
Real-time programming exercise feedback in MOOCs
Zhenghao Chen, Andy Nguyen, Amory Schlender, Jiquan Ngiam

Coursera
381 East Evelyn Ave

Mountain View, CA, USA
{zhenghao, anguyen, aschlender, jngiam}@coursera.org

ABSTRACT
We present an active learning system for coding exercises
in Massively Open Online Courses (MOOCs) based on real-
time feedback. Our system enables efficient collection of
personalized feedback via an instructor tool for automated
discovery and classification of bugs.

1. INTRODUCTION
Active learning is a learning approach that “requires stu-
dents to do meaningful learning activities” in contrast to tra-
ditional lecture-based approaches where “students passively
receive information from the instructor” [2]. In active learn-
ing, timely feedback is important as it helps learning and
reduces the risk of learner disengagement due to repeated
failure to complete learning activities.

MOOCs have leveraged in-videos quizzes as an active learn-
ing strategy, but these quizzes have traditionally been lim-
ited to multiple choice questions. One reason that introduc-
ing higher order tasks, such as coding exercises, has been
challenging is that it is difficult to provide good feedback.
Most automated code grading systems allow for efficient
grading through unit testing, but these methods are often
limited in the forms of feedback they can provide.

Feedback that helps learners understand their errors can im-
prove learning outcomes. Stamper et al. [5] demonstrated
significant problem completion rate improvements in a logic
course when feedback was available to learners. This has
motivated related developments in data-driven methods to
generate such feedback [3, 4, 1].

In this demo, we will show a system that enables instruc-
tors to efficiently generate and provide real-time feedback
for programming exercises in MOOCs through extensions
to Executable Code Blocks (ECBs) [6] and the Codewebs
engine [1]; these exercises can be embedded throughout the
learning experience to enable rich active learning.

2. EXECUTABLE CODE BLOCKS
Executable code blocks (ECBs) [6] enable learners to write
and execute code directly in their web browser. The primary
advantage of ECBs is that they can be tightly integrated
into the course experience. For example, immediately after
a concept is explained in a video, a learner can be asked to
implement the specific concept in an ECB.

ECBs usually employ unit testing strategies to evaluate if a
learner’s implementation is correct. We extend ECBs such
that when a learner makes an incorrect submission, they can
request additional feedback that highlights potential errors
in their submission and provides hints that guide the learner
towards correcting these errors (see figure 1). These hints
are provided efficiently by an instructor through an exten-
sion of the Codewebs engine.

Figure 1: Hints provided in an ECB for an incorrect
submission.

3. CODEWEBS ENGINE
We use the Codewebs engine [1] to localize errors in learner
code submissions and identify common classes of errors. We
describe here the relevant process of doing so automatically
at a high level, and refer the reader to [1] for details.

The Codewebs engine operates on the abstract syntax tree
(AST) representation of code submissions. Let n be a node
in the AST, Tn be the subtree rooted at n, and Pn be the
subtree rooted at the parent of n. The local context of Tn,
denoted by T c

n, is Pn with Tn removed (see figure 2).

We say that T c
n is a buggy context if submissions containing

T c
n are more likely to be incorrect than by random chance.

The Codewebs engine declares that Pn is a bug if T c
n is a

buggy context but no subtree of Tn has a buggy context.
Given a bug Pn, the Codewebs engine then searches for a
correction C such that replacing Pn with C results in a cor-
rect program.

We extend Codewebs in two ways. First, we modify the
localization process to consider local contexts that are se-
mantically equivalent1. This allows us to discover more bugs
across submissions that might have syntactically distinct but
semantically equivalent contexts. We also use this to im-
prove correction discovery in a similar way (see figure 3)
and improve correction searching to handle instances where
multiple bugs occur within a submission.

Second, we introduce the concept of bug groups or error
modes. Two bugs B and B′ belong to the same group i� B

1We follow the definition of semantic equivalence used in [1].

Figure 2: Left: Subtree Pn containing subtree Tn in
pink. Right: T c

n, the local context of subtree Tn.

Proceedings of the 10th International Conference on Educational Data Mining 414




