
A Framework for the Estimation of Students’ Programming
Abilities

Ella Albrecht
Institute of Computer Science

University of Goettingen
Göttingen, Germany

ella.albrecht@cs.uni-goettingen.de

ABSTRACT
In times of increasing numbers of students and high usage
of e-learning systems, student models are a good way to
get an overview of what is currently occurring in the class-
room, analyze students’ behavior and estimate their learn-
ing progress. In our work, we develop a framework which
estimates a student’s programming knowledge by looking
at his responses to open-ended programming assignments.
The model we construct incorporates multiple applications
of multiple skills in one exercise, multiple submissions and
varying knowledge components involved in the same exer-
cise.

1. INTRODUCTION
During the last years, the number of students has increased
rapidly. Especially in introductory courses, hundreds of stu-
dents are attending. This makes it infeasible for educators
to take care of each student individually. On the other hand,
to deal with large amounts of students, many institutes use
e-learning and e-assessment systems to support their teach-
ing. These systems allow large data collection on which data
mining and learning analytics techniques can be applied to
build student models. Student models are used to estimate
a student’s cognitive state, e.g., his/her motivation, knowl-
edge, misconceptions or learning style and preferences [4].
A student model can be used to provide students personal-
ized course material fitting to their current knowledge and
learning habits. Furthermore student models can be used to
predict student’s performance and identify students which
are at risk to intervene in a timely manner. Besides, we can
use a student model to identify problematic course contents.
This knowledge can be used as a basis for restructuring and
redesigning the course.
In our research, we want to develop a framework for the
estimation of student’s knowledge regarding programming.
Therefore, we look at students’ solutions to open-ended pro-
gramming exercises. For each exercise, it is defined which
knowledge components (KC) are required to solve the exer-
cise correctly. KCs describe the individual components of

knowledge which are required to solve a particular task or
problem. The task in an introductory programming course
is to learn to write simple programs which meet the spec-
ifications given in text form, i.e., the exercise description.
Therefore KCs can be, e.g., the programming language’s
constructs, i.e., syntax and semantics, correct usage of a
compiler or IDE, error understanding and debugging ability,
or the translation of specifications to program code. Then,
it is checked whether the student has applied the KCs in
his/her solution correctly. From theses observations a stu-
dent model can be constructed which is able to estimate a
student’s knowledge state.

2. PROBLEM STATEMENT
Knowledge cannot be assessed directly, because there may
be several reasons why a student made a mistake. For exam-
ple, a missing break in a switch-case-block may be just due
to sloppiness, because the student does not know the break-
statement, or because the student does not understand how
the commands in a switch-case-block are executed. Be-
cause of these uncertainties often probabilistic models are
used for student modeling.
Bayesian Knowledge Tracing (BKT) [5] is one of the most
widely spread student modeling approaches. It uses Hidden
Markov Models to model students’ learning. It was at first
applied to programming exercises for LISP in the ACT Pro-
gramming Tutor. The domain knowledge was represented
by production rules of the form ”to achieve goal X do Y ”
where Y may be a subgoal. The knowledge of a student was
described as the probability that the student knows a rule.
Since there was a deterministic order of which rules need to
be applied to solve an exercise correctly, the student’s knowl-
edge could be estimated by looking at the student’s solutions
rules order. But in imperative or object-oriented languages
like C, C++, or Java one can only extremely rarely define a
deterministic order of statements.
Kasurinen and Nikula [7] have applied BKT on students’ re-
sults to Python exercises. As domain knowledge they have
defined guidelines for preferred solutions, e.g., each open file
should be closed. Moreover, they have checked whether the
student has used the guideline in his/her solution. However,
the set of KCs was very limited.
Berges and Hubwieser [2] as well as Yudelson et al. [10]
used the Rasch model from Item Response Theory (IRT) to
estimate student’s knowledge of object-oriented concepts in
Java instead. In IRT, the relationship between responses to
items, i.e., exercises, and a latent trait, i.e., an ability or
KC, is described as a logistic function. Different from BKT,

Proceedings of the 10th International Conference on Educational Data Mining 424



it also takes the difficulty of an item into account.
BKT as well as IRT have the main drawback that they are
single skill models, i.e., for each KC a separate model is con-
structed, and it is assumed that each exercise only requires
one KC. For programming assignments, this assumption is of
course not sustainable. Performance Factor Analysis (PFA)
[8] is able to deal with multiple skills per exercise but as BKT
and IRT also does not consider dependencies between KCs.
However, in the programming domain there are dependen-
cies between KCs, e.g., one needs to know how assignments
or incrementing works when using a for-loop, or that the
knowledge of a while-loop can influence the knowledge of a
for-loop. It was also shown that integrating dependencies of
knowledge into a student model can improve the model [3,
6]. Another special property of programming assignments
is that KCs can be required multiple times in one exercise,
e.g., if multiple loops are needed to solve the exercise. We
also want to investigate the influence of substeps during the
solution process to a model’s accuracy. To the best of our
knowledge, there does not exist a modeling approach so far
which fulfills all of the requirements for programming as-
signments we have stated above.

3. RESEARCH METHODOLOGY AND AP-
PROACH

Before we can make use of a student model in a course,
several steps have to be taken. First, we need to identify
what we expect the students to learn in our course, i.e.,
which KCs shall be acquired. In the first iteration of our
research, the KCs we want to use for our model are the con-
cepts of the programming language, e.g., if, for, variables,
arrays etc., rules for good programming practice, e.g., each
declared variable shall be used, allocated memory has to be
freed, etc., as well as the fulfillment of the specifications by
checking whether the program produces the correct output.
In a second step, we need to know which KCs are required
to solve a particular exercise as we want to build our stu-
dent model from the data we gain from their solutions to
programming assignments. For example, summing up the
numbers from 1 to 100 requires among others the knowl-
edge of loops or recursion. This example also shows us, that
it is actually not that easy to define which concrete concepts
are really mandatory to solve the exercise as we could write
a correct solution without knowing loops if we know recur-
sion and vice versa. In our work, we develop a knowledge
requirements model (KRM) which models required KCs re-
lated to language concepts for a particular exercise. The
general mapping of language constructs, e.g., elements of an
abstract syntax tree (AST), to concrete KCs has to be done
beforehand by a domain expert. The KRM for a particular
exercise is learned automatically from different correct so-
lutions to that exercise based on their ASTs and structural
analysis. We divide correct solutions into blocks and deter-
mine the set of KCs used in the block. From these sets we
construct a tree where each path describes an alternative so-
lution. By comparing a student’s solution to the KRM, one
can get the KCs which were applied correctly, incorrectly or
are missing in the student’s solution.
Despite the comparison with the KRM, we also use compiler
and static analysis tool messages to assess the incorrect ap-
plication of a KC, e.g., static analysis tools can deliver hints
on, e.g., misunderstanding of control flow. Dynamic tests
like unit tests, help us to evaluate a student’s general pro-

types incompatible types message

assignments

variables

declared

initialized

types incompatible types message

assignments

variables

declared

initialized

Figure 1: Example structure for a part of a DBN
student model

gram writing ability, i.e. whether a student is able to write
a program which meets the specifications, i.e., does what it
is intended to do.
The third step deals with the construction of the student
model. We use Dynamic Bayesian Networks (DBN) for stu-
dent modeling as they seem most appropriate to us. A DBN
is a two-time-sliced Bayesian network where the state of a
hidden variable depends on the states of the variables it de-
pends on and the variable’s state in the previous time step.
Making observations in each time step updates the proba-
bility distribution of a hidden variable being in a particular
state.
In our case, the hidden variables are the KCs, e.g., in Fig-
ure 1 the hidden variables (blank circles) are the concepts
types, variables, and assignments. Observations in our stu-
dent model are the results from the comparison of the stu-
dent’s solution with the KRM, compiler and static analysis
tool messages as well as results from dynamic tests, e.g.,
in Figure 1 the observations (filled circles) are whether the
student has declared and initialized a variable as well as
whether an error message regarding incompatible types in
an assignment appears. These variables can have the states
true or false. With DBNs, we are able to deal with multiple
KCs per exercise, their interdependencies, the uncertainty
of which KC is affected by a certain observation and the
uncertainty of which KCs are required to solve a particular
exercise.
In our work, the structure of the DBN is defined manually

by a domain expert. Though, one could also learn dependen-
cies between KCs from data. The parameters of the DBN
are learned from data using an expectation maximization
algorithm with reasonable parameter constraints defined by
an expert, e.g., limits for guess and slip probabilities. One
problem that may occur, is that the parameter space is too
large and we get computational problems when estimating
the parameters of the model, if we use a very fine-grained
KC definition. Therefore, we need to evaluate which granu-
larity to choose to be able to estimate the parameters and
still have an accurate model. Furthermore, we have to rea-
son how to integrate multiple occurrences of the same KC
in one exercise. Possible treatments are, e.g., majority vote
or using uncertain evidences with a probability according
to the ratio of correct/incorrect applications. We also want
to analyze, whether multiple submissions, i.e., substeps pre-
ceding the final solution, improve the model.
In the second iteration of our research, we want to add fur-
ther KCs which concentrate on more cognitive skills. The

Proceedings of the 10th International Conference on Educational Data Mining 425



first one is the debugging ability, which we want to assess
by comparing two subsequent submissions when the first one
indicates an error (or a failure) and check whether the prob-
lem was fixed.
As a further KC, we want to include variable roles [9]. Vari-
able roles describe patterns of variable usage. They are de-
fined by the successive values the variables obtain. An ex-
ample for a role would be the most-wanted holder which is
a variable that holds the best value encountered so far when
going through a succession of values, e.g., when searching
the smallest value in an array. The proper collocation of
variable roles is essential for solving a task or achieving a
goal in a program. Usually, students intuitively use variable
roles in their programs. The lack of knowledge of a particu-
lar role could explain why a student may have problems to
solve an exercise.
We want to evaluate our model by comparing it to common
student modeling approaches like BKT, IRT and PFA.
In a last step, we want to analyze the model constructed
from the data of our introductory C course to find out what
students which are at risk have in common, which KCs seem
most difficult to the students and how many exercises are re-
quired at least (on average, to reach a particular percentage
of students) to gain sufficient knowledge in a certain KC.

4. CURRENT STATUS & NEXT STEPS
We have implemented a framework for the collection of met-
rics regarding students’ solutions [1] which was successfully
introduced in our introductory C programming course. It is
mainly an e-assessment system where students can upload
their solution and get some basic feedback. It collects com-
piler messages, results from static analysis tools, and results
from dynamic tests to capture the correctness of the solu-
tion. In the first year, we got about 10,000 submissions of
on average 250 students. We expect similar numbers this
year.
Furthermore, we have identified the different KCs that we
have in our course by going through the course material and
previous programming errors of students. Based on that,
we defined a hierarchical structure of KCs where the sinks
are basic observations in form of rules like, e.g., the function
returns a value if the return type is not void. We have also
mapped compiler/static analysis tool messages to different
concepts and implemented an AST parser. In a next step,
we want to use the AST to filter the KCs from source code
and construct our KRM.
Next, we plan to conduct a small case study with only a few
KCs to evaluate the feasibility of our DBN student model.

5. EXPECTED CONTRIBUTIONS
In our work, we develop a framework for the estimation of
students’ knowledge regarding programming. One of our
main contributions is the definition of a student model which
has the following properties which are needed to construct
the model based on solutions to programming assignments:
multiple KCs per exercise are possible and their interde-
pendencies are considered, uncertainty of affected KCs can
be handled, individual KC requirements and usages can be
treated, multiple submissions can be integrated, and a KC
can be used multiple times in the same exercise.
Another contribution will be a KRM which is automatically
generated from model solutions for each exercise and can be
used to evaluate which KCs were applied correctly or incor-

rectly by the student.
Furthermore, we plan to not just look at language related
KCs, but also more cognitive skills like, e.g., debugging abil-
ity. We hope that our model helps to get better insights into
the learning process of students.
From the doctoral consortium we expect to get some feed-
back on our student model, especially hints for the eval-
uation w.r.t. metrics and data sets. We are also looking
forward for further ideas for additional or alternative KCs
which we can integrate in our model.

6. REFERENCES
[1] E. Albrecht and J. Grabowski. Towards a framework

for mining students’ programming assignments. In
2016 IEEE Global Engineering Education Conference
(EDUCON), pages 1096–1100, 2016.

[2] M. Berges and P. Hubwieser. Evaluation of source
code with item response theory. In Proceedings of the
2015 ACM Conference on Innovation and Technology
in Computer Science Education, pages 51–56, New
York, NY, USA, 2015. ACM.

[3] A. Botelho, H. Wan, and N. Heffernan. The prediction
of student first response using prerequisite skills. In
Proceedings of the Second (2015) ACM Conference on
Learning @ Scale, pages 39–45, New York, NY, USA,
2015. ACM.

[4] K. Chrysafiadi and M. Virvou. Review: Student
modeling approaches: A literature review for the last
decade. Expert Syst. Appl., 40(11):4715–4729.

[5] A. T. Corbett and A. Bhatnagar. Student Modeling in
the ACT Programming Tutor: Adjusting a Procedural
Learning Model With Declarative Knowledge, pages
243–254. Springer, Vienna, 1997.

[6] Y. Huang, J. Guerra, and P. Brusilovsky. A
data-driven framework of modeling skill combinations
for deeper knowledge tracing. In Proceedings of the 9th
International Conference on Educational Data Mining
EDM, pages 593–594, 2016.

[7] J. Kasurinen and U. Nikula. Estimating programming
knowledge with bayesian knowledge tracing. In
Proceedings of the 14th Annual ACM SIGCSE
Conference on Innovation and Technology in
Computer Science Education, pages 313–317, New
York, NY, USA, 2009. ACM.

[8] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis –a new alternative to
knowledge tracing. In Proceedings of the 2009
Conference on Artificial Intelligence in Education:
Building Learning Systems That Care: From
Knowledge Representation to Affective Modelling,
pages 531–538, Amsterdam, The Netherlands, 2009.
IOS Press.

[9] J. Sajaniemi. An empirical analysis of roles of
variables in novice-level procedural programs. In
Proceedings of the IEEE 2002 Symposia on Human
Centric Computing Languages and Environments
(HCC’02). IEEE Computer Society, 2002.

[10] M. Yudelson, R. Hosseini, A. Vihavainen, and
P. Brusilovsky. Investigating automated student
modeling in a java MOOC. In Proceedings of the 7th
International Conference on Educational Data Mining
EDM, pages 261–264, 2014.

Proceedings of the 10th International Conference on Educational Data Mining 426


