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ABSTRACT 
Identifying prerequisite relationships among skills is important for 
better student modeling in many educational systems. In this paper, 
we propose a new method to discover prerequisite structure from 
data using nested model comparisons in the context of Bayesian 
estimation. We evaluate our method with simulated data and real 
math test data.  

Keywords 

Prerequisite structure discovery, Bayesian Network, MCMC 
estimation, nested model comparison, pseudo-Bayes factor. 

1. INTRODUCTION 
In many educational systems, the process of learning usually 
proceeds sequentially according to a predetermined order that 
reflects cognitive theories about student learning. In this learning 
sequence some knowledge skills must be acquired prior to learning 
advanced skills. In this study, we refer to prerequisite structure as 
the relationships among skills that put strict constraints on the order 
in which these skills can be mastered.  

Identifying skill prerequisite structure is a crucial step to construct 
a valid and accurate student model in adaptive tutoring system or 
other educational system for estimation of student's skill mastery 
status and provision of appropriate remediation for them. 
Prerequisite structure can be specified by domain experts, but such 
process may be time-consuming and could produce subjective 
models lacking validity. Using large educational data and data 
mining techniques, several previous studies have tried to find 
prerequisite relationships among knowledge skills [1,2,3,7]. To 
derive prerequisite structure from student performance data is 
somewhat challenging in that a student’s mastery status of skills 
cannot be directly observed, but can only be estimated, i.e, is latent 
in nature. Previous works mostly used Expectation-Maximization 
(EM) estimates for latent skill variables [1,2,3].  

In this paper, we present a new method for discovering prerequisite 
structure from student performance data using Bayesian Markov 
Chain Monte Carlo (MCMC) estimation and nested model 
comparison. For nested model comparison, we use pseudo-Bayes 
factor (PsBF) [4], one of the Bayesian model selection criteria. 

2. METHOD 
In our method, it is assumed that student performance (item 
response) data at a certain point in time is given and skills related 
to items are specified. Skills and items are considered as binary 
random variables and the item-skill relationships are given by Q-
matrix (a binary matrix that represents the mapping of items to 
skills) [9]. DINA model is used for modeling the probability of 
correct response to an item as a function of whether all the skills 
required are mastered and of slip and guess parameters [5]. To 
represent skill prerequisite structure, (static) Bayesian Network is 

used as student model. Bayesian network is a probabilistic 
graphical model representing the relationship of a set of random 
variables as a directed acyclic graph (DAG) with conditional 
probability tables (CPTs).  

We now focus on the discovery of prerequisite relationship, that is, 
strict hierarchical order between mastery of two skills. To this end, 
we set two types of models: a full model, which parameterizes all 
possible dependencies between skills, and a strict model, which 
assumes prerequisite relationship between a pair of skills. For 
example, Figure 1 illustrates DAGs and CPTs of a full model 
consisting of three skills (S , S , S ) and a strict model assuming 
prerequisite relationship between skill S  and S  ( S  is a 
prerequisite for S ). The difference between two models is that, 
while the full model contains the parameter γ  related to the 
probability P(S = 1 | S = 0), the strict model put a constraint 
that this probability is  zero (that is, the strict model is nested within 
the full model). If skill S  is a true prerequisite for S , the parameter 
γ  in the full model will be estimated to be closed to zero and there 
will be no significant difference in the degree to which the two 
models explain the data. The idea of nested model comparison is to 
statistically test the null hypothesis that the two models present the 
same likelihood on the data.  

 

Figure 1.  DAGs and CPTs of (a) a full model and (b) a strict 
model of skills , , . The bolded directed edge from  to 

 in DAG of the strict model (b) means that  is a 
prerequisite for mastery of .  

When two models are fitted to the data using maximum likelihood, 
the likelihood ratio test is used for hypothesis testing. In the context 
of Bayesian estimation, Bayes factor or its variants can be 
considered as the test method. We use pseudo-Bayes factor, which 
can be calculated by the MCMC estimation process, as the test 
statistic to contrast two models. The pseudo-Bayes factor for model 
M  relative to M  is the ratio of approximations of marginal 
likelihood based on predictive distributions and cross-validation 
strategies and defined as 

PsBF =
̂(  | )
̂(  | )

=
∏ (  | , )
∏ (  | , )

=
∏ (  |Θ, ) (Θ| , ) Θ
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where X  is the response data of student i, X   is the complement 
of X  in the data X , and Θ  is the set of free parameters. The 
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calculated PsBF value in MCMC estimation is compared to a 
critical value to decide whether to reject the null hypothesis or not. 
If the null hypothesis is not rejected, then the strict model is 
accepted, thus concluding that the prerequisite relationship exists. 

3. EVALUATIONS 
To evaluate the efficiency of our method in discovering prerequisite 
structures, we first conducted a simulation study and then applied 
our method to a real dataset. In this process we faced a problem that 
PsBF values are dispersed from the known distribution of Bayes 
Factor [6]. To address this problem, we derived the critical value 
from the empirical distribution of PsBF values under the null 
hypothesis.  

In our evaluation steps, all MCMC estimation algorithms were 
implemented using R package R2OpenBUGS [8]. For MCMC 
estimations, we set the priors as follows: a uniform prior Unif(0, 1) 
on each structural parameters (γ ) and a beta prior Beta(6, 21) on 
slip and guess parameters for each items. 

3.1 Simulated Data 
In this simulation part, we considered five prerequisite structures of 
latent skills (Figure 2). For each structure, we generated 500 
datasets consisting of 1000 students’ skill mastery status and their 
responses for test items using a balanced Q-matrix (each skills are 
measured with the same number and types of items) under the 
DINA model with low slip and guess probabilities randomly drawn 
from Unif(0, 0.05). 

 
Figure 2. Five prerequisite structures of skills used in 
simulation study 

We evaluate our method using two metrics: true positive structure 
rate (TPSR; # of correct structure recoveries in the output / # of true 
structures) and true positive adjacency rate (TPAR; # of correct 
adjacency recoveries in the output / # of adjacencies in true model).  

The results show that our method can efficiently discover 
prerequisite structure (Table 1). In all cases recovery rates of true 
structure are over 80% (the worst rate is 81.6% in structure 4). The 
recovery rates of true prerequisite relationship between two skills 
(edges) are even higher such as over 90%.  

Table 1. TPSR and TPAR results for each structure 

Structure 1 2 3 4 5 

TPSR 0.926 0.840 0.872 0.816 0.874 

TPAR 0.937 0.942 0.943 0.942 0.962 
 

3.2 Real Data Application 
We used mathematics cognitive diagnosis assessment data from 
936 eighth grade students over a set of 16 items measuring four 
skills related to linear equation and linear inequality (Figure 3-a). 
The prerequisite structure of these skills (Figure 3-b) was initially 
set by knowledge experts.  

Figure 3-c shows the prerequisite structure discovered by applying 
our method to the real data. All prerequisite relationships set by 
experts are well discovered, and one additional prerequisite 

relationship (S → ) is found. A possible explanation for this is 
that while knowledge experts judge that either linear equation or 
linear inequality can be learned first, students usually learn to solve 
linear equation first following the sequence in the curriculum.  

4. CONCLUSION AND FUTURE WORK 
We presented a method to discover skill prerequisite structure from 
data based on nested model comparison and evaluated the method 
using simulated data and real data. The performance of our 
prerequisite structure learning method was good within the settings 
used in our experiments. Since we used only low number of skills 
and certain assumptions for the evaluation, we need to further 
explore our method in various conditions. 

In future work, we will investigate the idea of nested model 
comparison in the context of frequentist estimation (e.g., EM 
estimation) and compare with other previous methods. In this paper 
the focus is only on the prerequisite relationship between skills, but 
there may be other dependence relationships between them along 
with different types of response models. It would be interesting to 
study how to discover skill structures considering various 
dependency relationships in Bayesian Network modeling of skill 
mastery. 
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Figure 3. (a) Four skills in math test; (b) Prerequisite structure 
from knowledge experts; (c) Discovered prerequisite structure
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