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ABSTRACT
We present an active learning system for coding exercises
in Massively Open Online Courses (MOOCs) based on real-
time feedback. Our system enables efficient collection of
personalized feedback via an instructor tool for automated
discovery and classification of bugs.

1. INTRODUCTION
Active learning is a learning approach that “requires stu-
dents to do meaningful learning activities” in contrast to tra-
ditional lecture-based approaches where “students passively
receive information from the instructor” [2]. In active learn-
ing, timely feedback is important as it helps learning and
reduces the risk of learner disengagement due to repeated
failure to complete learning activities.

MOOCs have leveraged in-videos quizzes as an active learn-
ing strategy, but these quizzes have traditionally been lim-
ited to multiple choice questions. One reason that introduc-
ing higher order tasks, such as coding exercises, has been
challenging is that it is difficult to provide good feedback.
Most automated code grading systems allow for efficient
grading through unit testing, but these methods are often
limited in the forms of feedback they can provide.

Feedback that helps learners understand their errors can im-
prove learning outcomes. Stamper et al. [5] demonstrated
significant problem completion rate improvements in a logic
course when feedback was available to learners. This has
motivated related developments in data-driven methods to
generate such feedback [3, 4, 1].

In this demo, we will show a system that enables instruc-
tors to efficiently generate and provide real-time feedback
for programming exercises in MOOCs through extensions
to Executable Code Blocks (ECBs) [6] and the Codewebs
engine [1]; these exercises can be embedded throughout the
learning experience to enable rich active learning.

2. EXECUTABLE CODE BLOCKS
Executable code blocks (ECBs) [6] enable learners to write
and execute code directly in their web browser. The primary
advantage of ECBs is that they can be tightly integrated
into the course experience. For example, immediately after
a concept is explained in a video, a learner can be asked to
implement the specific concept in an ECB.

ECBs usually employ unit testing strategies to evaluate if a
learner’s implementation is correct. We extend ECBs such
that when a learner makes an incorrect submission, they can
request additional feedback that highlights potential errors
in their submission and provides hints that guide the learner
towards correcting these errors (see figure 1). These hints
are provided efficiently by an instructor through an exten-
sion of the Codewebs engine.

Figure 1: Hints provided in an ECB for an incorrect
submission.

3. CODEWEBS ENGINE
We use the Codewebs engine [1] to localize errors in learner
code submissions and identify common classes of errors. We
describe here the relevant process of doing so automatically
at a high level, and refer the reader to [1] for details.

The Codewebs engine operates on the abstract syntax tree
(AST) representation of code submissions. Let n be a node
in the AST, Tn be the subtree rooted at n, and Pn be the
subtree rooted at the parent of n. The local context of Tn,
denoted by T c

n, is Pn with Tn removed (see figure 2).

We say that T c
n is a buggy context if submissions containing

T c
n are more likely to be incorrect than by random chance.

The Codewebs engine declares that Pn is a bug if T c
n is a

buggy context but no subtree of Tn has a buggy context.
Given a bug Pn, the Codewebs engine then searches for a
correction C such that replacing Pn with C results in a cor-
rect program.

We extend Codewebs in two ways. First, we modify the
localization process to consider local contexts that are se-
mantically equivalent1. This allows us to discover more bugs
across submissions that might have syntactically distinct but
semantically equivalent contexts. We also use this to im-
prove correction discovery in a similar way (see figure 3)
and improve correction searching to handle instances where
multiple bugs occur within a submission.

Second, we introduce the concept of bug groups or error
modes. Two bugs B and B′ belong to the same group iff B

1We follow the definition of semantic equivalence used in [1].

Figure 2: Left: Subtree Pn containing subtree Tn in
pink. Right: T c

n, the local context of subtree Tn.
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Figure 3: Visual illustration of finding corrections
for bug B, C is a correction for B if we can find a
correct submission where C is surrounded by A′ and
A′ is semantically equivalent to A.

is semantically equivalent to B′ and the correction for B is
semantically equivalent to the correction for B′.

4. INSTRUCTOR ANNOTATIONS
By grouping bugs together, instructors can provide a hint
for each error mode (instead of for individual submissions).
These hints power the feedback features mentioned in sec-
tion 2 (see figure 1).2

Figure 4: Instructor tool for exploring common er-
rors based on bug equivalences classes.

Furthermore, we can provide instructors with a tool (see
figure 4) to explore these common error modes. This tool
orders bug groups by the frequency at which they appear
in learner submissions. This enables instructors to quickly
understand the most common errors made by learners. This
breakdown is useful for course material improvement as they
can expose common learner misconceptions.

5. RESULTS
We introduced 3 ECBs into the Machine Learning MOOC
on Coursera involving tasks of varying levels of complexity
(e.g., implementing the cost function for regularized linear
regression). Each ECB required between 10 and 20 lines of
code each to solve.

For each ECB we collected between 3, 118 and 5, 550 submis-
sions, consisting of between around 1, 000 and 3, 000 distinct
ASTs (see table 1). These submissions were used to train
the Codewebs model. We find that a relatively small num-
ber of error groups (40) is required to achieve good coverage

2It is also possible to show learners automatically generated
corrections when instructor input is not available.

Submis-
sions

% Correct
Unique
ASTs

% Coverage
(40 bug groups)

RLR
Normal Eqn

3, 118 52.8% 1, 338 61.0%

Matrix Inv
Cost Fn

3, 892 19.5% 1, 440 49.5%

Matrix Inv
Grad

5, 550 11.5% 3, 050 36.7%

Table 1: 3 ECBs added to the Machine Learning
MOOC on Coursera

Figure 5: Percentage of incorrect submissions by
number of error modes.

of a large fraction of incorrect submissions (see figure 5).
Between 28.6% and 55.0% of incorrect submissions contain
at least 1 of the 20 most common error modes, and between
36.7% and 61.0% contain at least 1 of the 40 most common
error modes (see figure 5).

A teaching assistant was recruited to label the top 40 discov-
ered error groups, and we are now running tests to under-
stand the effects of this intervention on learning outcomes.
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