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ABSTRACT
We study the problem of partitioning a class of N students
into k groups of n students each (N = k × n), such that
their learning from peer interactions is maximized. In our
formalization of the problem, any student is able to increase
his score in the subject the class is studying up to the score
of the student who is at p-percentile among his higher ability
peers. In contrast, the past work presumed that only stu-
dents with score below the group mean may increase their
score. We give a partitioning algorithm that maximizes to-
tal gain summed over all the students for any value of p such
that 100/(100−p) is integer valued. The time complexity of
the proposed algorithm is only O(N logN). We also present
experimental results using real-life data that show the supe-
riority of the proposed algorithm over current strategies.

1. INTRODUCTION
A basic problem that has challenged educators for a long
time is how to group students in a class in order to supple-
ment their learning from the teacher with the learning from
peers [6, 11]. Two popular strategies currently in vogue
are: i) heterogeneous (also called diversity-based) grouping,
and ii) homogeneous (also referred to as stratified or ability-
based) grouping [5]. Both have their ardent proponents.
The results from the empirical studies on the relative effec-
tiveness of the two are inconclusive and the public opinion
has also been mixed [3, 9].

In a major departure from the conventional thinking, a com-
putational perspective was taken to address this problem
in [1]. However, the learning model underlying the proposed
algorithmic approach postulated that only the below average
students are able to increase their ability score [4]. This pa-
per removes this limitation, recognizing that every student
can benefit from peer interactions [6, 8].

1.1 Contributions
• We admit a general learning model that specifies that any

student is able to increase his ability score up to the level
of the student who is at p-percentile amongst his higher
ability peers. The value of p is an input parameter, se-
lected by the educator. The model in [8] can be viewed as
a special case, with p set to 100.

• For the above learning model, we provide an algorithm
for partitioning N students into k groups of n students
each (N = k × n) with the goal of maximizing learning
gain summed over all the students. We show that the
algorithm is optimal for the values taken by p such that
100/(100−p) is integer-valued. Thus, it is optimal for p ∈

{99, 98, 95, 90, 80, 75, 66 2
3
, 50}. The time complexity of

the algorithm is O(N logN).

• We present experimental results using real datasets, show-
ing the superiority of our approach over current strategies.

1.2 Limitations
• Although our learning model has been abstracted from the

findings in the education literature, a rigorous empirical
validation of the model is future work. The insights gained
are nonetheless instructive.

• Teaching others and giving help has been shown to be pos-
itively correlated to increase in learning [2]. Incorporating
such learning gains for high ability students is future work.

2. RELATED WORK
The question of how to group students to maximize their
gain from peer interactions was first addressed from a com-
putational perspective in [1]. The authors proposed two
functions to model learning gains. The first maximizes the
number of students who improve their ability score [4], while
the second incorporates the extent of these improvements.
In both the cases, however, only the below average stu-
dents benefit and the higher ability students have zero gain.
The authors showed that the partitioning problem with the
goal of maximizing the number of benefiting students is NP-
complete, while they left open the question of the complexity
class of the problem with the second gain function.

The viewpoint that every student can learn from the higher
ability peers is also present in [8]. In their model, every
student may increase his ability to a fixed level, which is
the ability of the highest ability student, i.e. p = 100. This
assumption is too rigid and optimistic. In contrast, we admit
various levels of gain for different students.

Our problem bears resemblance with the expert-team for-
mation problem, in which the experts are multi-dimensional
vectors of skills and the goal is to find a team that can collec-
tively perform a given task requiring certain skills [10]. How-
ever, our students are described by 1-dimensional scores, and
our objective is not to locate a single team, but to partition
the students such that their learning gain is maximized.

Our problem also superficially resembles the classical clus-
tering problem [7]. However, unlike the classical clustering,
which aims to maximize the similarity of all the points in a
cluster to a cluster center, our problem has no one point in
a partition with respect to which the distance of all other
points needs to be optimized (see Fig. 1).
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Figure 1: Computation of the potential learning gain for a group of ten students with 75-percentile chosen as the reference point. The
ith box contains the score of the ith student. The learning gain for each student is the difference between his score and the score of

student at p-percentile amongst his peers having higher score than him. For the first student, the index of the student at 75-percentile
amongst his higher ability peers is (1 + d(10− 1) ∗ 75/100e) = 8. Since the score of the latter is eight, the gain for the first student is

(8− 1) = 7. For the second student, the index of the student at 75-percentile amongst his higher ability peers is also 8
(2 + d(10− 2) ∗ 75/100e), thus giving him a gain of (8− 2) = 6, and so on. The gain for the last student is zero, as there is no one

above to learn from.

3. PROBLEM STATEMENT
We have a class of N students. Each student i is associated
with score θi ∈ R≥0, representing student’s ability in the
subject the class is studying [4]. For simplicity, scores are
assumed to be distinct, so there is a one to one correspon-
dence between the student i and the score θi. Students are
ordered in the increasing order of scores.

Students are able to increase their score through interactions
with peers in the group in accordance with a gain func-
tion [12, 13]. The gain from peer learning for a group G is
given by a function L. Our objective is to find k groups of
n students each (N = k × n), such that the overall gain for
students is maximized. That is, our objective is

max
G

∑

G∈G
L(G). (1)

The learning function is of the form

L(G) =

|G|∑

i=1

(
RG

i − θi
)
, (2)

where RG
i is the reference score for the G’s ith ranked stu-

dent. The intuition is that each student can increase his
score up to the reference score.

3.1 Learning up to p-Percentile
Problem 1 (p-Percentile Partitioning Problem).

The gain function in Eq. 2 is given by

Lp(G) =

|G|∑

i=1

(
pGi − θGi

)
, (3)

where pi is the score of the student whose score is at the p-
percentile position of the scores of the students having higher
score than the ith student in G.

For a given set of scores, the p-percentile score is the score
below which p% of scores fall. To find the p-percentile
score, the corresponding index is calculated first, which is
dnp/100e. The value at this index then is the p-percentile
score. Thus,

p-percentile(θ1, θ2, . . . , θn) = θdn.p/100e. (4)

Fig. 1 graphically illustrates the percentile gain function.

4. SOLUTION
Theorem 1. For values of p such that p/(100 − p) is

integer-valued, the p-Percentile Partitioning problem can be
solved optimally in O(N logN) time.

We shall prove the theorem constructively by providing an
optimal algorithm whose time complexity is O(N logN). It
is named Percentile Partitions and its pseudo-code is shown
in Algorithm 1. The algorithm exploits the special structure
of our problem that we elicit next.

We first expand the equation for learning gain w.r.t. p-
percentile as given in Eq. 3 into

LP (G) =
(

p-percentile(θG2 , θ
G
3 , . . . , θ

G
n )− θG1

)
+

(
p-percentile(θG3 , θ

G
4 , . . . , θ

G
n )− θG2

)
+

. . .+
(

p-percentile(θGn )− θGn−1

)
.

Using the definition of p-percentile from Eq. 4, the above
can be written as

LP (G) = (θG1+d(n−1)p/100e−θG1 ) + (θG2+d(n−2)p/100e−θG2 ) +

. . . + (θGn − θGn−1).

To this we add the term (θGn − θGn ) corresponding to zero
gain of the nth student. Thus, we have

LP (G) = (θG1+d(n−1)p/100e−θG1 ) + (θG2+d(n−2)p/100e−θG2 ) +

. . . + (θG(n−1)+dp/100e−θGn−1) + (θGn−θGn ).

Collecting the positive and negative terms together, we get

LP (G) =
(
θG1+d(n−1)p/100e + θG2+d(n−2)p/100e + . . .

+ θG(n−1)+dp/100e + θn
)

−
(
θG1 + θG1 + . . .+ θGn−1 + θGn

)
,
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which can be written succinctly as

LP (G) =

n∑

i=1

θGi+d(n−i)p/100e −
n∑

i=1

θGi . (5)

Using this equation, our objective becomes

max
G

∑

G∈G

(
n∑

i=1

θGi+d(n−i)p/100e −
n∑

i=1

θGi

)
.

The second component in the above sum is constant for any
given set of ability scores. Therefore, our objective can be
simplified to

max
G

∑

G∈G

n∑

i=1

θGi+d(n−i)p/100e. (6)

Lemma 1. Given p ∈ [0, 100] and an ascending sequence
of θi ∈ R≥0, for (100−p)|100,

∑n
i=1 θi+d(n−i)p/100e is equiv-

alent to
∑n

i=1 γi · θi, where

γi =





100
100−p

, if
⌈

np
100

⌉
< i ≤ n

mod(n, 100
100−p

), if 100
100−p

- n and i =
⌈

np
100

⌉

0, otherwise.

.

Proof. It is to be noted that a student at index i im-
proves up to the score of student at index i+d(n− i)p/100e.
As the student indexes are traversed from the higher-score
end to the lower end, with unit decrease in value of i, the
quantity d(n− i)p/100e increments by unity, except for the
values of i for which (n− i)p is a multiple of hundred. In the
latter case, although there is a decrement in the value of i
by one, the value of d(n− i)p/100e stays the same as that of
d(n− i− 1)p/100e, causing the index up to which students
are improving to decrement by one. It is easy to derive that
this process repeats itself after a period of 100/(100 − p).
Further, when n is not a multiple of the above period, there
will be mod(n, 100/(100−p)) students who will be improving
up to the smallest index value. For the remaining students,
as no other student improves up to their score, a γ value of
zero is straightforward.

Example 1. In Fig. 1, we have n = 10 and p = 75.
Thus, in accordance with Lemma 1, we have

γi =





4, if 8 < i ≤ 10

2, if i = 8

0, otherwise.
.
The above may also be verified visually from Fig. 1. It is easy
to note that the students at 7th, 8th, and 9th index improve
up to the score of the 10th student, while the 10th student
with zero gain remains at the same score. This makes the
score of the 10th student visible four times in the updated
scores, leading to the γ value of four. Similarly, the score
of the student at 9th index is also visible four times because
of students at 3rd, 4th, 5th, and 6th indexes improving up to
his score. On the other hand, only students at 1st and 2nd

indexes improve up to the score of 8th student. Hence, a γ
value of two for the 8th student. No one is improving his
score up to the score of any of the students at index below
eight. So, the γ values corresponding to them are zero.

Unfortunately, when (100−p) - 100, the coefficients γi’s have
complex structure and we defer their study to future work.

Algorithm 1 (Percentile Partitions) Optimal Partitioning
for maximizing Learning Gain - learning up to p-percentile

1: Input: Distinct descending scores {θ1, θ2, . . . , θN}, Per-
centile p, Number of groups k, Size of each partition n,
k × n = N .

2: G1 = G2 = . . . = Gk = φ
3: m← 100/(100− p)
4: q ← bn/mc
5: q̂ ← dn/me
6: if mod(n,m) 6= 0
7: M ← {θkq+1, . . . , θkq+k)}
8: for i ∈ {1, 2, . . . , k}
9: Gi ← Gi

⋃
Mi

10: end for
11: end if
12: H1global ← {θ1, θ2, . . . , θkq}
13: H2global ← {θkq̂+1, . . . , θN−1, θN}
14: for i ∈ {1, 2, . . . , k}
15: H1part ← randomly sample q scores from

H1global without replacement.
16: H2part ← randomly sample (n − q̂) scores from

H2global without replacement.
17: Gi ← Gi

⋃
H1part

⋃
H2part

18: end for
19: return {G1, G2, . . . , Gk}

4.1 Percentile_Partitions
Lemma 1 leads to our optimal partitioning algorithm, which
is shown in Algorithm 1. The algorithm first divides the
input ability scores into two or three sets depending on
whether mod(n, 100/(100 − p)) is zero or not respectively.
The first set H1global consists of scores that contribute by
a factor of 100/(100 − p) to the learning gain. The second
set M if present, consists of scores that contribute by a fac-
tor of mod(n, 100/(100− p)). Finally, the third set H2global

consists of scores that have zero contribution. These sets
correspond to the three different values of the γ coefficients.
They are such that H1global <M < H2global, where A < B
means all elements of set A are greater or equal compared
to any element of set B. For each of these sets then, the
algorithm creates k equal random partitions. These parti-
tions are then merged to create the final k partitions. The
example below illustrates the algorithm.

Example 2. Consider a set of 20 students with ability
scores {θ1, θ2, . . . , θ20}, sorted in the descending order. The
set is to be partitioned into four groups, each containing five
students. Each student can learn up to the score of the stu-
dent who is at 66 2

3
-percentile of students above.

For p = 66 2
3

and n = 5, we have m = 3, q = 1, and q̂ = 2.
The algorithm breaks the scores into three sets:
H1global = {θ1, θ2, θ3, θ4}
M = {θ5, θ6, θ7, θ8}
H2global = {θ9, θ10, θ11, θ12, θ13, θ14, θ15, θ16, θ17, θ18, θ19, θ20}

For each set, four equal-sized random partitions are created,
which are then merged to create four groups:
G1 = {θ3}

⋃ {θ6}
⋃ {θ17, θ10, θ15}

G2 = {θ1}
⋃ {θ7}

⋃ {θ19, θ16, θ9}
G3 = {θ2}

⋃ {θ5}
⋃ {θ13, θ18, θ12}

G4 = {θ4}
⋃ {θ8}

⋃ {θ14, θ20, θ11}
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Note: There are many equally good ways of partitioning
H1global, M , and H2global. The above is just one of them.

4.2 Proof of Theorem 1
Clearly, if the input scores were already in the descending
order, the time complexity of the Algorithm 1 is O(N). If
the input scores were unsorted, then the extra sorting step
would make the complexity O(N logN).

The optimality of the algorithm follows from the structure
in the values taken by the coefficient γ’s. Before proceeding
further, we state the following lemma:

Lemma 2. For given ordered sets of real numbers, A =
{a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, the quantity∑

a∈A,b∈B ab, s.t. each a ∈ A and b ∈ B is used exactly
once, is maximized if the elements are chosen in a manner
such that the product of elements at the same index from A
and B is taken.

Now, according to Lemma 1, γi can take only one of the
three values and they have ordering amongst them given by
100/(100 − p) > mod(n, 100/(100 − p) ≥ 0. The partitions
created by the algorithm satisfy, H1global < M < H2global.
Thus, in light of Lemma 2, it is easy to observe that our ob-
jective is maximized as the set of students with higher(lower)
scores get mapped to highest(lowest) coefficient. Moreover,
the random perturbations within H1global, M , or H2global

do not affect the gain value as all the scores from a set are
involved in product with the same γ value.

5. EXPERIMENTS
5.1 Datasets
1. SSC Scores (Normal distribution): Staff Selection
Commission - Combined Graduate Level Examination (SSC-
CGL) is conducted all across India to recruit employees for
various departments of Government of India. The scores of
candidates for the 2016 examination, categorized into differ-
ent regions of the country, are available at ssc.nic.in. The
distribution of scores in every region is close to normal. We
took the scores from the North Western (SSC-NWR) region
that exhibits the largest variance.

2. GATE Scores (Log-Normal distribution): In In-
dia, Graduate Aptitude Test in Engineering (GATE) is con-
ducted every year to test the competency of undergradu-
ate students in various engineering disciplines. We took
the available scores from year 2016. We experimented with
scores from Mech. (GATE-ME), with largest variance.

3. StkXchg UpVotes (Pareto distribution): On the
Stack Exchange platform, users can ask and answer ques-
tions on various topics. Additionally, they can up-vote or
down-vote a question. The number of up-votes a user re-
ceives is an indicative measure of his level of expertise. Pareto
distribution fitted the data for the active users having at
least one up-vote. The Stack Exchange data dump is avail-
able from archive.org/details/stackexchange. We take data
for Stack Overflow that ehibits lowest skew in distribution.

5.2 Algorithms
In addition to Percentile Partitions, we consider two algo-
rithms that correspond to the strategies currently prevalent
in practice: Stratified and Random.

1. Stratified: This algorithm puts in each group those stu-
dents who exhibit similar ability. This grouping represents
the practice of homogeneous or ability-based grouping.

2. Random: Students are assigned to groups randomly.
This method corresponds to the practice of heterogeneous
or diversity-based grouping.

5.3 Set Up
We conducted our experiments setting the number of stu-
dents, N , to 1024. We varied the number of groups, k, over
{2,4,8,. . ., 512}, and the reference percentile point p over
{50, 66 2

3
, 75, 80, 90, 95, 98, 99}. Thus, for each dataset, we

randomly sample 1024 scores and generate the groups for
different combinations of k and p values. In order to have
tight confidence intervals, we repeat this exercise 30 times
each and report average learning gain.

For the groups generated by Percentile Partitions, we com-
pute learning gain using Eq. 3. When applying Stratified
or Random to a dataset, we generate groups only once but
compute gain using the appropriate parameter value for p.

We also study the group structures generated by different
algorithms. By the structure of a group, we mean the dis-
tribution of scores in the group. Although we run each al-
gorithm 30 times, we only show the structure of the group
generated by the first run.

5.4 Results
Fig. 2 shows the learning gain as the reference percentile
value, p, is varied for different algorithms on various datasets.
We show the plots for three values for the number of groups,
k ∈ {128, 32, 8} (and the corresponding group sizes, n ∈
{8, 32, 128}). Fig. 3 shows the learning gain as the number
of groups, k, is varied. We show the plots for two percentile
values, p ∈ {75, 90}. Fig. 4 shows the group structures
generated by different algorithms. We show the structures
for groups of size, n = 8, and for the reference percentile,
p = 75. We alert the reader that different scales have been
used for Y-axis in Figs. 2-3 and a logarithmic scale has been
employed for X-axis in Fig. 3 for the sake of clarity.

We see that the overall behavior of different algorithms re-
mains similar across different group sizes and reference per-
centile values. Clearly, Percentile Partitions consistently out-
performs the other algorithms that corroborates its theoret-
ical optimality. The following additional observations are
noteworthy:

• With increasing value of p, total learning gain increases
super linearly (Fig. 2). It is because the extent of learning
gain for each student increases. The gain plateaus for
small groups because beyond some percentile value, all
students improve up to the same highest ability student.
Then, it does not matter whether the reference percentile
is at 90 or 95.

• The advantage of Percentile Partitions over Random is
more pronounced when the number of students in a group
is in a more realistic range of 32 or less (Fig. 3). When the
number of groups is small and each group is large, Per-
centile Partitions assigns very many students randomly
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Figure 2: Learning Gain as the reference percentile point, p, is varied.
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Figure 3: Learning Gain as the number of groups, k, is varied.

and therefore the group structure and gain produced by
it become similar to that of Random.

• The learning gain is worst with the stratified strategy.
Fig. 4 shows that this strategy produces groups in which
the students have similar scores. Therefore, the improve-
ments from peer interactions are small. Fig. 4 also shows
that the p-percentile value of every group produced by
Percentile Partitions is higher than the global p-percentile

value of all the undivided scores. However, this pattern
is not true for Random. Some groups generated by Ran-
dom have p-percentile to the extreme right of global p-
percentile. The scores in between the two p-percentiles in
such groups do not contribute to the total gain. But then
some other groups end up having smaller scores above p-
percentile that leads to smaller additions to the total gain.
Hence, the superior performance of Percentile Partitions.
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Figure 4: Group structure generated by different algorithms for groups of size 8. Each row in the plots corresponds to a particular
group and there is a dot for each ability score in that group. The p-percentile score for each group is plotted in black. The vertical red

line shows the global p-percentile score. The groups are numbered according to the order in which they are generated. Only for
Percentile Partitions, the p-percentile score for every group is higher than the global p-percentile value.

6. SUMMARY
We investigated the important educational data mining prob-
lem of how to group students in a class to maximize their
learning gains from peer interactions. We worked with a
general learning gain function in which every student is able
to increase his ability score up to the score of the student
who is at p-percentile amongst his higher ability peers. We
gave an algorithm which is provably optimal for maximizing
learning gain, the value of p is such that 100/(100 − p) is
integer valued. We also studied the performance character-
istics of the proposed algorithm using real-life datasets that
corroborated the theoretical analysis and showed its supe-
riority over the current approaches. Surprisingly, the time
complexity of optimally grouping N students using our al-
gorithm is only O(N logN).
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