TerraNova 
scores alongside student/system interaction features using cluster-
specific stepwise linear regressions. Following the ensembling 
approach used in [7], separate regression models were built for 
each cluster before being ensembled to form a prediction model. 
Cluster models helped to depict the relative importance of 
student/system interaction features in the prediction of TerraNova 
scores for each value of K, as shown in Table 1. Variability in 
feature significance was observed across clusters. An alternative 
prediction model was constructed using the full dataset 
(essentially, K=1) in order to compare the accuracy of ensembled 
cluster models to an unclustered baseline. Table 1 presents 
unstandardized beta coefficients, standard errors, significance 
values, and overall model statistics across clusters and values of 
K, and reveals that cluster assignment was sometimes significant 
in predicting TerraNova scores.  

In terms of prediction model accuracy, Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE) were both lowest 
when K=4 (23.27 and 30.32, respectively, compared to 25.88 and 
33.44 when K=1). Additionally, the difference between MAE and 
RMSE was lower when K=4 (7.05 compared to 7.56), suggesting 
that the variance in individual prediction errors decreases as K 
increases. Variance explained, as measured by R2, was also higher 
when K=4, suggesting that the ensembled model was a stronger 
option than grouping all data together into a single cluster. 

5. DISCUSSION 
Results of our clustering exploration revealed that there are 
distinct types of learners within ASSISTments that can be 
identified by using K-Means to cluster student, school, and district 
level characteristics and measures of student/system interaction. 
Results suggested that clusters contained identifiably different 
patterns of student behavior. However, applying these clusters to a 
test set revealed that cluster interpretations did not generalize well 
to held out data. The results of subsequent linear regression 
models suggested that if clustering could be reliably linked to 

student features, the approach could potentially be used to help 
drive personalization within the ASSISTments platform.  

Limitations of this work include being bound by the hierarchical 
nature of the data, assumptions inherent to K-Means analysis, and 
the potential for artificial inflation of model accuracy due to 
regression to the mean. As it stands, clustering does not 
necessarily fail as a method of personalization. Understanding the 
features that are important to each cluster, as well as the overall 
accuracy of ensembled cluster models and how such accuracy 
differs with varying values of K, could help to guide the design of 
learning interventions specific to particular students. However, the 
reliability of the approach may be extremely sensitive to the 
quantity and quality of available data, making clustering a 
difficult approach for personalized learning. 
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