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ABSTRACT 
We report an experimental implementation of adaptive learning 
functionality in a self-paced HarvardX MOOC (massive open 
online course). In MOOCs there is need for evidence-based 
instructional designs that create the optimal conditions for 
learners, who come to the course with widely differing prior 
knowledge, skills and motivations. But users in such a course are 
free to explore the course materials in any order they deem fit and 
may drop out any time, and this makes it hard to predict the 
practical challenges of implementing adaptivity, as well as its 
effect, without experimentation. This study explored the 
technological feasibility and implications of adaptive functionality 
to course (re)design in the edX platform. Additionally, it aimed to 
establish the foundation for future study of adaptive functionality 
in MOOCs on learning outcomes, engagement and drop-out rates. 
Our preliminary findings suggest that the adaptivity of the kind 
we used leads to a higher efficiency of learning (without an 
adverse effect on learning outcomes, learners go through the 
course faster and attempt fewer problems, since the problems are 
served to them in a targeted way). Further research is needed to 
confirm these findings and explore additional possible effects. 
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1. INTRODUCTION 
Digital learning systems are considered adaptive when they can 
dynamically change the presentation of content to any user based 
on the user’s individual record of interactions, as opposed to 
simply sending users into different versions of the course based on 
preexisting information such as user’s demographic information, 
education level, or a test score. Conceptually, an adaptive learning 
system is a combination of two parts: an algorithm to dynamically 
assess each user’s current profile (the current state of knowledge, 
but potentially also affective factors, such as frustration level), 
and, based on this, a recommendation engine to decide what the 
user should see next. In this way, the system seeks to optimize 
individual user experience, based on each user’s prior actions, but 
also based on the actions of other users (e.g. to identify the course 
items that many others have found most useful in similar 
circumstances). Adaptive technologies build on decades of 

research in intelligent tutoring systems, psychometrics, cognitive 
learning theory and data science [1, 3, 4]. 

Harvard University partnered with TutorGen to explore the 
feasibility of adaptive learning and assessment technology 
implications of adaptive functionality to course (re)design in 
HarvardX, and examine the effects on learning outcomes, 
engagement and course drop-out rates. As the collaboration 
evolved, the following two strategic decisions were made: (1) 
Adaptivity would be limited to assessments in four out of 16 
graded sub-sections of the course. Extra problems would be 
developed to allow adaptive paths; (2) Development efforts would 
be focused on Harvard-developed Learning Tools Interoperability 
(LTI) tool to support assessment adaptivity on edX platform. 
Therefore, in the current prototype phase of this project, adaptive 
functionality is limited to altering the sequence of problems, based 
on continuously updated statistical inferences on knowledge 
components a user mastered. As a supplement to these assessment 
items, a number of additional learning materials are served 
adaptively as well, based on the rule that a user should see those 
before being served more advanced problems. 

While the prototype enabled us to explore the feasibility of 
adaptive assessment technology and implications of adaptive 
functionality to course (re)design in HarvardX, it is still 
challenging to judge its effects on learning outcomes, engagement 
and course drop-out rates due to the prototype limitations. 
However, we believe that the study will help to establish a solid 
foundation for future research on the effects of adaptive learning 
and assessment on outcomes such as learning gains and 
engagement. [5] 

2. SETUP AND USER EXPERIENCE 
The HarvardX course in this experiment was “Super-Earths and 
Life”. It deals with searching for planets orbiting around stars 
other than the Sun, in particular the planets capable of supporting 
life. The subject matter is physics, astronomy and biology. 
Roughly speaking, the course aims at users with college-level 
knowledge of physics and biology. Some of the assessment 
material in the course requires calculations, and some requires 
extensive factual knowledge (e.g. questions about DNA structure). 
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Two versions of the course have already run in the edX platform, 
our adaptivity was implemented as part of the course re-design for 
the third run. 

A number of subsections in the course contained assessment 
modules (homeworks). The experiment consisted of making four 
of these homeworks adaptive for some of the users. At the 
moment of their registration, the course users were randomly split 
50%-50% into an experimental group and into a control group. 
When arriving to a homework, users in the control group see a 
predetermined, non-adaptive set of problems on a page. The same 
is true for the experimental group in all homeworks except the 
four where we deployed the adaptive tool. In these homeworks, a 
user from the experimental group is served problems sequentially, 
one by one, in the order that is individually determined on-the-fly 
based on the user’s prior performance. In addition to problems, 
some instructional text pages were also included in the serving 
sequence. 

To enable adaptivity, we manually compiled a list of knowledge 
components (KCs, for our purposes synonymous with “learning 
objectives”, “learning outcomes”, or “skills”) and tagged 
problems in the course with one or several knowledge 
components. This tagging was done for all assessment items in 
the course (as well as for some learning materials), enabling the 
adaptive engine to gather information from any user’s interaction 
with any problem in the course, not only with those problems that 
are served adaptively. Additionally, the problems in the 4 adaptive 
homeworks were tagged with one of three difficulty levels: 
advanced, regular and easy (other problems in the course were 
tagged by default as regular). No pre-requisite relationships or 
other connections among the knowledge components were used. 

The adaptive engine (a variety of Bayesian Knowledge Tracing 
algorithm) decides which problem to serve next based on the list 
of KCs covered by the homework and course material. Additional 
rules could be incorporated into the serving strategy. Thus, we had 
a rule that before any problem of difficulty level “Advanced”, the 
user should see a special page with advanced learning material.  

The parity between experimental and control groups was set up as 
follows. In the pool from which problems are adaptively served to 
the experimental group, all the regular-difficulty problems were 
the ones that the control group saw in these homework. The 
control group had access to the easy and advanced problems as 
well: students in this group saw a special “extra materials” page 
after each of the 4 experimental homeworks. This page contained 
the links to all the advanced instructional materials and advanced 
and easy problems for this homework, for no extra credit. Thus, 
all the materials that an experimental user can see, were also 
available to the control students. There were two main reasons for 
this: obvious usefulness for comparative studies, and enabling all 
students, experimental and control, to discuss all problems in the 
course forum. 

When an experimental group user is going through an adaptive 
homework, the LTI tool loads edX problem pages in an iFrame. 

Submitting (“checking”) an answer to the problem triggers an 
update of user’s mastery, but does not trigger serving the next 
problem. For that to happen, the user has to click the button “Next 
Question” outside the iFrame. The user always can revisit any of 
the previously served problems. 

In edX, users usually get several attempts at a problem. Thus, it 
may be possible for a user to submit a problem after the next 
problem has already been served. Fig. 1, for instance, shows a 
situation, where so far 4 problems have been served (note the 
numbered tabs in the upper left), but the user is currently viewing 
problem 2 in this sequence, not the latest one. The user is free to 
re-submit this problem, which will update the user’s mastery 
(although in this case there is no need to do so, since it appears 
that problem 2 has been answered correctly). It will not alter the 
existing sequence (problems 3 and 4 will not be replaced by 
others), but it may have effect on what will be served as 5 and so 
on. 

The user interface keeps track of the total number of points earned 
in a homework (upper right corner in Fig. 1). The user knows how 
many points in total are required and may choose to stop once this 
is achieved (earning more points will no longer affect the grade). 
Otherwise, the serving sequence ends when the pool of questions 
is exhausted. Potentially, it could also end when the user’s 
probability of mastery on all relevant KCs passes a certain 
mastery threshold (a high probability, at which we consider the 
mastery to be, in practical terms, certain; it was set to 0.9). 
However, in this particular implementation, due to having only a 
modest number of problems, this was not done. 

In order to explore possible effects of adaptive experiences on 
learners’ mastery of content knowledge competence-based pre- 
and post-assessment were added to the course and administered to 
study participants in both experimental and control groups. 
Typical HarvardX course clickstream time-stamped data and pre-
post course surveys data was collected.  

2.1 Course Design Considerations 
Adaptive learning techniques require the development of 
additional course materials, so that different students can be 
provided with different content. For our prototype, tripling the 
existing content in the four adaptive subsections was considered a 
minimum to provide a genuine adaptive experience. This was 
achieved by work from the project lead and by hiring an outside 
content expert. This did not provide each knowledge component 
with a large number of problems, reducing the significance of 
knowledge tracing, but it was sufficient for the purpose of our 
experiment. The total time outlay was ~200 hours. Keeping the 
problems housed within the edX platform avoided substantial 
amounts of software development. 

The tagging of content with knowledge components was done by 
means of a shared Google spreadsheet, which contained a list of 
content items in one sheet (both assessment and learning 
materials), a list of knowledge components in another, and a 
correspondence table (the tagging itself), including the difficulty 
levels, in the third. 

Most of the time was spent on creating new problems based on the 
existing ones. For these the tagging process was “reversed”: rather 
than tag existing content with knowledge components, the experts 
created content targeting knowledge components and difficulty 
levels. Commonly, an existing problem was considered to be of 
“regular” difficulty, and the expert’s task was to create an “easy” 
and/or an “advanced” version of it. 
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103 distinct knowledge components were used in tagging. The 
experts used their judgement in defining them. 66 of these were 
used in tagging problems, and in particular the 39 adaptively 
served problems were tagged with 25 KCs. The granularity of 
KCs was such that a typical assessment problem was tagged with 
one learning objective (which is desirable for knowledge tracing). 
Namely, among the adaptively served problems, 31 were tagged 
with a single KC, 7 problems – with 2 KCs, and 1 problem – with 
3. 

2.2 LTI Tool Development 
To enable the use of an adaptive engine in an edX course, Harvard 
developed the Bridge for Adaptivity (BFA) tool (open-source, 
GitHub link available upon request). BFA is a web application 
that uses the LTI specification to integrate with learning 
management systems such as edX. BFA acts as the interface 
between the edX course platform and the TutorGen SCALE 
(Student Centered Adaptive Learning Engine) system, and 
handles the display of problems recommended by the adaptive 
engine. Problems are accessed by edX XBlock URLs. 

This LTI functionality allows BFA to be embedded in one or 
more locations in the course (4 locations in our case). The user 
interface seen by a learner when they encounter an installed tool 
instance is that shown in Fig. 1. 

 
Figure 1. Adaptive assessment user interface 

Problems from the edX course are displayed one at a time in a 
center activity window, with a surrounding toolbar that provides 
features such as navigation, a score display, and a shareable link 
for the current problem (that the learner can use to post to a forum 
for help). The diagram in Fig. 2 describes the data passing in the 
system. The user-ids used by edX are considered sensitive 
information and are not shared with SCALE: we created a 
different user-id system for SCALE, and the mapping back and 

forth between the two id-systems happens in the back end of the 
app.  

 
Figure 2. Diagram of data passing in the system 

Every problem-checking event by the user (both inside and 
outside the adaptive homeworks) sends the data to SCALE, to 
update the mastery information real-time. Every “Next Question” 
event in an adaptive homework sends to SCALE a request for the 
next content item to be served to the user (this could be 
instructional material or a problem). SCALE sends back the 
recommendation, which is accessed as an edX XBlock and 
loaded. 

The edX support for LTI is highly stable. The challenge is that 
edX exports data on a weekly cycle, but we needed to receive the 
information about submits in real time. We achieved this by 
creating a reporting JavaScript and inserting it into every problem. 

2.3 TutorGen Adaptive Engine 
TutorGen SCALE is focused on improving learning outcomes 
using data collected from existing and emerging educational 
technology systems combined with the core technology to 
automatically generate adaptive capabilities. Key features that 
SCALE provides include knowledge tracing, skill modeling, 
student modeling, adaptive problem selection, and automated hint 
generation for multi-step problems. SCALE engine improves over 
time with additional data and/or with the help of human  input by 
providing machine learning using a human-centered approach. 
The algorithms have been tested on various data sets in a wide 
range of domains. For successful implementation and optimized 
adaptive operations, it is important that the knowledge 
components be tagged at the right level of granularity. 

SCALE has been used in the intelligent tutoring system 
environment, providing adaptive capabilities during the formative 
learning stages. SCALE with HarvardX for this course is being 
used more as in the assessment stage of the student experience. In 
order to accomplish the goals of the prototype for this pilot study, 
we extended our algorithms to consider not only the knowledge 
components (KCs), but also problem difficulty. This will 
accommodate the needs for this course by providing an adaptive 
experience for students while still supporting the logical flow of 
the course. Further, the flexible nature of the course, having all 
content available and open to students for the duration of the 
course, presents some additional requirements to ensure that 
students are presented with problems based on their current state 
and not necessarily where the system believes they should 
navigate. 
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A variety of serving strategies are available in SCALE and can be 
swapped in and out. In this particular implementation, while the 
algorithm did trace the students’ knowledge, the results were used 
minimally in the serving strategy: it did not make sense to do 
otherwise given the small size of the adaptive problem pool. 
SCALE was configured to consider after each submit: the 
probability of the learner has mastered the KCs from the problem 
most recently worked, the difficulty of that problem, and the 
correctness of the submitted answer. A general and simplified 
explanation of the process is as follows. Each of the four adaptive 
modules was treated as a separate instance, with its own pool of 
problems. Each problem can be served to each learner no more 
than once. Given the last problem submitted by a learner in the 
module, the candidate to be served next is the (previously unseen) 
problem, whose KC tagging overlaps with the KCs of the last 
submitted problem and includes at least one KC, on which the 
user has not yet reached the mastery threshold. If multiple 
candidates are available, SCALE will serve the one with a KC 
closest to mastery. If no candidates are available, other problems 
of the same difficulty within the same module will be served (i.e. 
SCALE switches to another KCs). The difficulty level of the next 
served problem is determined by the last submit correctness. As 
long as problems of the same difficulty level as the last one are 
available, the learner will remain at that difficulty level. Once 
such problems are exhausted, SCALE will serve a more or less 
difficult problem, depending on whether the last submit in the 
module was correct or incorrect. 

2.4 Quantitative Details and Findings 
The course was launched on Oct 19, 2016. The data for the 
analysis presented in this paper were accessed on Mar 08, 2017 
(plus or minus a few days, since different parts of the data were 
extracted at different times), after the official end date of the 
course. 

Table 1. Number of students attempting assessment items of 
different difficulty level 

 Experimental 
group 

Control 
group 

Regular level only 58 73 
Easy level only 0 0 
Advanced level only 1 0 
(Regular È Easy) levels only 1 35 
(Regular È Advanced) levels only 105 0 
(Easy È Advanced) levels only 0 1 
(Regular È Easy È Advanced) levels 99 145 
Total students attempting new problems 264 254 
We will refer to the list of problems from which problems were 
served adaptively to the experimental group as “new problems”. 
The control group may have interacted with these as well, 
although not adaptively (as additional problems that do not count 
towards the grade). There were 39 new problems, out of which 13 
were regular difficulty (these formed the assessments for the 
control group of students), 14 were advanced and 12 were easy. 
For the control group, the advanced and easy problems were 
offered as extra material after assessment, with no credit toward 
the course grade. The numbers of students attempting assessment 
problems of different difficulty levels are given in Table 1. 

To get a sense of how the two groups of students performed in the 
course, we compared the group averages of the differences in 

scores in the pre-test and post-test. For reasons unrelated to this 
study, both tests were randomized: in each test each user received 
9 questions, randomly selected from a bank of 17. All questions 
were graded on the 0-1 scale. The users knew that the pre- and 
post- tests do not contribute to the grade, and so only about ~40% 
of users took both. Moreover, not all of these questions were 
relevant for (i.e. tagged with) those 25 knowledge components, 
with which the adaptively served problems were tagged. So the 
number of offered relevant questions varied randomly from user 
to user. For these reasons the pre- and post-test are not the most 
reliable measure of knowledge gain, but it was still important for 
us to make sure that adaptivity did not have any adverse effect. 
Each question was graded on the scale 0-1, and in Fig. 3 we 
subset the student population to those individuals who attempted a 
“new problem” and a relevant pre-test question and a relevant 
post-test question, and used the average score from relevant 
questions as the student’s relevant score. For instance, if one user 
attempted two relevant questions in a pre-test, and another user 
attempted three, and the questions were answered correctly, both 
users have the relevant score 1: (1+1)/2=(1+1+1)/3. 

 

Figure 3. Comparison of relevant post-test and pre-test scores. 
Here and everywhere below, the p-values are two-tailed from 
the Welch two-sample t-test, and the effect size is the Cohen’s 

d (Cohen suggested to consider d=0.2 as “small”, d=0.5 as 
“medium” and d=0.8 as “large” effect size). 

There is no significant between-group difference, neither in the 
pre-test scores (p-value 0.49, effect size 0.093) nor in the post-test 
scores (p-value 0.21, effect size 0.17). The two populations of pre-
test takers remain comparable after subsetting to those who 
attempted new problems and the post-test and we see no 
statistically significant difference in the knowledge gaining 
between the experimental and control groups. 

We did not see a difference in the final grade of the course: the 
mean grade was 83.7% in the experimental group vs. 82.9% in the 
control group, which is not a significant difference (p-value 0.76, 
effect size 0.06). Likewise, there is no significant between-group 
difference in the completion and certification rates (about 20%), 
or in demographics of students who did not drop out. 

Students in the experimental group tended to make more attempts 
at a problem (Fig. 4), and they tried fewer problems (Fig. 5), most 
strikingly among the easy new problems: for these we have 1,162 
recorded scores in the control group and only 423 in the 
experimental group. 
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Figure 4. Comparison of attempt numbers between the 
experimental and control groups in the chapters where 
adaptivity was implemented. The attempt numbers are 

averaged both over the problems and over the users. Non-
adaptive problems are problems not from the 4 experimental 
homeworks but from the same two chapters of the course as 

the experimental homeworks. 

 

Figure 5. Comparison of attempt numbers between the 
experimental and control groups in the chapters where 

adaptivity was implemented. Non-adaptive problems are 
problems not from the 4 experimental homeworks but from 

the same two chapters of the course as the experimental 
homeworks. 

The interpretation emerges that the students who experienced 
adaptivity showed more persistence by giving more attempts per 
problem (presumably, because adaptively served problems are 
more likely to be on the appropriate current mastery level for a 
student), while taking a faster track through the course materials. 
We also observed that the experimental group students tended to 
have a lower net time on task in the course: an average of 5.47 
hours vs. 5.85 in the control group (although in this comparison 
the p-value is high, 0.21, and the effect size is –0.11). 

Thus, we conjecture that the adaptivity of this kind leads to a 
higher efficiency of learning. Students go through the course 
faster and attempt fewer problems, since the problems are served 
to them in a targeted way. And yet there is no evidence of an 
adverse effect on the students’ overall performance or knowledge 
gain. Given the limited implementation of adaptivity in this 
course, it is not surprising that we cannot find a statistically 
significant effect on student overall performance in the course. 
We expect to refine these conclusions in the future courses with a 
greater scope of adaptivity. 

3. FUTURE WORK 
Our implementation of adaptivity provided some insights for 
future work. For instance, assessment questions in MOOCs can 
vary greatly in nature, difficulty and format (multiple choice, 
check-all-that-applies, numeric response, etc.), and may often be 
tagged with more than one knowledge component. To be suitable 
for a MOOC, an adaptive engine should be able to handle these 
features. 

There appear to be extensive opportunities to expand adaptive 
learning and assessment in MOOCs. The low total number of 
problems was the most severe restriction on the variability of 
learner experience in this study. In the future applications, larger 
sets of tagged items could provide a more adaptive learning 
experience for students, while also providing a higher degree of 
certainty of assessment results. Interestingly, in some MOOCs 
(for example, those teaching programming languages) it may be 
possible to create very large numbers of questions algorithmically, 
essentially by filling question templates with different data.  

In this study, adaptivity was implemented mostly on assessment 
problems. Given the structure of many MOOCs, more integration 
between learning content and assessment could provide an 
adaptive experience that would guide students to content that 
could improve their understanding based on how they perform on 
integrated assessments.  

Affective factors could be included to provide a more 
personalized learning experience. We can conceive an adaptive 
engine which decides what item to serve next based not just on the 
mastery but also on the behavioral patterns interpreted as boredom 
or frustration. 

Finally, this work could lead to improved MOOC platform 
features that would contribute to improved student experiences, 
such as optimized group selection [2]. In addition, we anticipate 
expanding this adaptive assessment system to work with other 
LTI-compliant course platforms. Enabling use in a platform such 
as Canvas, the learning management system used university-wide 
at Harvard (and many other schools), would enable adaptivity for 
residential courses on a large scale. An adjustment to the current 
system architecture would be the use of OpenEdX as the platform 
for creating and hosting problems. 
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