
any other analysis methods that are currently in LearnSphere (e.g., 
Bayesian Knowledge Tracing [1], Performance Factors Analysis 
[6], MOOC activity analysis [3], and others) or that have been 
uploaded to LearnSphere as a custom workflow, and (3) sharing 
their own analysis workflows with the community of researchers. 
Without any prior programming experience, researchers can use 
LearnSphere’s drag-and-drop interface to compare, across 
alternative analysis methods and across many different datasets, 
model fit metrics like AIC, BIC, and cross validation as well as 
parameter estimates themselves. 

Workshop submissions will involve a brief description of an 
analysis pipeline relevant to modeling educational data as well as 
accompanying code. Prior to the workshop itself, the organizers 
will coordinate with authors of accepted submissions to integrate 
their code into Tigris. A significant portion of the workshop will 
be dedicated to hands-on exploration of custom workflows and 
workflow modules within Tigris. Authors of accepted submissions 
will present their analysis pipelines, and everyone attending the 
workshop will be able to access those analysis pipelines within 
Tigris to a variety of freely available educational datasets 
available from LearnSphere. The end goal is to generate, for each 
workflow component contribution in the workshop, a publishable 
workshop paper that describes the outcomes of openly sharing the 
analysis with the research community. 

Finally, workshop attendees will discuss bottlenecks that remain 
toward our goal of an easier, more open way to share analytic 
tools. We will also brainstorm possible solutions. Our goal is to 
create the building blocks to allow groups of researchers to 

integrate their data with other researchers we can advance the 
learning sciences as harnessing and sharing big data and analytics 
has done for other fields. 
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