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ABSTRACT
Massive open online courses (MOOCs) have demonstrated grow-
ing popularity and rapid development in recent years. Discussion
forums have become crucial components for students and instruc-
tors to widely exchange ideas and propagate knowledge. It is im-
portant to recommend helpful information from forums to students
for the benefit of the learning process. However, students or in-
structors update discussion forums very often, and the student pref-
erences over forum contents shift rapidly as a MOOC progresses.
So, MOOC forum recommendations need to be adaptive to these
evolving forum contents and drifting student interests. These fre-
quent changes pose a challenge to most standard recommendation
methods as they have difficulty adapting to new and drifting ob-
servations. We formalize the discussion forum recommendation
problem as a sequence prediction problem. Then we compare dif-
ferent methods, including a new method called context tree (CT),
which can be effectively applied to online sequential recommen-
dation tasks. The results show that the CT recommender performs
better than other methods for MOOCs forum recommendation task.
We analyze the reasons for this and demonstrate that it is because
of better adaptation to changes in the domain. This highlights the
importance of considering the adaptation aspect when building rec-
ommender system with drifting preferences, as well as using ma-
chine learning in general.

Keywords
MOOCs forum recommendation, context tree, model adaptation

1. INTRODUCTION
With the increased availability of data, machine learning has be-
come the method of choice for knowledge acquisition in intelligent
systems and various applications. However, data and the knowl-
edge derived from it have a timeliness, such that in a dynamic en-
vironment not all the knowledge acquired in the past remains valid.
Therefore, machine learning models should acquire new knowl-
edge incrementally and adapt to the dynamic environments. To-
day, many intelligent systems deal with dynamic environments: in-
formation on websites, social networks, and applications in com-

mercial markets. In such evolving environments, knowledge needs
to adapt to the changes very frequently. Many statistical machine
learning techniques interpolate between input data and thus their
models can adapt only slowly to new situations. In this paper,
we consider the dynamic environments for recommendation task.
Drifting user interests and preferences [3, 11] are important in build-
ing personal assistance systems, such as recommendation systems
for social networks or for news websites where recommendations
need be adaptive to drifting trends rather than recommending ob-
solete or well-known information. We focus on the application
of recommending forum contents for massive open online courses
(MOOCs) where we found that the adaptation issue is a crucial as-
pect for providing useful and trendy information to students.

The rapid emergence of some MOOC platforms and many MOOCs
provided on them has opened up a new era of education by pushing
the boundaries of education to the general public. In this special on-
line classroom setting, sharing with your classmates or asking help
from instructors is not as easy as in traditional brick-and-mortar
classrooms. So discussion forums there have become one of the
most important components for students to widely exchange ideas
and to obtain instructors’ supplementary information. MOOC fo-
rums play the role of social learning media for knowledge propaga-
tion with increasing number of students and interactions as a course
progresses. Every member in the forum can talk about course con-
tent with each other, and the intensive interaction between them
supports the knowledge propagation between members of the learn-
ing community.

The online discussion forums are usually well structured via the
different threads which are created by students or instructors; they
can contain several posts and comments within the topic. An ex-
ample of the discussion forum from a famous “Machine Learning”
course by Andre Ng on Coursera1 is shown in Figure 1. The left
figure shows various threads and the right figure illustrates some
replies within the last thread ("Having a problem with the Collab-
orative Filtering Cost"). In general, the replies within a thread are
related to the topic of the thread and they can also refer to some
other threads for supplementary information, like the link in the
second reply. Our goal is to point the students towards useful fo-
rum threads through effectively mining forum visit patterns.

Two aspects set forum recommendation system for MOOCs apart
from other recommendation scenarios. First, student interests and
preferences drift fast during the span of a course, which is influ-
enced by the dynamics in forums and the content of the course;
second, the pool of items to be recommended and the items them-

1https://www.coursera.org/
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Figure 1: An sample discussion forum. Left: sample threads. Right: replies within the last thread ("Having a problem with the Collaborative Filtering Cost").

selves are evolving over time because forum threads can be edited
very frequently by either students or instructors. So the recommen-
dations provided to students need to be adaptive to these drifting
preferences and evolving items. Traditional recommendation tech-
niques, such as collaborative filtering and methods based on ma-
trix factorization, only adapt slowly, as they build an increasingly
complex model of users and items. Therefore, when a new item is
superseded by a newer version or a new preference pattern appears,
it takes time for recommendations to adapt. To better address the
dynamic nature of recommendation in MOOCs, we model the rec-
ommendation problem as a dynamic and sequential machine learn-
ing problem for the task of predicting the next item in a sequence of
items consumed by a user. During the sequential process, the chal-
lenge is combining old knowledge with new knowledge such that
both old and new patterns can be identified fast and accurately. We
use algorithms for sequential recommendation based on variable-
order Markov models. More specifically, we use a structure called
context tree (CT) [21] which was originally proposed for lossless
data compression. We apply the CT method for recommending
discussion forum contents for MOOCs, where adapting to drift-
ing preferences and dynamic items is crucial. In experiments, it is
compared with various sequential and non-sequential methods. We
show that both old knowledge and new patterns can be captured ef-
fectively through context activation using CT, and that this is why
it is particularly strong at adapting to drifting user preferences and
performs extremely well for MOOC forum recommendation tasks.

The main contribution of this paper is fourfold:

• We applied the context tree structure to a sequential recom-
mendation tasks where dynamic item sets and drifting user
preferences are of great concern.

• Analyze how the dynamic changes in user preferences are
followed in different recommendation techniques.

• Extensive experiments are conducted for both sequential and
non-sequential recommendation settings. Through the ex-
perimental analysis, we validate our hypothesis that the CT
recommender adapts well to drifting preferences.

• Partial context matching (PCT) technique, built on top of the
standard CT method, is proposed and tested to generalize to
new sequence patterns, and it further boosts the recommen-
dation performance.

2. RELATED WORK
Typical recommender systems adopt a static view of the recommen-
dation process and treat it as a prediction problem over all historical
preference data. From the perspective of generating adaptive rec-
ommendations,we contend that it is more appropriate to view the
recommendation problem as a sequential decision problem. Next,
we mainly review some techniques developed for recommender
systems with temporal or sequential considerations.

The most well-known class of recommender system is based on
collaborative filtering (CF) [19]. Several attempts have been made
to incorporate temporal components into the collaborative filtering
setting to model users’ drifting preferences over time. A common
way to deal with the temporal nature is to give higher weights to
events that happened recently. [6, 7, 15] introduced algorithms
for item-based CF that compute the time weightings for different
items by adding a tailored decay factor according to the user’s own
purchase behavior. For low dimensional linear factor models, [11]
proposed a model called “TimeSVD” to predict movie ratings for
Netflix by modeling temporal dynamics, including periodic effects,
via matrix factorization. As retraining latent factor models is costly,
one alternative is to learn the parameters and update the decision
function online for each new observation [1, 16]. [10] applied the
online CF method, coupled with an item popularity-aware weight-
ing scheme on missing data, to recommending social web contents
with implicit feedbacks.

Markov models are also applied to recommender systems to learn
the transition function over items. [24] treated recommendation as
a univariate time series problem and described a sequential model
with a fixed history. Predictions are made by learning a forest of
decision trees, one for each item. When the number of items is big,
this approach does not scale. [17] viewed the problem of generating
recommendations as a sequential decision problem and they con-
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sidered a finite mixture of Markov models with fixed weights. [4]
applied Markov models to recommendation tasks using skipping
and weighting techniques for modeling long-distance relationships
within a sequence. A major drawback of these Markov models is
that it is not clear how to choose the order of Markov chain.

Online algorithms for recommendation are also proposed in sev-
eral literatures. In [18], a Q-learning-based travel recommender is
proposed, where trips are ranked using a linear function of several
attributes and the weights are updated according to user feedback.
A multi-armed bandit model called LinUCB is proposed by [13]
for news recommendation to learn the weights of the linear reward
function, in which news articles are represented as feature vectors;
click-through rates of articles are treated as the payoffs. [20] pro-
posed a similar recommender for music recommendation with rat-
ing feedback, called Bayes-UCB, that optimizes the nonlinear re-
ward function using Bayesian inference. [14] used a Markov De-
cision Process (MDP) to model the sequential user preferences for
recommending music playlists. However, the exploration phase of
these methods makes them adapt slowly. As user preferences drift
fast in many recommendation setting, it is not effective to explore
all options before generating useful ones.

Within the context of recommendation for MOOCs, [23] proposed
an adaptive feature-based matrix factorization framework for course
forum recommendation, and the adaptation is achieved by utilizing
only recent features. [22] designed a context-aware matrix factor-
ization model to predict student preferences for forum contents, and
the context considered includes only supplementary statistical fea-
tures about students and forum contents. In this paper, we focus on
a class of recommender systems based on a structure, called con-
text tree [21], which was originally used to estimate variable-order
Markov models (VMMs) for lossless data compression. Then, [2,
12, 5] applied this structure to various discrete sequence predic-
tion tasks. Recently it was applied to news recommendation by
[8, 9]. The most important property of online algorithms is the no-
regret property, meaning that the model learned online is eventually
as good as the best model that could be learned offline. Accord-
ing to [21], the no-regret property is achieved by context trees for
the data compression problem. Regret analysis for CT was con-
ducted through simulation by [5] for stochastically generated hid-
den Markov models with small state space. They show that CT
achieves the no-regret property when the environment is stationary.
As we focus on dynamic recommendation environments with time-
varying preferences and limited observations, the no-regret prop-
erty can be hardly achieved while the model adaptation is a bigger
issue for better performance.

3. CONTEXT TREE RECOMMENDER
Due to the sequential item consumption process, user preferences
can be summarized by the last several items visited. When model-
ing the process as a fixed-order Markov process [17], it is difficult
to select the order. A variable-order Markov model (VMM), like a
context tree, alleviates this problem by using a context-dependent
order. The context tree is a space efficient structure to keep track
of the history in a variable-order Markov chain so that the data
structure is built incrementally for sequences that actually occur. A
local prediction model, called expert, is assigned to each tree node,
it only gives predictions for users who have consumed the sequence
of items corresponding to the node. In this section, we first intro-
duce how to use the CT structure and the local prediction model for
sequential recommendation. Then, we discuss adaptation proper-
ties and the model complexity of the CT recommender.

3.1 The Context Tree Data Structure
In CT, a sequence s = 〈n1 , . . . ,nl〉 is an ordered list of items
ni ∈ N consumed by a user. The sequence of items viewed until
time t is st and the set of all possible sequences S.

A context S = {s ∈ S : ξ ≺ s} is the set of all possible sequences
in S ending with the suffix ξ. ξ is the suffix (≺) of s if last elements
of s are equal to ξ. For example, one suffix ξ of the sequence
s = 〈n2, n3, n1〉 is given by ξ = 〈n3, n1〉.

A context tree T = (V, E) with nodes V and edges E is a partition
tree over all contexts of S. Each node i ∈ V in the context tree
corresponds to a context Si. If node i is the ancestor of node j then
Sj ⊂ Si. Initially the context tree T only contains a root node
with the most general context. Every time a new item is consumed,
the active leaf node is split into a number of subsets, which then
become nodes in the tree. This construction results in a variable-
order Markov model. Figure 2 illustrates a simple CT with some
sequences over an item set 〈n1, n2, n3〉. Each node in the CT cor-
responds to a context. For instance, the node 〈n1〉 represents the
context with all sequences end with item n1.

Figure 2: An example context tree. For the sequence s = 〈n2, n3, n1〉,
nodes in red-dashed are activated.

3.2 Context Tree for Recommendation
For each context Si, an expert µi is associated in order to compute
the estimated probability P(nt+1|st) of the next item nt+1 under
this context. A user’s browsing history st is matched to the CT and
identifies a path of matching nodes (see Figure 2). All the experts
associated with these nodes are called active. The set of active
experts A(st) = {µi : ξi ≺ st} is the set of experts µi associated
to contexts Si = {s : ξi ≺ st} such that ξi are suffix of st. A(st)
is responsible for the prediction for st.

3.2.1 Expert Model
The standard way for estimating the probability P(nt+1|st), as pro-
posed by [5], is to use a Dirichlet-multinomial prior for each expert
µi. The probability of viewing an item x depends on the number of
times αxt the item x has been consumed when the expert is active
until time t. The corresponding marginal probability is:

Pi(nt+1 = x|st) =
αxt + α0∑

j∈N αjt + α0
(1)

where α0 is the initial count of the Dirichlet prior
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3.2.2 Combining Experts to Prediction
When making recommendation for a sequence st, we first identify
the set of contexts and active experts that match the sequence. The
predictions given by all the active experts are combined by mixing
the recommendations given by them:

P(nt+1 = x|st) =
∑

i∈A(st)

ui(st)Pi(nt+1 = x|st) (2)

The mixture coefficient ui(st) of expert µi is computed in Eq. 3
using the weight wi ∈ [0, 1]. Weight wi is the probability that
the chosen recommendation stops at node i given that the it can be
generated by the first i experts, and it can be updated in using Eq.5.

ui(st) =

{
wi

∏
j:Sj⊂Si

(1− wj), if st ∈ Si

0, otherwise
(3)

The combined prediction of the first i experts is defined as qi and
it can be computed using the recursion in Eq. 4. The recursive
construction that estimates, for each context at a certain depth i,
whether it makes better prediction than the combined prediction
qi−1 from depth i− 1.

qi = wiPi(nt+1 = x|st) + (1− wi)qi−1 (4)

The weights are updated by taking into account the success of a
recommendation. When a user consumes a new item x, we update
the weights of the active experts corresponding to the suffix ending
before x according to the probability qi(x) of predicting x sequen-
tially via Bayes’ theorem. The weights are updated in closed form
in Eq. 5, and a detailed derivation can be found in [5].

w′i =
wiPi(nt+1 = x|st)

qi(x)
(5)

3.2.3 CT Recommender Algorithm
The whole recommendation process first goes through all users’ ac-
tivity sequences over time incrementally to build the CT; the local
experts and weights updated using Equations 1 and 5 respectively.
As users browse more contents, more contexts and paths are added
and updated, thus building a deeper, more complete CT. The rec-
ommendation for an activity or context in a sequence is generated
using Eq. 2 continuously as experts and weights are updated. At
the same time, a pool of candidate items is maintained through a
dynamically evolving context tree. As new items are added, new
branches are created. At the same time, nodes corresponding to old
items are removed as soon as they disappear from the current pool.

The CT recommender is a mixture model. On the one hand, the
prediction P(nt+1 = x|st) is a mixture of the predictions given
by all the activated experts along the activated path so that it’s a
mixtures of local experts or a mixture of variable order Markov
models whose oder are defined by context depths. On the other
hand, one path in a CT can be constructed or updated by multiple
users so that it’s a mixture of users’ preferences.

3.3 Adaptation Analysis
Our hypothesis, which is validated in later experiments, is that the
CT recommender can be applied elegantly to domains where adap-
tation and timeliness are of concern. Two properties of the CT
methods are crucial to the goal. First, the model parameter learn-
ing process and recommendations generated are online such that
the model adapts continuously to a dynamic environment. Second,
adaptability can be achieved by the CT structure itself as knowl-
edge is organized and activated by context. New items or paths are
recognized in new contexts, whereas old items can still be accessed

in their old contexts. It allows the model to make predictions us-
ing more complex contexts as more data is acquired so that old and
new knowledge can be elegantly combined. For new knowledge
or patterns added to an established CT, they can immediately be
identified through context matching. This context organization and
context matching mechanism help new patterns to be recognized to
adapt to changing environments.

3.4 Complexity Analysis
Learning CT uses the recursive update defined in Eq. 4 and rec-
ommendations are generated by weighting the experts’ predictions
along the activated path given by Eq. 2. For trees of depth D, the
time complexity of model learning and prediction for a new ob-
servation are both O(D). For input sequence of length T , the up-
dating and recommending complexity are O(M2), where M =
min(D,T ). Space complexity in the worst case is exponential to
the depth of the tree. However, as we do not generate branches
unless the sequence occurs in the input, we achieve a much lower
bound determined by the total size of the input. So the space com-
plexity is O(N), where N is the total number of observations.
Compared with the way that Markov models are learned, in which
the whole transition matrix needs to be learned simultaneously, the
space efficiency of CT offers us an advantage for model learning.
For tasks that involve very long sequences, we can limit the depth
D of the CT for space and time efficiency.

4. DATASET AND PROBLEM ANALYSIS
4.1 Dataset Description
In this paper, we work with recommending discussion forum threads
to MOOC students. A forum thread can be updated frequently and
it contains multiple posts and comments within the topic. As we
mentioned before that the challenge is adapting to drifting user
preferences and evolving forum threads as a course progresses. For
the experiments elaborated in the following section, we use forum
viewing data from three courses offered by École polytechnique
fédérale de Lausanne on Coursera. These three courses include
the first offering of “Digital Signal Processing”, the third offer-
ing of “Functional Program Design in Scala”, and the first offer-
ing of “’Reactive Programming’. They are referred to Course 1,
Course 2 and Course 3. Some discussion forum statistics for the
three courses are given in Table 1. From the number of forum
participants, forum threads, and thread views, we can see that the
course scale increase from Course 1 to Course 3. A student on
MOOCs often accesses course forums many times during the span
of a MOOC. Each time the threads she views are tracked as one
visit session by the web browser. The total number of visit sessions
and the average session lengths for three courses are presented in
Table 1. The length of a session is the number of threads she viewed
within a visit session. The thread viewing sequences correspond-
ing to these regular visit sessions are called separated sequences
in our later experiments and they treat threads in one visit session
as one sequence. Models built using separated sequences try to
catch short-term patterns within one visit session and we do not
differentiate the patterns from different students. Another setting,
called combined sequences, concatenates all of a student’s visit ses-
sions into one longer sequence so that models built using combined
sequences try to learn long-term patterns across students. The av-
erage length of combined sequences is the average session length
times the average number of sessions per student. From Course 1
to Course 3, average lengths for separated and combined sequences
both increase.
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Course 1 Course 2 Course 3
# of forum participants 5,399 12,384 13,914
# of forum threads 1,116 1,646 2,404
# of thread views 130,093 379,456 777,304
# of sessions 19,892 40,764 30,082
avg. session length 6.5 9 25.8
avg. # of sessions per student 3.7 3.3 2.2

Table 1: Course forum statistics for three datasets.

Another important issue that we can discover from the statistics is
that thread viewing data available for sequential recommendation is
very sparse. For example in Course 1, the average session length is
6.5 and the number of threads is around 1116. Then the complete
space to be explored will be 11166.5, which is much larger than
the size of observations (130,093 thread views). The similar data
sparsity issue is even more severe in the other two datasets.

4.2 Forum Thread View Pattern
Next, we study the thread viewing pattern which highlights the sig-
nificance of adaptation issues for thread recommendation. Figure
3 illustrates the distribution of thread views against freshness for
three courses. The freshness of an item is defined as the relative
creation order of all items that have been created so far. For ex-
ample, when a student views a thread tm which is the m-th thread
created in the currently existing pool of n threads, then freshness
of tm is defined as:

freshness =
m

n
(6)

We can see from Figure 3 that there is a sharp trend that the new
forum threads are viewed much more frequently than the old ones
for all three courses. It is mainly due to the fact that fresh threads
are closely relevant to the current course progress. Moreover, fresh
threads can also supersede the contents in some old ones to be
viewed. This tendency to view fresh items leads to drifting user
preferences. Such drifting preferences, coupled with the evolv-
ing nature of forum contents, requires recommendations adaptive
to drifting or recent preferences.
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Figure 3: Thread viewing activities against freshness

A further investigation through those views on old threads leads us
to a classification of threads into two categories: general threads
and specific threads. Some titles of the general and specific threads
are listed in Table 2. We could see the clear difference between
these two classes of threads as the general ones corresponds to
broad topics and specific ones are related to detailed course con-
tents or exercises. We also found that only a very small part of the
old threads are still rather active to be viewed and they are mostly
general ones. Different from general threads, specific threads that
subject to a fine timeliness are viewed very few times after they get

old. In general, sequential patterns are observed more often within
specific threads as some specific follow-up threads might be related
and useful to the one that you are viewing. So the patterns learned
could be used to guide your forum browsing process. On the con-
trary, sequential patterns on general threads are relatively random
and imperceptible.

General Threads Specific Threads
“Using GNU Octave” “Homework Day 1 / Question 9”
“Any one from INDIA??” “Quiz for module 4.2”
“Where is everyone from? “quiz -1 Question 04”
“Numerical Examples in pdf” ‘Homework 3, Question 11”
“How to get a certificate” “Week 1: Q10 GEMA problem”

Table 2: Sample thread titles of general and specific threads.

5. RESULTS AND EVALUATION
In this section, we compare the proposed CT method against var-
ious baseline methods in both non-sequential and sequential set-
tings. The results show that the CT recommender performs better
than other methods under different setting for all three MOOCs
considered. Through the adaptation analysis, we validate our hy-
pothesis that the superior performance of CT recommender comes
from the adaptation power to drifting preferences and trendy pat-
terns in the domain. In the end, a regularization technique for CT,
called partial context matching (PCT), is introduced. It is demon-
strated that PCT helps better generalize among sequence patterns
and further boost performance.

5.1 Baseline Methods
5.1.1 Non-sequential Methods

Matrix factorization methods proposed by [23, 22] are the state-of-
the-art for MOOCs course content recommendation. Besides the
user-based MF given in [23], we also consider item-based MF that
generates recommendations based on the similarity of the latent
item features learned from standard MF. In our case, each entry in
the user-item matrix of MF contains the number of times a student
views a thread. We also test a version where the matrix had a 1 for
any number of views, but the performance was not as good, so the
development of this version was not taken any further. MF mod-
els considered here are updated periodically (week-by-week). To
enable a fair comparison against non-sequential matrix factoriza-
tion techniques, we implemented versions where the CT model is
updated at fixed time intervals, equal to those of the MF models.
In the “One-shot CT” version, we compute the CT recommenda-
tions for each user based on the data available at the time of the
model update, and the user then receives these same recommenda-
tions at every future time step until the next update. This mirrors
the conditions of user-based MF. To compare with item-based MF,
the “Slow-update CT” version updates the recommendations, but
not the model, at each time point based on the sequential forum
viewing information available at that time.

5.1.2 Sequential Methods
Sequential methods update model parameters and recommenda-
tions continuously as items are consumed. The first two simple
methods are based on the observation and heuristic that fresh threads
are viewed much frequently than old ones. Fresh_1 recommends
the last 5 updated threads, and Fresh_2 recommends the last 5 cre-
ated threads. Another baseline method, referred as Popular, recom-
mends the top 5 threads among the last 100 threads viewed before
the current one. We also consider an online version of MF [10] that
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Figure 4: Overall performance comparison of CT and non-sequential methods

is currently the state-of-the-art sequential recommendation method,
referred to “online-MF”, in which the corresponding latent factor
of the item i and user u are updated when a new observation Rui

arrive. The model optimization is implemented based on element-
wise Alternating Least Squares. The number of latent factors is
tuned to be 15, 20, 25 for three datasets, and the regularization pa-
rameter is set as 0.01. Moreover, the weight of a new observation is
the same as old ones during optimization for achieving the best per-
formance. Furthermore, the proposed CT recommender refers to
the full context tree algorithm with a continuously updated model.

5.2 Performance and Adaptation Analysis
5.2.1 Evaluation Metrics

In our case, all methods recommend top-5 threads each time. Two
evaluation metrics are adopted in the following experiments:

• Succ@5: the mean average precision (MAP) of predicting
the immediately next thread view in a sequence.

• Succ@5Ahead: the MAP of predicting the future thread
views within a sequence. In this case, a recommendation
is successful even if it is viewed later in a sequence.

5.2.2 Comparison of Non-sequential Methods
Figure 4 shows the performance comparison between different ver-
sions of methods based on MF and CT on three datasets. “CT”
is the sequential method with a continuously updated model, and
all other methods Figure 4 are non-sequential versions. Combined
sequences are used for the CT methods here to have a parallel com-
parison against MF. We found that a small value of the depth limit
of the CTs hurts performances, yet a very large depth limit does
not increase performance at the cost of computation and memory.
Through experiments, we tune depths empirically and set them as
15, 20, 30 for three datasets.

Among non-sequential methods, one-shot CT and user-based MF
perform the worst for all three courses, which means that recom-
mending the same content for the next week without any sequence
consideration is ineffective. Slow-update CT performs consistently
the best among non-sequential methods, and it proves that adapting
recommendations through context tree helps boost performance al-
though the model itself is not updated continuously. Compared
to slow-update CT, item-based MF performs much worse. They
both update model parameters periodically and the recommenda-
tions are adjusted given the current observation. However, using
the contextual information within a sequence and the correspond-
ing prediction experts of slow-update CT are much more powerful
than just using latent item features of item-base MF. Moreover, we
can clearly see that the normal CT with continuous update outper-
forms all other non-sequential methods by a large margin for three
datasets. It means that drifting preferences need to be followed
though continuous and adaptive model update, so sequential meth-
ods are better choices. Next, we focus on sequential methods, and

we validate our hypothesis that the CT model has superior perfor-
mances because it better handles drifting user preferences.

5.2.3 Comparison of Sequential Methods
The results presented in Table 3 show the performance of the full
CT recommender compared with other sequential baseline meth-
ods under different settings and evaluation metrics. Each result
tuple contains the performance on the three datasets. We also con-
sider a tail performance metric, referred to personalized evaluation,
where the most popular threads (20, 30, and 40 for three courses)
are excluded from recommendations. The depth limits of CTs us-
ing separated sequences are set to 8, 10, and 15 for three courses.

We notice that the online-MF method, with continuous model up-
date, performs much worse compared with the CT recommender
for all three datasets. This result shows that matrix factorization,
which is based on interpolation over the user-item matrix, is not
sensitive enough to rapidly drifting preferences with limited ob-
servations. The performances of two versions of the Fresh rec-
ommender are comparable with online-MF, and Fresh_1 even out-
performs online-MF in many cases, especially for Succ@5Ahead.
It means that simply recommending fresh items even does a bet-
ter job than online-MF for this recommendation task with drifting
preferences. We can see that the CT recommender outperforms
all other sequential methods under various settings, except for us-
ing non-personalized Succ@5Ahead for Course 2. The Popular
recommender is indeed a very strong contender when using non-
personalized evaluation since there is a bias that students can click a
“top threads” tag from user interface to view popular threads which
are similar to the ones given by Popular recommender. From the
educational perspective, the setting using separated sequences and
personalized evaluation is the most interesting as it reflects shot-
term visiting patterns within a session over those specific and less
popular forum threads. We could see from the upper right part of
Table 3 that the CT recommender outperforms all other methods by
a large margin under this setting.

Non-personalized Personalized
Succ@5 Succ@5Ahead Succ@5 Succ@5Ahead

Separated Sequences
CT [25, 23, 21]% [48, 53, 52]% [19, 14, 16]% [41, 37, 42]%

online-MF [15, 12, 8]% [33, 29, 23]% [10, 7 ,6 ]% [27, 25, 20]%
Popular [15, 20, 16]% [40, 61, 51]% [9, 8 ,8 ]% [34, 31, 36]%
Fresh_1 [12, 14, 10]% [37, 43, 41]% [10, 10, 8]% [33, 31, 37]%
Fresh_2 [9, 8, 6]% [31, 31, 29]% [8, 7, 6 ]% [30, 30, 28]%

Combined Sequences
CT [21, 20, 20]% [55, 55, 56]% [16, 13, 14]% [46, 39, 46]%

online-MF [9, 8, 7]% [34, 27, 23]% [7,6,6]% [29, 24, 20]%
Popular [13, 14, 14]% [52, 62, 58]% [9, 8, 7]% [45, 36, 43]%
Fresh_1 [10, 12, 9]% [48, 44, 44]% [8, 9, 8]% [44, 34, 42]%
Fresh_2 [7, 6, 6]% [43, 34, 32]% [6, 6, 6]% [42, 32, 31]%

Table 3: Performance comparison of sequential methods

5.2.4 Adaptation Comparison
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Figure 5: Distribution of recommendation freshness of CT and online-MF
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Figure 6: Conditional success rate of CT and online-MF

After seeing the superior performance of the CT recommender, we
move to an insight analysis of the results. To be specific, we com-
pare CT and online-MF in terms of their adaptation capabilities
to new items. Figure 5 illustrates the cumulative density func-
tion (CDF) of the threads recommended by different methods against
thread freshness. We can see that the CDFs of CT increase sharply
when thread freshness increases, which means that the probability
of recommending fresh items is high compared to online-MF. In
other words, CT recommends more fresh items than online-MF. As
we mentioned before that a large portion of fresh threads are spe-
cific ones, instead of general ones, so CT recommends more spe-
cific and trendy threads to students while methods based on matrix
factorization recommend more popular and general threads.

Other than the quantity of recommending fresh and specific threads,
the quality is crucial as well. Figure 6 shows the conditional suc-
cess rateP (Success|Freshness) across different degrees of fresh-
ness for three courses. P (Success|Freshness) is defined as the
fraction of the items successfully recommended given the item fresh-
ness. For instance, if an item with freshness 0.5 is viewed 100 times
throughout a course, then P (Success|Freshness = 0.5) = 0.25
means it is among the top 5 recommended items 25 times. As
the freshness increases, the conditional success rate of online-MF
drops speedily while the CT method keeps a solid and stable per-
formance. It is significant that CT outperforms online-MF by a
large margin when freshness is high, in other words, it is particu-
larly strong for recommending fresh items. Fresh items are often
not popular in terms of the total number of views at the time point
of recommendation. So identifying fresh items accurately implies
a strong adaptation power to new and evolving forum visiting pat-
terns. The analysis above validates our hypothesis that the CT rec-
ommender can adapt well to drifting user preferences. Another
conclusion drawn from Figure 6 is that the performance of CT is as
good as online-MF for items with low freshness. This is because
that the context organization and context matching mechanism help
old items to be identifiable though old contexts. To conclude, CT is
flexible at combining old knowledge and new knowledge so that it
performances well for items with various freshness, especially for
fresh ones with drifting preferences.

5.3 Partial Context Matching (PCT)

At last, we introduce another technique, built on top of the stan-
dard CT, to generalize to new sequence patterns and further boost
the recommendation performance. The standard CT recommender
adopts a complete context matching mechanism to identify active
experts for a sequence s. That is, active experts of s come exactly
from the set of suffixes of s. We design a partial context match-
ing (PCT) mechanism where active experts of a sequence are not
constrained by exact suffixes, yet they can be those very similar
ones. Two reasons bring us to design the PCT mechanism for con-
text tree learning. First, PCT mechanism is a way of adding regu-
larization. Sequential item consumption process does not have to
follow exactly the same order, and slightly different sequences are
also relevant for both model learning and recommendation gener-
ation. Second, the data sparsity issue we discussed before for se-
quential recommendation setting can be solved to some extent by
considering similar contexts for learning model experts. The way
PCT does aims to activate more experts to train the model, and to
generate recommendations from a mixture of similar contexts.

We will focus on a skip operation that we add on top of the standard
CT recommender. Some complex operations, like swapping item
orders, are also tested, but they do not generate better performance.
For a sequence 〈sp, . . . , s1〉 with length p, the skip operation gen-
erates p candidate partially matched contexts that skip one sk for
k ∈ [1 . . . p]. All the contexts on the paths from root to partially
matched contexts are activated. For example, the path to context
〈n2, n1〉 can be activated from the context 〈n2, n3, n1〉 by the skip-
ping n3. However, for each partially matched context, there may
not exist a fully matched path in the current context tree. In this
case, for each partially matched context, we identify the longest
path that corresponds it with length q. If q/p is larger than some
threshold t, we update experts on this paths and use them to gener-
ate recommendations for the current observation. Predictions from
multiple paths are combined by averaging the probabilities.

Success@5 Success@5Ahead Ratio
PCT-0.5 [+0.4, +0.6, +0.2]% [+0.8, +0.9, +0.4]% [4.9, 4.5, 3.3]
PCT-0.6 [+0.5, +0.8, +0.3]% [+1.1, +1.3, +0.5]% [4.4, 4.1, 2.9]
PCT-0.7 [+0.7, +0.9, +0.5]% [+1.6, +1.9, +0.7]% [3.7, 3.2, 2.5]
PCT-0.8 [+0.8, +1.1, +0.6]% [+1.9, +2.4, +1.0]% [3.2, 2.9, 2.1]
PCT-0.9 [+1.0, +1.4, +0.7]% [+2.0, +2.7, +1.3]% [2.4, 2.2, 1.4]

Table 4: Performance comparison of PCT against CT for three courses
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Table 4 shows the performance of applying PCT for both model
update and recommendation with threshold t (PCT-t). Results are
compared with the full CT recommender with separated sequences
and non-personalized evaluation. For cases where the threshold is
smaller than 0.5, we sometimes obtain negative results since par-
tially matched contexts are too short to be relevant. The “Ratio”
column is the ratio of the number of updated paths in PCT com-
pared with standard CT. We can see that PCT updates more paths
and it offers us consistent performance boosts at the cost of com-
putation.

6. CONCLUSION AND FUTURE WORK
In this paper, we formulate the MOOC forum recommendation
problem as a sequential decision problem. Through experimental
analysis, both performance boost and adaptation to drifting prefer-
ences are achieved using a new method called context tree. Further-
more, a partial context matching mechanism is studied to allow a
mixture of different but similar paths. As a future work, exploratory
algorithms are interesting to be tried. As exploring all options for
all contexts are not feasible, we consider to explore only those top
options from similar contexts. Deploying the CT recommender in
some MOOCs for online evaluation would be precious to obtain
more realistic evaluation.
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