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ABSTRACT 
Mind wandering, defined as shifts in attention from task-related 
processing to task-unrelated thoughts, is a ubiquitous 
phenomenon that has a negative influence on performance and 
productivity in many contexts, including learning. We propose 
that next-generation learning technologies should have some 
mechanism to detect and respond to mind wandering in real-time. 
Towards this end, we developed a technology that automatically 
detects mind wandering from eye-gaze during learning from 
instructional texts. When mind wandering is detected, the 
technology intervenes by posing just-in-time questions and 
encouraging re-reading as needed. After multiple rounds of 
iterative refinement, we summatively compared the technology to 
a yoked-control in an experiment with 104 participants. The key 
dependent variable was performance on a post-reading 
comprehension assessment. Our results suggest that the 
technology was successful in correcting comprehension deficits 
attributed to mind wandering (d = .47 sigma) under specific 
conditions, thereby highlighting the potential to improve learning 
by “attending to attention.” 

Keywords 
Mind wandering; gaze tracking; student modeling; attention-
aware. 

1. INTRODUCTION 
Despite our best efforts to write a clear and engaging paper, 
chances are high that within the next 10 pages you might fall prey 
to what is referred to as zoning out, daydreaming, or mind 
wandering [45]. Despite your best intention to concentrate on our 
paper, at some point your attention might drift away to unrelated 
thoughts of lunch, childcare, or an upcoming trip. This prediction 
is not based on some negative or cynical opinion of the 
reader/reviewer (we read and review papers too), but on what is 
known about attentional control, vigilance, and concentration 
while individuals are engaged in complex comprehension 
activities, such as reading for understanding.  

One recent study tracked mind wandering of 5,000 individuals 
from 83 countries with a smartphone app that prompted people 
with thought-probes at random intervals throughout the day [24]. 
People reported mind wandering for 46.9% of the prompts, which 
confirmed lab studies on the pervasiveness of mind wandering 
(see [45] for a review). Mind wandering is more than merely 
incidental; a recent meta-analysis of 88 samples indicated a 
negative correlation between mind wandering and performance 
across a variety of tasks [34], a correlation which increases with 
task complexity. When compounded with its high frequency, 
mind wandering can have serious consequences on the 
performance and productivity of society at large.  

Mind wandering is also unfortunately an under-addressed 
problem in education and is yet to be deeply studied in the context 

of learning with technology. Traditional learning technologies 
rely on the assumption that students are attending to the learning 
session, although this is not always the case. For example, it has 
been estimated that students mind wander approximately 40% of 
the time when engaging with online lectures [38], which are an 
important component of MOOCs. Some advanced technologies 
do aim to detect and respond to affective states like boredom, but 
evidence for their effectiveness is still equivocal (see [9] for a 
review). Further, boredom is related to but not the same as 
attention [12]. There are technologies that aim to prevent mind 
wandering by engendering a highly immersive learning 
experience and have achieved some success in this regard [40, 
41]. But what is to be done when attentional focus inevitably 
wanes as the session progresses and the novelty of the system and 
content fades?  

Our central thesis is that next-generation learning technologies 
should include mechanisms to model and respond to learners’ 
attention in real-time [8]. Such attention-aware technologies can 
model various aspects of learner attention (e.g., divided attention, 
alternating attention). Here, we focus on detecting and mitigating 
mind wandering, a quintessential signal of waning engagement. 
We situate our work in the context of reading because reading is 
a common activity shared across multiple learning technologies, 
thereby increasing the generalizability of our results. Further, 
students mind wander approximately 30% of the time during 
computerized reading [44]. And although mind wandering can 
facilitate certain cognitive processes like future planning and 
divergent thinking [2, 28], it negatively correlates with 
comprehension and learning (reviewed in [31, 45]), suggesting 
that it is important to address mind wandering during learning. 

Towards this end, we developed and validated a closed-loop 
attention-aware learning technology that combines a machine-
learned mind wandering detector with a real-time interpolated 
testing and re-study intervention. Our attention-aware technology 
works as follows. Learners read a text on a computer screen using 
a self-paced screen-by-screen (also called page-by-page) reading 
paradigm. We track eye-gaze during reading using a remote eye 
tracker that does not restrict head movements. We focus on eye-
gaze for mind wandering detection due to decades of research 
suggesting a tight coupling between attentional focus and eye 
movements during reading [36]. When mind wandering is 
detected, the system intervenes in an attempt to redirect 
attentional focus and correct any comprehension deficits that 
might arise due to mind wandering. The interventions consist of 
asking comprehension question on pages where mind wandering 
was detected and providing opportunities to re-read based on 
learners’ responses. In this paper, we discuss the mind wandering 
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detector, intervention approach, and results of a summative 
evaluation study1. 

1.1 Related Work 
The idea of attention-aware user interfaces is not new, but was 
proposed almost a decade ago by Roda and Thomas [39]. There 
was even an article on futuristic applications of attention-aware 
systems in educational contexts [35]. Prior to this, Gluck, et al. 
[15] discussed the use of eye tracking to increase the bandwidth 
of information available to an intelligent tutoring system (ITS). 
Similarly, Anderson [1] followed up on some of these ideas by 
demonstrating how particular beneficial instructional strategies 
could only be launched via a real-time analysis of eye gaze.  

Most of the recent work has been on leveraging eye gaze to 
increase the bandwidth of learner models [22, 23, 29]. Conati, et 
al. [5] provide an excellent review of much of the existing work 
in this area. We can group the research into three categories: (1) 
offline-analyses of eye gaze to study attentional processes, (2) 
computational modeling of attentional states, and (3) closed-loop 
systems that respond to attention in real-time. Offline-analysis of 
eye movements has received considerable attention in cognitive 
and educational psychology for several decades [e.g., 16, 19], so 
this area of research is relatively healthy. Online computational 
models of learner attention are just beginning to emerge [e.g., 6, 
11], while closed-loop attention-aware systems are few and far 
between (see [7, 15, 42, 48] for a more or less exhaustive list). 
Two known examples, GazeTutor and AttentiveReview, are 
discussed below. 

GazeTutor [7] is a learning technology for biology. It has an 
animated conversational agent that provides spoken explanations 
on biology topics which are synchronized with images. The 
system uses a Tobii T60 eye tracker to detect inattention, which 
is assumed to occur when learners’ gaze is not on the tutor agent 
or image for at least five consecutive seconds. When this occurs, 
the system interrupts its speech mid utterance, directs learners to 
reorient their attention (e.g., “I’m over here you know”), and 
repeats speaking from the start of the current utterance. In an 
evaluation study, 48 learners (undergraduate students) completed 
a learning session on four biology topics with the attention-aware 
components enabled (experimental group) or disabled (control 
group). The results indicated that GazeTutor was successful in 
dynamically reorienting learners’ attentional patterns towards the 
interface. Importantly, learning gains for deep reasoning 
questions were significantly higher for the experimental vs. 
control group, but only for high aptitude learners. The results 
suggest that even the most basic attention-aware technology can 
be effective in improving learning, at least for a subset of learners. 
However, a key limitation is that the researchers simply assumed 
that off-screen gaze corresponded to inattention, but did not test 
this assumption (e.g., students could have been concentrating 
with their eyes closed and this would have been perceived as 
being inattentive). 

AttentiveReview [32] is a closed-loop system for MOOC learning 
on mobile phones. The system uses video-based 
photoplethysmography (PPG) to detect a learners’ heart rate from 
the back camera of a smartphone while they view MOOC-like 
lectures on the phone. AttentiveReview ranks the lectures based 

                                                                 
1 This paper reports updated results of an earlier version [10] presented 

as a “Late-Breaking Work” (LBW) poster at the 2016 ACM CHI 
conference. LBW “Extended Abstracts” are not included in the main 
conference proceedings and copyright is retained by the authors. 

on its estimates of learners’ “perceived difficulty,” selecting the 
most difficult lecture for subsequent review (called adaptive 
review). In a 32-participant between-subjects evaluation study, 
the authors found that learning gains obtained from the adaptive 
review condition were statistically on par with a full review 
condition, but were achieved in 66.7% less review time. Although 
this result suggests that AttentiveReview increased learning 
efficiency, there is the question as to whether the system should 
even be considered to be an “attention-aware” technology. This is 
because it is arguable if the system has anything to do with 
attention (except for “attention” appearing in its name) as it 
selects items for review based on a model of “perceived 
difficulty” and not on learners’ “attentional state.” The two might 
be related, but are clearly not the same. 

1.2 Novelty 
Our paper focuses on closing the loop between research on 
educational data and learning outcomes by developing and 
validating the first (in our view) real-time learning technology 
that detects and mitigates mind wandering during computerized 
reading. Although automated detection of complex mental states 
with the goal of developing intelligent learning technologies that 
respond to the sensed states is an active research area (see reviews 
by [9, 18]), mind wandering has rarely been explored as an aspect 
of a learner’s mental state that warrants detection and corrective 
action. And while there has been some work on modeling the 
locus of learner attention (see review by [5]), mind wandering is 
inherently different than more commonly studied forms of 
attention (e.g., selective attention, distraction), because it involves 
more covert forms of involuntary attentional lapses spawned by 
self-generated internal thought [45]. Simply put, mind wandering 
is a form of “looking without seeing” because the eyes might be 
fixated on the appropriate external stimulus, but very little is 
being processed as the mind is consumed by stimulus-
independent internal thoughts. Offline automated approaches to 
detect mind wandering have been developed (e.g., [3, 11, 27, 33]),  
but these detectors have not yet been used to trigger online 
interventions. Here, we adapt an offline gaze-based automated 
mind wandering detector [13] to trigger real-time interventions to 
address mind wandering during reading. We conduct a 
randomized control trial to evaluate the efficacy of our attention-
aware learning technology in improving learning. 

2. MIND WANDERING DETECTION 
We adopted a supervised learning approach for mind wandering 
detection. Below we provide a high-level overview of the 
approach; readers are directed to [3, 13] for a detailed discussion 
of the general approach used to build gaze-based detectors of 
mind wandering. 

2.1 Training Data 
We obtained training data from a previous study [26] that 
involved 98 undergraduate students reading a 57-page text on the 
surface tension of liquids [4] on a computer screen for an average 
of 28 minutes. The text contained around 6500 words, with an 
average of 115 words per page, and was displayed on a computer 
screen with Courier New typeface. We recorded eye-gaze with a 
Tobii TX300 eye tracker set to a sampling frequency of 120 Hz. 
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Participants could read normally and were free to move or gesture 
as they pleased.  
Participants were instructed to report mind wandering (during 
reading) by pressing a predetermined key when they found 
themselves “thinking about the task itself but not the actual 
content of the text” or when they were “thinking about anything 
else besides the task.” This is consistent with contemporary 
approaches (see [45]) that rely on self-reporting because mind 
wandering is an internal conscious phenomena. Further, self-
reports of mind wandering have been linked to predictable 
patterns in physiology [43], pupillometry [14], eye-gaze [37], and 
task performance [34], providing validity for this approach. 
On average, we received mind wandering reports for 32% of the 
pages (SD = 20%), although there was considerable variability 
among participants (ranging from 0% to 82%). Self-reported 
mind wandering negatively correlated (r = -.23, p < .05) with 
scores on a subsequent comprehension assessment [26], which 
provides evidence for the predictive validity of the self-reports.  

2.2 Model Building 
The stream of eye-gaze data was filtered to produce a series of 
fixations, saccades, and blinks, from which global eye gaze 
features were extracted (see Figure 1). Global features are 
independent of the words being read and are therefore more 
generalizable than so-called local features. A full list of 62 global 
features along with detailed descriptions is provided in [13], but 
briefly the features can be grouped into the following four 
categories: (1) Eye movement descriptive features (n = 48) were 
statistical functionals (e.g., min, median) for fixation duration, 
saccade duration, saccade amplitude, saccade velocity, and 
relative and absolute saccade angle distributions; (2) Pupil 
diameter descriptive features were statistical functionals (n = 8) 
computed from participant-level z-score standardized estimates 
of pupil diameter; (3) Blink features (n = 2) consisted of the 
number of blinks and the mean blink duration; (4) Miscellaneous 
gaze features (n = 4) consisted of the number of saccades, 
horizontal saccade proportion, fixation dispersion, and the 
fixation duration/saccade duration ratio. We proceeded with a 
subset of 32 features after eliminating features exhibiting 
multicollinearity. 
Features were calculated from only a certain amount of gaze data 
from each page, called the window. The end of the window was 
positioned 3 seconds before a self-report so as to not overlap with 
the key-press. The average amount of time between self-reports 
and the beginning of the page was 16 seconds. We used this time 
point as the end of the window for pages with no self-report. 
Pages that were shorter than the target window size were 
discarded, as were pages with windows that contained fewer than 
five gaze fixations as there was insufficient data to compute some 
of the features. There were a total of 4,225 windows with 
sufficient data for supervised classification. 
We experimented with a number of supervised classifiers on 
window sizes of 4, 8, and 12 seconds to discriminate positive 
(pages with a self-report = 32%) from negative (pages without a 
self-report) instances of mind wandering. The training data were 
downsampled to achieve a 50% base rate; testing data were 
unaltered. A leave-one-participant-out validation approach was 
adopted where models were built on data from n-1 participants 
and evaluated on the held-out participant. The process was 
repeated for all participants. Model validation was conducted in a 
way to simulate a real-time system by analyzing data from every 
page. When classification was not possible due to a lack of valid 
gaze data and/or because participants did not spend enough time 

on the page, we classified the page as a positive instance of mind 
wandering. This was done because analyses indicated that 
participants were more likely to be mind wandering in those cases 
(but see [13] for alternate strategies to handle missing instances). 

 

 
Figure 1: Gaze fixations during mind wandering (top) 

and normal reading (bottom) 

2.3 Detector Accuracy 
The best model was a support vector machine that used global 
features and operated on a window size of 8-seconds. The area 
under the ROC curve (AUC or AUROC or A’) was .66, which 
exceeds the 0.5 chance threshold [17].   
We assigned each instance as mind wandering or not mind 
wandering based on whether the detector’s predicted likelihood 
of mind wandering (ranges from 0 to 1) was below or above 0.5 
We adopted the default 0.5 threshold as it led to a higher rate of 
true positives while maintaining a moderate rate of true negatives. 
This resulted in the following confusion matrix shown in Table 1. 
The model had a weighted precision of 72.2% and a weighted 
recall of 67.4%, which we deemed to be sufficiently accurate for 
intervention. 

Table 1: Proportionalized confusion matrix for mind 
wandering detection 

 Predicted mind wandering (MW) 
Actual MW yes no 

yes 0.715 (hit) 0.285 (miss) 

no 0.346 (false positive) 0.654 (correct rejection) 

 
3. Intervention to Address Mind Wandering 
Our intervention approach is grounded in the basic idea that 
learning of conceptual information involves creating and 
maintaining an internal model (mental model) by integrating 
information from the text with prior knowledge from memory 
[25]. This integration process relies on attentional focus and 
breaks down during mind wandering because information from 
the external environment is no longer being integrated into the 
internal mental model. This results in an impaired model which 
leads to less effective suppression of off-task thoughts. This 
increase in mind wandering further impairs the mental model, 
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resulting in a vicious cycle. Our intervention targets this vicious 
cycle by redirecting attention to the primary task and attempting 
to correct for comprehension deficits attributed to mind 
wandering. Based on research demonstrating the effectiveness of 
interpolated testing [47], we propose that asking questions on 
pages where mind wandering is detected and encouraging re-
reading in response to incorrect responses will aid in re-directing 
attention to the text and correct knowledge deficits. 

3.1 Intervention Implementation 
Our initial intervention was implemented for the same text used 
to create the mind wandering detector (although it could be 
applied to any text). The text was integrated into the computer 
reading interface. Mind wandering detection occurred when the 
learner navigated to the next page using the right arrow key. In 
order to address ambiguity in mind wandering detection, we used 
the detector’s mind wandering likelihood to probabilistically 
determine when to intervene. For example, if the mind wandering 
likelihood was 70%, then there was a 70% chance of intervention 
on any given page (all else being equal). We did not intervene for 
the first three pages in order to allow the learner to become 
familiar with the text and interface. To reduce disruption, there 
was a 50% reduced probability of intervening on adjacent pages, 
and the maximum number of interventions was capped at 1/3 × 
the number of pages (19 for the present 57-page text). Table 2 
presents pseudo code for when to launch an intervention. 

Table 2: Pseudo code for intervention strategy 
 
launch_intervention: 
    if current_page >= WAITPAGES  
    and   
        total_interventions < MAXINTRV)  
    and   
        gaze_likelihood > random(0,1) 
    and   
        (!has_intervened(previous_page) 
        or 0.5 < random (0,1)): 
            do_intervention() 
    else: 
        show_next_page() 

     
do_intervention: 
    answer1 = show_question1() 
    if answer1 is correct: 
        show_positive_feedback() 
        show_next_page() 
    else: 
        show_neg_feedback() 
        suggest_rereading() 
        if page advance detected: 
            answer2 = show_question2(); 
            show_next_page() 

 
 
Figure 2 presents an outline of the intervention strategy. The 
intervention itself relied on two multiple choice questions for 
each page (screen) of the text. When the system decided to 
intervene, one of the questions (randomly selected) was presented 
to the learner. If the learner answered this online question 
correctly, positive feedback was provided, and the learner could 
advance to the next page. If the learner answered incorrectly, 
negative feedback was provided, and the system encouraged the 
learner to re-read the page. The learner was then provided with a 
second (randomly selected) online question, which could either 
be the same or the alternate question for that page. Feedback was 
not provided and the learner was allowed to advance to the next 

page regardless of whether the second question was answered 
correctly, so as not to be overly burdensome.  

 
Figure 2: Outline of intervention strategy 

3.2 Iterative Refinement 
The technology was refined through multiple rounds of formative 
testing with 67 participants, recruited from the same institution 
used to build the detector. Participants were observed while 
interacting with the technology, their responses were analyzed, 
and they were interviewed about their experience. We used the 
feedback gleaned from these tests to refine the intervention 
parameters (i.e., when to launch, how many interventions to 
launch, whether to launch interventions on subsequent pages), 
intervention questions themselves, and instructions on how to 
attend to the intervention. For example, earlier versions of the 
intervention used a fixed threshold (instead of the aforementioned 
probabilistic approach) to trigger an intervention. Despite many 
attempts to set this threshold, the end result was that some 
participants received many interventions while others received 
almost no interventions. This issue was corrected by 
probabilistically rather than deterministically launching the 
intervention. Additional testing/refinement of the comprehension 
questions used in the intervention was done using crowdsourcing 
platforms, specifically Amazon’s Mechanical Turk (MTurk). 

4. Evaluation Study 
We conducted a randomized controlled trial to evaluate the 
technology. The experiment had two conditions: an intervention 
condition and a yoked control condition (as described below). The 
yoked control was needed to verify that any learning benefits are 
attributed to the technology being sensitive to mind wandering 
and not merely to the added opportunities to answer online 
questions and re-read. This is because we know that interpolated 
testing itself has beneficial comprehension effects [47]. 

4.1 Method 
Participants (N = 104) were a new set of undergraduate students 
who participated to fulfill research credit requirements. They 
were recruited from the same university used to build the MW 
detector and for the iterative testing and refinement cycles. 
We did not use a pretest because we expected participants to be 
unfamiliar with the topic. Participants were not informed that the 
interface would be tracking their mind wandering (until the 
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debriefing at the end), Instead, they were instructed as follows: 
“While reading the text, you will occasionally be asked some 
questions about the page you just read. Depending on your 
answer, you will re-read the same page and you will be asked 
another question that may or may not be the same question.” 
Participants in the intervention condition received the 
intervention as described above (i.e., based on detected mind 
wandering likelihoods). Each participant in the yoked control 
condition was paired with a participant in the intervention 
condition. He or she received an intervention question on the 
same pages as their paired intervention participant regardless of 
mind wandering likelihood. For example, if participant A (i.e., 
intervention condition) received questions on pages 5, 7, 10, and 
25, participant B (i.e., yoked control condition) would receive 
intervention questions on the same pages. However, if the yoked 
participant answered incorrectly, then (s)he had the opportunity 
to re-read and answer another question regardless of the outcome 
of their intervention-condition partner.  
After reading, participants completed a 38-item multiple choice 
comprehension assessment to measure learning. The questions 
were randomly selected from the 57 pages (one per page) with the 
exception that a higher selection priority was given to pages that 
were re-read on account of the intervention. Participants in the 
yoked control condition received the same posttest questions as 
their intervention condition counterparts.  

4.2 Results 
Participants received an average of 16 (min of 7 and max of 19) 
interventions. They spent an average of 27.5 seconds on each 
screen prior to receiving an intervention. There was no significant 
difference across conditions (p = .998), suggesting that reading 
time was not a confound. In what follows, we compared each 
intervention participant to his/her yoked control with a two-tailed 
paired-samples t-test and a 0.05 criteria for statistical 
significance. 
Mind wandering detection. The detector’s likelihood of mind 
wandering was slightly higher for participants in the yoked-
control condition (M = .431; SD = .170) compared to the 
intervention condition (M = .404; SD = .112), but the difference 
was not statistically significant (p = .348). This was unsurprising 
as participants in both groups received the same interventions, 
which itself was expected to reduce mind wandering. Importantly, 
mind wandering likelihoods were negatively correlated with 
performance on the online questions (r = -.296, p = .033) as well 
as on posttest questions (r = -.319, p = .021). This provides 
evidence for the validity of the mind wandering detector when 
applied to a new set of learners and under different conditions 
(i.e., reading interspersed with online questions compared to 
uninterrupted reading). 
Comprehension assessment. There was some overlap between 
the online questions and the posttest questions. To obtain an 
unbiased estimate of learning, we only analyzed performance on 
previously unseen posttest questions. That is, questions that were 
used as part of the intervention were first removed before 
computing posttest scores.  
There were no significant condition differences on overall 
posttest scores (p = .846). The intervention condition answered 
57.6% (SD = .157) of the questions correctly while the yoked 
control condition answered 58.1% (SD = .129) correctly. This 
finding was not surprising as both conditions received the exact 
same treatment except that the interventions were triggered based 

on detected mind wandering in the intervention condition but not 
the control condition.  
Next, we examined posttest performance as a function of mind 
wandering during reading. Each page was designated as a low or 
high mind wandering page based on a median split of mind 
wandering likelihoods (medians = .35 and .36 on a 0 to 1 scale for 
intervention and control conditions, respectively). We then 
analyzed performance on posttest questions corresponding to 
pages with low vs. high likelihoods of mind wandering (during 
reading). The results are shown in Table 3. 
We found no significant posttest differences on pages where both 
the intervention and control participants had low (p = .759) or 
high (p = .922) mind wandering likelihoods (first and last rows in 
Table 3, respectively). There was also no significant posttest 
difference (p = .630) for pages where the intervention condition 
had high mind wandering likelihoods but the control condition 
had low mind wandering likelihoods (row 3). However, the 
intervention condition significantly (p = .003, d = .47 sigma) 
outperformed the control condition for pages where the 
intervention participants had low likelihoods of mind wandering 
but control participants had high mind wandering likelihoods 
(row 2). These last two finding suggests that the intervention had 
the intended effect of reducing comprehension deficits 
attributable to mind wandering because it led to equitable 
performance when mind wandering was high and improved 
performance when it was low. 

Table 3: Posttest performance (proportion of correct 
responses) as a function of mind wandering during reading. 

Standard deviations in parenthesis. 
  Mind 

wandering 
Posttest  
scores 

N  Int. Cntrl. Int. Cntrl. 
43  Low Low .604 (.288) .623 (.287) 
40  Low High .643 (.263) .489 (.298) 
43  High Low .535 (.295) .566 (.305) 
45  High High .522 (.312) .515 (.291) 

Note. Int. = intervention. Cntrl. = control. Bolded cells represent a 
statistically significant difference. N = number of pairs (out of 52) in each 
analysis. It differs slightly across analyses as not all participants were 
assigned to each mind wandering group. 

After-task interview. We interviewed a subset of the participants 
in order to gauge their subjective experience with the 
intervention. A few key themes emerged. Participants reported 
paying closer attention to the text after realizing they would be 
periodically answering multiple-choice questions. This was good. 
However, participants also reported that they adapted their 
reading strategies in one of two ways in response to the questions. 
Since the questions targeted factual information (sometimes 
verbatim) from the text, some participants paid more attention to 
details and precise wordings instead of the broader concepts being 
discussed in the text. More discouragingly, some participants 
reported adopting a preemptive skimming strategy in that they 
would only look for keywords that they expected to appear in a 
subsequent question.  
Participants were encouraged to re-read text when they answered 
incorrectly before receiving another question (or the same 
question in some cases). Many participants reported simply 
scanning the text (when re-reading) to locate keywords from the 
question before moving on. Since the scanning strategy was often 
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successful to answer the subsequent question, participants 
reported that the questions were too easy and it took relatively 
little effort to locate the correct answer compared to re-reading. 
They suggested that it may have been better if the questions had 
targeted key concepts rather than facts. 
Finally, participants reported difficulties with re-engaging with 
the text after answering an online question because the text was 
cleared when an intervention question was displayed; an item that 
can be easily corrected in subsequent versions.  

5. Discussion 
We developed the first educational technology capable of real-
time mind wandering detection and dynamic intervention during 
computerized reading. In the remainder of this section, we discuss 
the significance of our main findings, limitations, and avenues for 
future work. 

5.1 Significance of Main Findings 
We have three main findings. First, we demonstrated that a 
machine-learned mind wandering detector built in one context 
can be applied to a different (albeit related) interaction context. 
Specifically, the detector was trained on a data set involving 
participants silently reading and self-reporting mind wandering, 
but was applied to an interactive context involving interpolated 
assessments, which engendered different reading strategies. 
Further, self-reports of mind wandering were not collected in this 
interactive context, which might have influenced mind wandering 
rates in and of itself. Despite these differences, we were able to 
demonstrate the predictive validity of the detector by showing 
that it negatively correlated with both online and offline 
comprehension scores when evaluated on new participants. 
Second, we showed promising effects for our intervention 
approach despite a very conservative experimental design, which 
ensured that the intervention and control groups were equated 
along all respects, except that the intervention was triggered based 
on the mind wandering detector (key manipulation). Further, we 
used a probabilistic approach to trigger an intervention, because 
the detector is inherently imperfect. As a result, participants could 
have received an intervention when they were not mind 
wandering and/or could have failed to receive one when they were 
mind wandering. Therefore, it was essential to compare the two 
groups under conditions when the mind wandering levels 
differed. This more nuanced analysis revealed that although the 
intervention itself did not lead to a boost in overall comprehension 
(because it is remedial), it equated comprehension scores when 
mind wandering was high (i.e., scores for the intervention group 
were comparable when the control group was low on mind 
wandering). It also demonstrated the cost of not intervening 
during mind wandering (i.e., scores for the intervention group 
were greater when the control group was high on mind 
wandering). In other words, the intervention was successful in 
mitigating the negative effects of mind wandering. 
Third, despite the advantages articulated above, the intervention 
itself was reactive and engendered several unintended (and 
presumably suboptimal) behaviors. In particular, students altered 
their reading strategies in response to the interpolated questions, 
which were a critical part of the intervention. In a sense, they 
attempted to “game the intervention” by attempting to proactively 
predict the types of questions they might receive and then 
adopting a complementary reading strategy consisting of 
skimming and/or focusing on factual information. This reliance 
on surface- rather than deeper-levels of processing was 
incongruent with our goal of promoting deep comprehension.  

5.2 Limitations 
There are a number of methodological limitations with this work 
that go beyond limitations with the intervention (as discussed 
above). First, we focused on a single text that is perceived as 
being quite dull and consequently triggers rather high levels of 
mind wandering [26]. This raises the question of whether the 
detector will generalize to different texts. We expect some level 
of generalizability in terms of features used because the detector 
only used content- and position- (on the screen) free global gaze 
features. However, given that several supervised classifiers are 
very sensitive to differences in base rates, the detector might over- 
or under- predict mind wandering when applied to texts that 
engender different rates of mind wandering. Therefore, retraining 
the detector with a more diverse set of texts is warranted. 
Another limitation is the scalability of our learning technology. 
The eye tracker we used was a cost-prohibitive Tobii TX300 that 
will not scale beyond the laboratory. Fortunately, commercial-
off-the-shelf (COTS) eye trackers, such as Eye Tribe and Tobii 
EyeX, can be used to surpass this limitation. It is an open question 
as to whether the mind wandering detector can operate with 
similar fidelity with these COTS eye trackers. Our use of global 
gaze features which do not require high-precision eye tracking 
holds considerable promise in this regard. Nevertheless, 
replication with scalable eye trackers and/or scalable alternatives 
to eye tracking (e.g., facial-feature tracking [46] or monitoring 
reading patterns [27]) is an important next step (see Section 5.3). 
Our use of surface-level questions for both the intervention and 
the subsequent comprehension assessment is also a limitation as 
is the lack of a delayed comprehension assessment. It might be 
the case that the intervention effects manifest as richer encodings 
in long-term memory, a possibility that cannot be addressed in the 
current experiment that only assessed immediate learning. 
Other limitations include a limited student sample (i.e. 
undergraduates from a private Midwestern college) and a 
laboratory setup. It is possible that the results would not 
generalize to a more diverse student population or in more 
ecological environments (but see below for evidence of 
generalizability of the detector in classroom environments). 
Replication with data from more diverse populations and 
environments would be a necessary next step to increase the 
ecological validity of this work.  

5.3 Future Work 
Our future work is progressing along two main fronts. One is to 
address limitations in the intervention and design of the 
experimental evaluation as discussed above. Accordingly, we are 
exploring alternative intervention strategies, such as: (a) tagging 
items for future re-study rather than interrupting participants 
during reading; (b) highlighting specific portions of the text as an 
overt cue to facilitate comprehension of critical information; (c) 
asking fewer intervention questions, but selecting inference 
questions that target deeper levels of comprehension and that span 
multiple pages of the text; and (d) asking learners to engage in 
reflection by providing written self-explanations of the textual 
content. We are currently evaluating one such redesigned 
intervention – open-ended questions targeting deeper levels of 
comprehension (item c). Our revised experimental design taps 
both surface- and inference-level comprehension and assesses 
comprehension immediately after reading (to measure learning) 
and after a one-week delay (to measure retention). 
We are also developing attention-aware versions of more 
interactive interfaces, such as learning with an intelligent tutoring 
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system called GuruTutor [30]. This project also addresses some 
of the scalability concerns by replacing expensive research-grade 
eye tracking with cost-effective COTS eye tracking (e.g., the Eye 
Tribe or Tobii EyeX) and provides evidence for real-world 
generalizability by collecting data in classrooms rather than the 
lab. We recently tested our implementation on 135 students (total) 
in a noisy computer-enabled high-school classroom where eye-
gaze of entire classes of students was collected during their 
normal class periods [20]. Using a similar approach to the present 
work, we used the data to build and validate a student-
independent gaze-based mind wandering detector. The resultant 
mind wandering detection accuracy (F1 of 0.59) was substantially 
greater than chance (F1 of 0.24) and outperformed earlier work on 
the same domain [21]. The next step is to develop interventions 
that redirect attention and correct learning deficiencies 
attributable to mind wandering and to test the interventions in 
real-world environments. By doing so, we hope to advance our 
foundational vision of developing next-generation technologies 
that enhance the process and products of learning by “attending 
to attention.” 

 
Figure 3: Guru Tutor interface overlaid with eye-gaze 

obtained via the EyeTribe 
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ABSTRACT
Educational systems typically contain a large pool of items
(questions, problems). Using data mining techniques we can
group these items into knowledge components, detect du-
plicated items and outliers, and identify missing items. To
these ends, it is useful to analyze item similarities, which can
be used as input to clustering or visualization techniques.
We describe and evaluate different measures of item similar-
ity that are based only on learners’ performance data, which
makes them widely applicable. We provide evaluation using
both simulated data and real data from several educational
systems. The results show that Pearson correlation is a suit-
able similarity measure and that response times are useful
for improving stability of similarity measures when the scope
of available data is small.

1. INTRODUCTION
Interactive educational systems offer learners items (prob-
lems, questions) for solving. Realistic educational systems
typically contain a large number of such items. This is par-
ticularly true for adaptive systems, which try to present suit-
able items for different kinds of learners. The management
of a large pool of items is difficult. However, educational
systems collect data about learners’ performance and the
data can be used to get insight into item properties. In this
work we focus on methods for computing item similarities
based on learners’ performance data, which consists of bi-
nary information about the answers (correct/incorrect).

Automatically detected item similarities are the first and
necessary step in further analysis such as clustering of the
items, which is useful in several ways, with one particular
application being learner modeling [9]. Learner models es-
timate knowledge and skills of learners and are the basis
of adaptive behavior of educational systems. A learner’s
models requires a mapping of items into knowledge compo-
nents [17]. Item clusters can serve as a basis for knowledge
component definition or refinement. The specified knowl-
edge components are relevant not only for modeling, but

they are typically directly visible to learners in the user in-
terface of a system, e.g., in a form of open learner model
visualizing the estimated knowledge state, or in a personal-
ized overview of mistakes, which is grouped by knowledge
components.

Information about items is also very useful for management
of the content of educational systems – preparation of new
items, filtering of unsuitable items, preparation of explana-
tions, and hint messages. Information about item similari-
ties and clusters can be also relevant for teachers as it can
provide them an inspiration for “live” discussions in class.
This type of applications is in line with Baker’s argument [1]
for focusing on the use of learning analytics for “leveraging
human intelligence” instead of its use for automatic intelli-
gent methods.

Item similarities and clusters are studied not only in ed-
ucational data mining but also in a closely related area of
recommender systems. The setting of recommender systems
is in many aspects very similar to educational systems – in
both cases we have users and items, just instead of “perfor-
mance” (the correctness of answers, the speed of answers)
recommender systems consider “ratings” (how much a user
likes an item). Item similarities and clustering techniques
have thus been also considered in the recommender systems
research (we mention specific techniques below). There is a
slight, but important difference between the two areas. In
recommender systems item similarities and clusterings are
typically only auxiliary techniques hidden within a “recom-
mendation black box”. In educational system, it is useful to
make these results explicitly available to system developers,
curriculum production teams, or teachers.

There are two basic approaches to dealing with item similar-
ities and knowledge components: a “model based approach”
and an “item similarity approach”. The basic idea of the
model based approach is to construct a simplified model that
explains the observed data. Based on a matrix of learners’
answers to items we construct a model that predicts these
answers. Typically, the model assigns several latent skills to
learners and uses a mapping of items to corresponding latent
factors. This kind of models can often be naturally expressed
using matrix multiplication, i.e., fitting a model leads to ma-
trix factorization. Once we fit the model to data, items that
have the same value of a latent factor can be denoted as
“similar”. This approach leads naturally to multiple knowl-
edge components per skill. The model is typically computed
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using some optimization technique that leads only to local
optima (e.g., gradient descent). It is thus necessary to ad-
dress the role of initialization, and parameter setting of the
search procedure. In recommender systems this approach is
used for implementation of collaborative filtering; it is often
called “singular value decomposition” (SVD) [18]. In edu-
cational context many variants of this approach have been
proposed under different names and terminology, e.g., Q-
matrix [3], non-negative matrix factorization techniques [8],
sparse factor analysis [19], or matrix refinement [10].

With the item similarity approach we do not construct an
explicit model of learners’ behavior, but we compute directly
a similarity measure for each pairs of items. These similar-
ities are then used to compute clusters of items, to project
items into a plane, or for other analysis (e.g., for each item
listing the 3 most similar items). This approach naturally
leads to a mapping with a single knowledge component per
item (i.e., different kind of output from most model based
methods). One advantage of this approach is easier inter-
pretability. In recommender system research this approach
is called neighborhood-based methods [11] or item-item col-
laborative filtering [7]. Similarity has been used for clus-
tering of items [23, 24] and also for clustering of users [29].
In educational setting item similarity has been analyzed us-
ing correlation of learners’ answers [22] and problem solving
times [21], and also using learners’ wrong answers [25].

So far we have discussed methods that are based only on
data about learners’ answers. Often we have some additional
information about items and their similarities, e.g., a man-
ual labeling or data based on syntactic similarity of items
(text of questions). For both model based and item similar-
ity approaches previous research has studied techniques for
combination of these different types of inputs [10, 21].

In this work we focus on the item similarity approach, be-
cause in the educational setting this approach is less ex-
plored than the model based approach. We discuss specific
techniques, clarify details of their usage, and provide evalua-
tion using both data from real learners and simulated data.
Simulated data are useful for evaluation of the considered
unsupervised machine learning tasks, because in the case of
real-world data we do not know the “ground truth”.

The specific contributions of this work are the following. We
provide guidelines for the choice of item similarity measures
– we discuss different options and provide results identifying
suitable measures (Pearson, Yule, Cohen); we also demon-
strate the usefulness of “two step similarity measures”. We
explore benefits of the use of response time information as
supplement to usual information of correctness of answer.
We use and discuss several evaluation methods for the con-
sidered tasks. We specifically consider the issue of “how
much data do we need”. This is often practically more im-
portant than the exact choice of a used technique, but the
issue is rather neglected in previous work.

2. MEASURES OF ITEM SIMILARITY
Figure 1 provides a high-level illustration of the item sim-
ilarity approach. This approach consist of two steps that
are to a large degree independent. At first, we compute an
item similarity matrix, i.e., for each pair of items i, j we

learner
data

item similarity
matrix

visualization clusters

syntactic
similarity 
of items

expert
input

Figure 1: High-level illustration of the general ap-
proach to item analysis based on item similarities.

compute similarity sij of these items. At second, we can
construct clusters or visualizations of items using only the
item similarity matrix.

Experience with clustering algorithms suggests that the ap-
propriate choice of similarity measure is more important
than choice of clustering algorithm [13]. The choice of simi-
larity measure is domain specific and it is typically not ex-
plored in general research on clustering. Therefore, we focus
on the first step – the choice of similarity measure – and ex-
plore it for the case of educational data.

2.1 Basic Setting
In this work we focus on computing item similarities using
learners’ performance data. As Figure 1 shows, the simi-
larity computation can also utilize information from domain
experts or automatically determined information based on
the inner structure of items (e.g., text of questions or some
available meta-data).

We discuss different possibilities for computation of item
similarities. Note that in our discussion we consistently use
“similarity measures” (higher values correspond to higher
similarity), some related works provide formulas for dissim-
ilarity measures (distance of items; lower values correspond
to higher similarity). This is just a technical issue, as we can
easily transform similarity into dissimilarity by subtraction.

The input to item similarity computation are data about
learner performance, i.e., a matrix L × I, where L is the
number of learners and I is the number of items. The ma-
trix values specify learners’ performance. The matrix is typ-
ically very sparse (many missing values). The output of the
computation is an item similarity matrix, which specifies
similarity for each pair of items.

Note that in our discussion we mostly ignore the issue of
learning (change of learners skill as they progress through
items). When learning is relatively slow and items are pre-
sented in a randomized order, learning is just a reasonably
small source of noise and does not have a fundamental im-
pact on the computation of item similarities. In cases where
learning is fast or items are presented in a fixed order, it
may be necessary to take learning explicitly into account.

2.2 Correctness of Answers
The basic type of information available in educational sys-
tems is the correctness of learners’ answers. So we start with
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similarity measures that utilize only this type of informa-
tion, i.e., dichotomous data (correct/incorrect) on learners’
answers on items. The advantage of these measures is that
they are applicable in wide variety of settings.

With dichotomous data we can summarize learners’ perfor-
mance on items i and j using an agreement matrix with
just four values (Table 1). Although we have just four val-
ues to quantify the similarity of items i and j, previous re-
search has identified large number of different measures for
dichotomous data and analyzed their relations [5, 12, 20].
For example Choi et al. [5] discuss 76 different measures, al-
beit many of them are only slight variations on one theme.
Similarity measures over dichotomous data are often used in
biology (co-occurrence of species) [14]. A more directly rele-
vant application is the use of similarity measures for recom-
mendations [30]. Recommender systems typically use either
Pearson correlation or cosine similarity for computation of
item similarities [11], but they consider richer than binary
data.

Table 1: An agreement matrix for two items and def-
initions of similarity measures based on the agree-
ment matrix (n = a+ b+ c+ d is the total number of
observations).

item i
incorrect correct

item j incorrect a b
correct c d

Yule Sy = (ad− bc)/(ad+ bc)

Pearson Sp = (ad− bc)/
√

(a+ b)(a+ c)(b+ d)(c+ d)

Cohen Sc = (Po − Pe)/(1− Pe)
Po = (a+ d)/n
Pe = ((a+ b)(a+ c) + (b+ d)(c+ d))/n2

Sokal Ss = (a+ d)/(a+ b+ c+ d)

Jaccard Sj = a/(a+ b+ c)

Ochiai So = a/
√

(a+ b)(a+ c)

Table 1 provides definitions of 6 measures that we have cho-
sen for our comparison. In accordance with previous re-
search (e.g., [5, 14]) we call measures by names of researchers
who proposed them. The choice of measures was done in
such a way as to cover measures used in the most closely re-
lated work and measures which achieved good results (even
if the previous work was in other domains). We also tried
to cover different types of measures.

Pearson measure is the standard Pearson correlation coef-
ficient evaluated over the dichotomous data. In the con-
text of dichotomous data it is also called Phi coefficient or
Matthews correlation coefficient. Yule measure is similar
measure, which achieved good results in previous work [30].
Cohen measure is typically used as a measure of inter-rater
agreement (it is more commonly called “Cohen’s kappa”).
In our setting it makes sense to consider this measure when

we view learners’ answers as “ratings” of items. Relations
between these three measures are discussed in [32].

Ochiai coefficient is typically used in biology [14]. It is also
equivalent to cosine similarity evaluated over dichotomous
data; cosine similarity is often used in recommender sys-
tems for computing item similarity, albeit typically over in-
terval data [7]. Sokal measure is also called Sokal-Michener
or “simple matching”. It is equivalent to accuracy measure
used in information retrieval. Together with Jaccard mea-
sure they are often used in biology, but they have also been
used for clustering of educational data [12].

Note that some similarity measures are asymmetric with re-
spect to 0 and 1 values. These measures are typically used
in contexts where the interpretation of binary values is pres-
ence/absence of a specific feature (or observation). In the
educational context it is more natural to use measures which
treat correct and incorrect answers symmetrically. Never-
theless, for completeness we have included also some of the
commonly used asymmetric measures (Ochiai and Jaccard).
In these cases we focus on incorrect answers (value a as op-
posed to d) as these are typically less frequent and thus bear
more information.

2.3 Other Data Sources
The correctness of answers is the basic source of informa-
tion about item similarities, but not the only one. We
can also use other data. The second major type of per-
formance data is response time (time taken to answer an
item). The basic approach to utilization of response time
is to combine it with the correctness of an answer. Given
the correctness value c ∈ {0, 1}, a response time t ∈ R+,
and the median of all response times τ , we combine them
into a single score r. Examples of such transformations
are: linear transformation for correct answers only (r =
c ·max(1 − t/2τ, 0)); exponential discounting used in Mat-

Mat [28] (r = c · min(1, 0.9t/τ−1)); linear transformation
inspired by high speed, high stakes scoring rule used in Math
Garden [16] (r = (2c − 1) ·max(1 − t/2τ, 0)). The first
approach was used in our experiment due to its simplicity
and high influence of response time information.

The scores obtained in this way are real numbers. Given the
scores it is natural to compute similarity of two items using
Pearson correlation coefficient of scores (over learners who
answered both items). It is also possible to utilize specific
wrong answers for computation of item similarity [25].

It is also possible to combine performance based measures
with other types of data. For example we may estimate
item similarity based on analysis of the content of items
(syntactical similarity of texts), or collect expert opinion
(manual categorization of items into several groups). The
advantage of the similarity approach (compared to model
based approach) is that different similarity measures can be
usually combined in straightforward way by using a weighted
average of different measures.

2.4 Second Level of Item Similarity
The basic computation of item similarities computes simi-
larity of items i and j using only data about these two items.
To improve a similarity measure, it is possible to employ a
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“second of level of item similarity” that is based on the com-
puted item similarity matrix and uses information on all
items. Examples of such a second step is Euclidean distance
or correlation. Similarity of items i and j is given by the
Euclidean distance or Pearson correlation of rows i and j
in the similarity matrix. Note that Euclidean distance may
be used implicitly when we use standard implementation of
some clustering algorithms (e.g., k-means).

With the basic approach to item similarity, we consider
items similar when performance of learners on these items is
similar. With the second step of item similarity, we consider
two items similar when they behave similarly with respect
to other items. The main reason for using this second step
is the reduction of noise in data by using more informa-
tion. This may be useful particularly to deal with learning.
Two very similar items may have rather low direct similar-
ity, because getting a feedback on the first item can strongly
influence the performance on the second item. However, we
expect both items to have similar similarities to other items.

A more technical reason to using the second step (partic-
ularly the Euclidean distance) is to obtain a measure that
is a distance metric. The measures described above mostly
do not satisfy triangle inequality and thus do not satisfy
the requirements on distance metric; this property may be
important for some clustering algorithms.

3. EVALUATION
In this work we focus on item similarity, but we keep the
overall context depicted in Figure 1 in mind. The quality of
a visualization is to a certain degree subjective and difficult
to quantify, but the quality of clusters can be quantified and
thus we can use it to compare similarity measures. From
the large pool of existing clustering algorithms [15] we con-
sider k-means, which is the most common implementation
of centroid-based clustering, and hierarchical clustering. We
used agglomerative or “bottom up” approach where items
are successively merged to clusters using Ward’s method as
linkage criteria.

3.1 Data
We use data from real educational systems as well as sim-
ulated learner data. Real-world data provide information
about the realistic performance of techniques, but the eval-
uation is complicated by the fact that we do not know the
“ground truth” (the “correct” similarity or clusters of items).
Simulated data provide a setting that is in many aspects
simplified but allows easier evaluation thanks to the access
to the ground truth.

For generating simulated data we use a simple approach
with minimal number of assumptions and ad hoc param-
eters. Each item belongs to one of k knowledge compo-
nents. Each knowledge component contains n items. Each
item has a difficulty generated from the standard normal
distribution di ∼ N (0, 1). Skills of learners with respect to
individual knowledge components are independent. Skill of
a learner l with respect to knowledge component j is gen-
erated from the standard normal distribution θlj ∼ N (0, 1).
We assume no learning (constant skills). Answers are gen-
erated as Bernoulli trials with the probability of a correct
answer given by the logistic function of the difference of a

Table 2: Data used for analysis.

learners items answers

Czech 1 (adjectives) 1 134 108 62 613
Czech 2 4 567 210 336 382
MatMat: numbers 6 434 60 67 753
MatMat: addition 3 580 135 20 337
Math Garden: addition 83 297 30 881 994
Math Garden: multiplic. 97 842 30 1 233 024

relevant skill and an item difficulty (a Rasch model): p =
exp(θlj − di)−1. This approach is rather standard, for ex-
ample Piech at al. [26] use very similar procedure and also
other works use closely related procedures [4, 12]. In the
experiment reported below the basic setting is 100 learners,
5 knowledge components with 20 items each.

To evaluate techniques on realistic educational data, we use
data from three educational systems. Table 2 describes the
size of the used data sets.

Umı́me Česky (umimecesky.cz) is a system for practice of
Czech spelling and grammar. We use data only from one ex-
ercise from the system – simple “fill-in-the-blank” questions
with two options. We use only data on the correctness of
answers (response time is available, but since it depends on
the text of a particular item its utilization is difficult). We
focus particularly on one subset of items: questions about
the choice between i/y in suffixes of Czech adjectives. For
this subset we have manually determined 7 groups of items
corresponding to Czech grammar rules.

MatMat (matmat.cz) is a system for practice of basic arith-
metic (e.g., counting, addition, multiplication). For each
item we know the underlying construct (e.g., “13” or “7 +
8”) and also the specific form of questions (e.g., what type of
visualization has been used). We use data on both correct-
ness and response time. We selected the two largest subsets:
multiplication and numbers (practice of number sens, count-
ing).

Math Garden is another system for practice of basic arith-
metic [16]. This system is more widely used than MatMat,
but we do not have direct access to the system and detailed
data. For the analysis we reuse publicly available data from
previous research [6]. The available data contain both cor-
rectness of answers and response times, but they contain
information only about 30 items without any identification
of these items.

3.2 Comparison of Similarity Measures
To evaluate similarity measures we consider several types
of analysis. With simulated data, we analyze the similarity
measures with respect to the ground truth while for real-
world data we evaluate correlations among similarity mea-
sures. We also compare the quality of subsequent cluster-
ings using adjusted Rand index (ARI) [27, 31], which mea-
sures the agreement of two clusterings (with a correction for
agreement due to chance). Typically, we use the adjusted
Rand index to compare the clustering with a ground truth
(available for simulated data) or with a manually provided
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Figure 2: Differences between similarity values
inside knowledge components and between them.
Simulated data set with the basic setting were used.

classification (available for the Czech 1 data set). It can be
also used to compare two detected clusterings (clusterings
based on two different algorithms or clusterings based on
two independent halves of data).

As a first step in the evaluation of similarity measures, we
consider experiments with simulated data where we can uti-
lize the ground truth. In clustering we expect high within-
cluster similarity values and low between-cluster similarity
values. Figure 2 shows distribution of the similarity values
for selected measures and suggest which measures separate
within-cluster and between-cluster values better and there-
fore which measures will be more useful in clustering. The
results show that for Jaccard and Sokal measures the val-
ues overlap to a large degree, whereas Pearson and Yule
measures provide better results. Adding the second step –
Pearson correlation in this example – to the similarity mea-
sure separates within-cluster and between-cluster values bet-
ter. That suggests that extending similarities in this way is
not only necessary step for some subsequent algorithms such
as k-means but also a useful technique with better perfor-
mance.

For data coming from real systems we do not know the
ground truth and thus we can only compare the similar-
ity measures to each other. To evaluate how similar two
measures are we take all similarity values for all item pairs
and computed correlation coefficient. Figure 3 shows results
for two data sets which are good representatives of over-
all results. Pearson and Cohen measures are highly corre-
lated (> 0.98) across all data sets and have nearly the same
values (although not exactly the same). Larger differences
(but only up to 0.1) can be found typically when one of the
values in the agreement matrix is small and that happens
only for poorly correlated items with the resulting similar-
ity value around 0. The second pair of highly correlated
measures is Ochiai and Jaccard, which are both asymmetric
with respect to the agreement matrix. The correlation be-
tween these two pairs of measures vary depending on data
set and in some cases drops up to 0.5. Because of this high
correlation within these pairs we further report results only

Czech 1 (adjectives) MatMat: numbers

Figure 3: Correlations of similarity measures.

for Pearson and Jaccard measures. Yule measure is usually
similar to Pearson measure (correlation usually around 0.9).
The main difference is that the Yule measure spreads values
more evenly across the interval [-1, 1]. Sokal is the most
outlying measure with no correlation or small correlation
(usually < 0.6) with all other measures.

Figure 4 shows the effect of the second levels of item sim-
ilarity on the Pearson measure (results for other measures
are analogical). The Euclid distance as second level similar-
ity brings larger differences (lower correlation) than Pearson
correlation. The correlations for large data sets such as Math
Garden are usually high (> 0.9) and conversely the lowest
correlations are found in results for small data sets. This
suggests that the second level of similarity is more signifi-
cant, and thus potentially more useful, where only limited
amount of data is available.

Czech 1 (adjectives) MatMat: numbersCzech 2

MatMat: addition Math Garden: addition Math Garden: multiplic.

6

Figure 4: Correlations of Pearson measure and Pear-
son with different second levels.

Finally, we evaluate the quality of the similarity measures
according to the performance of the subsequent clustering.
From the two considered clustering methods we used the hi-
erarchical clustering in this comparison because it naturally
works with similarity measure and does not require metric
space. The other two methods have similar result with same
conclusions. Table 3 and Figure 5 show results. Although
the results are dependent on the specific data set and the
used clustering algorithm, there is quite clear general con-
clusion. Pearson and Yule measures provide better results
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Figure 5: The quality of clustering for different mea-
sures used in the second step of item similarity. Top:
Simulated data with 5 correlated skills. Bottom:
Czech grammar with 7 manually determined clus-
ters.

than Jaccard and Sokal, i.e., for the considered task the
later two measures are not suitable. The Pearson is usually
slightly better than Yule but the choice between them seems
not to be fundamental (which is not surprising given that
they are highly correlated). The results also show that the
“second step” is always useful. The result for simulated data
favor Euclidean distance over Pearson but there are almost
no differences for real-world data.

3.3 Do We Have Enough Data?
In machine learning the amount of available data often is
more important than the choice of a specific algorithm [2].
Our results suggest that once we choose a suitable type of
similarity measure (e.g., Pearson, Cohen, or Yule), the dif-
ferences between these measures are not fundamental, the
more important issue becomes the size of available data.

Specifically, for a given data set we want to know whether
the data are sufficiently large so that the computed item
similarities are meaningful and stable. This issue can be ex-
plored by analyzing confidence intervals for computed sim-
ilarity values. As a simple approach to analysis of similar-
ity stability we propose the following approach: We split
the available data into two independent halves (in a learner
stratified manner), for each half we compute the item simi-
larities, and we compute the correlation of the resulting item
similarities.

Sample size
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MatMat: numbers
MatMat: addition
Math Garden: addition
Math Garden: multiplic.

Czech 2
Czech 1 (adjectives)

1223

882

20

68

336

63

Figure 6: Stability of similarity measure (Yule) for
real-world data sets. Data set was sampled, split
to halves and Pearson correlation was computed for
similarity values. Numbers on the right side indicate
thousands of answers in data sets.

We can also perform this computation for artificially reduced
data sets – this shows how the stability of results increases
with the size of data. Figure 6 shows this kind of analysis
for our data (real-world data sets). We clearly see large dif-
ferences among individual data sets. Math Garden data set
contains large number of answers and only a few items, the
results show excellent stability, clearly in this case we have
enough data to analyze item similarities. For the Czech
grammar data set we have large number of answers, but
these are divided among relatively large number of items.
The results show a reasonably good stability, the data are
usable for analysis, but clearly more data can bring improve-
ment. For MatMat data the stability is poor, to draw solid
conclusions about item similarities we need more data.

3.4 Response Time Utilization
The incorporation of response time information to similar-
ity measure can change the meaning of similarity. Figure 7
gives such example and shows projection of items from Mat-
Mat practicing number sense. Similar items according to
measures using only correctness of answers tend to be items
with the same graphical representation in the system. On
the other hand, similar items according to measures using
also response time are usually items practicing close num-
bers.

We used this method also on data sets from Math Garden,
which are much larger. In this case the use of response
times has only small impact on the computed item similari-
ties (correlations between 0.9 and 0.95). However, the use of
response times influences how quickly does the computation
converge, i.e., how much data do we need. To explore this
we consider as the ground truth the average of computed
similarity matrices with and without response times for the
whole data set. Then we used smaller samples of the data
set, used them to compute item similarities and checked the
agreement with this ground truth. Figure 8 shows the dif-
ference between speed of convergence of measure with and
without response time utilization. Results shows that the
measure which use addition information from response time
converges to ground truth much faster. This result suggests
that the use of response time can improve clustering or visu-
alizations when only small number of answers are available.
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Table 3: Comparison of similarity measures for one real-world data (with sampled students) set and simulated
data sets with c knowledge components and l learners. The values provide the adjusted Rand index (with
0.95 confidence interval) for a hierarchical clustering computed based on the specific similarity measure. The
top result for every data set is highlighted.

Czech 1 (c=7) l = 50, c = 5 l = 100, c = 5 l = 200, c = 5 l = 100, c = 2 l = 100, c = 10

Pearson 0.32± 0.02 0.26± 0.04 0.48± 0.05 0.84± 0.05 0.77± 0.12 0.34± 0.04
Jaccard 0.31± 0.03 0.06± 0.03 0.15± 0.04 0.29± 0.08 0.32± 0.18 0.09± 0.02
Yule 0.31± 0.03 0.19± 0.04 0.43± 0.05 0.77± 0.07 0.60± 0.15 0.31± 0.03
Sokal 0.15± 0.06 0.11± 0.02 0.18± 0.03 0.25± 0.05 0.12± 0.11 0.14± 0.02
Pearson → Euclid 0.43± 0.01 0.45± 0.05 0.80± 0.06 0.98± 0.01 0.95± 0.03 0.67± 0.04
Yule → Euclid 0.32± 0.02 0.36± 0.05 0.65± 0.07 0.94± 0.04 0.89± 0.11 0.43± 0.03
Pearson → Pearson 0.41± 0.03 0.39± 0.05 0.73± 0.06 0.96± 0.02 0.92± 0.03 0.55± 0.04
Yule → Pearson 0.32± 0.03 0.38± 0.05 0.72± 0.06 0.97± 0.02 0.94± 0.04 0.55± 0.05

Figure 7: Projection of items practicing number
sense from MatMat system. Left: Measure based
only correctness. Right: Measure using response
time. Opacity corresponds to the number value of
the item and color corresponds to the graphical rep-
resentation of the task.

4. DISCUSSION
Our focus is the automatic computation of item similarities
based on learners’ performance data. These similarities can
be then used in further analysis of an item relations such as
an item clustering or a visualization. This outlines direction
for future work in which methods using the item similarities
should be studied in more detail. Compared to alternative
approaches that have been proposed for the task (e.g., ma-
trix factorizations, neural networks), the item similarity ap-
proach is rather straightforward, easy to realize, and it can
be easily combined with other sources of information about
items (text of items, expert opinion). For these reasons the
item similarity approach should be used at least as a baseline
in proposals for more complex methods like deep knowledge
tracing [26].

The most difficult step in this approach is the choice of a
similarity measure. Once we make a specific choice, the re-
alization of the approach is easy. Our results provide some
guidelines for this choice. Pearson, Yule, and Cohen mea-
sures lead to significantly better results than Ochiai, Sokal,
and Jaccard measures. It is also beneficial to use the second
step of item similarity (e.g., the Euclidean distance over vec-
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Figure 8: The speed of convergence to ground truth
for measures with and without response time on
Math Garden addition data set.

tors of item similarities). The exact choice of details does not
seem to make fundamental difference (e.g., Pearson versus
Yule in the first step, the Euclidean distance versus Pear-
son correlation in the second step). The Pearson correla-
tion coefficient is a good “default choice”, since it provides
quite robust results and is applicable in several settings and
steps. It also has the pragmatic advantage of having fast,
readily available implementation in nearly all computational
environments, whereas measures like Yule may require ad-
ditional implementation effort.

The amount of data available is the critical factor for the suc-
cess of automatic analysis of item relations. A key question
for practical applications is thus: “Do we have enough data
to use automated techniques?” In this work we used several
specific methods for analysis of this question, but the issue
requires more attention – not just for the item similarity
approach, but also for other methods proposed in previous
work. For example previous work on deep knowledge trac-
ing [26], which studies closely related issues, states only that
deep neural networks require large data without providing
any specific quantification what ‘large’ means. The necess-
sary quantity of data is, of course, connected to the quality
of data – some data sources are more noisy than other, e.g.,
answers from voluntary practice contain more noise than an-
swers from high-stakes testing. An important direction for
future work is thus to compare model based and item simi-
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larity approaches while taking into account the ‘amount and
quality of data available’ issue.
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ABSTRACT
Massive open online courses (MOOCs) have demonstrated grow-
ing popularity and rapid development in recent years. Discussion
forums have become crucial components for students and instruc-
tors to widely exchange ideas and propagate knowledge. It is im-
portant to recommend helpful information from forums to students
for the benefit of the learning process. However, students or in-
structors update discussion forums very often, and the student pref-
erences over forum contents shift rapidly as a MOOC progresses.
So, MOOC forum recommendations need to be adaptive to these
evolving forum contents and drifting student interests. These fre-
quent changes pose a challenge to most standard recommendation
methods as they have difficulty adapting to new and drifting ob-
servations. We formalize the discussion forum recommendation
problem as a sequence prediction problem. Then we compare dif-
ferent methods, including a new method called context tree (CT),
which can be effectively applied to online sequential recommen-
dation tasks. The results show that the CT recommender performs
better than other methods for MOOCs forum recommendation task.
We analyze the reasons for this and demonstrate that it is because
of better adaptation to changes in the domain. This highlights the
importance of considering the adaptation aspect when building rec-
ommender system with drifting preferences, as well as using ma-
chine learning in general.

Keywords
MOOCs forum recommendation, context tree, model adaptation

1. INTRODUCTION
With the increased availability of data, machine learning has be-
come the method of choice for knowledge acquisition in intelligent
systems and various applications. However, data and the knowl-
edge derived from it have a timeliness, such that in a dynamic en-
vironment not all the knowledge acquired in the past remains valid.
Therefore, machine learning models should acquire new knowl-
edge incrementally and adapt to the dynamic environments. To-
day, many intelligent systems deal with dynamic environments: in-
formation on websites, social networks, and applications in com-

mercial markets. In such evolving environments, knowledge needs
to adapt to the changes very frequently. Many statistical machine
learning techniques interpolate between input data and thus their
models can adapt only slowly to new situations. In this paper,
we consider the dynamic environments for recommendation task.
Drifting user interests and preferences [3, 11] are important in build-
ing personal assistance systems, such as recommendation systems
for social networks or for news websites where recommendations
need be adaptive to drifting trends rather than recommending ob-
solete or well-known information. We focus on the application
of recommending forum contents for massive open online courses
(MOOCs) where we found that the adaptation issue is a crucial as-
pect for providing useful and trendy information to students.

The rapid emergence of some MOOC platforms and many MOOCs
provided on them has opened up a new era of education by pushing
the boundaries of education to the general public. In this special on-
line classroom setting, sharing with your classmates or asking help
from instructors is not as easy as in traditional brick-and-mortar
classrooms. So discussion forums there have become one of the
most important components for students to widely exchange ideas
and to obtain instructors’ supplementary information. MOOC fo-
rums play the role of social learning media for knowledge propaga-
tion with increasing number of students and interactions as a course
progresses. Every member in the forum can talk about course con-
tent with each other, and the intensive interaction between them
supports the knowledge propagation between members of the learn-
ing community.

The online discussion forums are usually well structured via the
different threads which are created by students or instructors; they
can contain several posts and comments within the topic. An ex-
ample of the discussion forum from a famous “Machine Learning”
course by Andre Ng on Coursera1 is shown in Figure 1. The left
figure shows various threads and the right figure illustrates some
replies within the last thread ("Having a problem with the Collab-
orative Filtering Cost"). In general, the replies within a thread are
related to the topic of the thread and they can also refer to some
other threads for supplementary information, like the link in the
second reply. Our goal is to point the students towards useful fo-
rum threads through effectively mining forum visit patterns.

Two aspects set forum recommendation system for MOOCs apart
from other recommendation scenarios. First, student interests and
preferences drift fast during the span of a course, which is influ-
enced by the dynamics in forums and the content of the course;
second, the pool of items to be recommended and the items them-

1https://www.coursera.org/
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Figure 1: An sample discussion forum. Left: sample threads. Right: replies within the last thread ("Having a problem with the Collaborative Filtering Cost").

selves are evolving over time because forum threads can be edited
very frequently by either students or instructors. So the recommen-
dations provided to students need to be adaptive to these drifting
preferences and evolving items. Traditional recommendation tech-
niques, such as collaborative filtering and methods based on ma-
trix factorization, only adapt slowly, as they build an increasingly
complex model of users and items. Therefore, when a new item is
superseded by a newer version or a new preference pattern appears,
it takes time for recommendations to adapt. To better address the
dynamic nature of recommendation in MOOCs, we model the rec-
ommendation problem as a dynamic and sequential machine learn-
ing problem for the task of predicting the next item in a sequence of
items consumed by a user. During the sequential process, the chal-
lenge is combining old knowledge with new knowledge such that
both old and new patterns can be identified fast and accurately. We
use algorithms for sequential recommendation based on variable-
order Markov models. More specifically, we use a structure called
context tree (CT) [21] which was originally proposed for lossless
data compression. We apply the CT method for recommending
discussion forum contents for MOOCs, where adapting to drift-
ing preferences and dynamic items is crucial. In experiments, it is
compared with various sequential and non-sequential methods. We
show that both old knowledge and new patterns can be captured ef-
fectively through context activation using CT, and that this is why
it is particularly strong at adapting to drifting user preferences and
performs extremely well for MOOC forum recommendation tasks.

The main contribution of this paper is fourfold:

• We applied the context tree structure to a sequential recom-
mendation tasks where dynamic item sets and drifting user
preferences are of great concern.

• Analyze how the dynamic changes in user preferences are
followed in different recommendation techniques.

• Extensive experiments are conducted for both sequential and
non-sequential recommendation settings. Through the ex-
perimental analysis, we validate our hypothesis that the CT
recommender adapts well to drifting preferences.

• Partial context matching (PCT) technique, built on top of the
standard CT method, is proposed and tested to generalize to
new sequence patterns, and it further boosts the recommen-
dation performance.

2. RELATED WORK
Typical recommender systems adopt a static view of the recommen-
dation process and treat it as a prediction problem over all historical
preference data. From the perspective of generating adaptive rec-
ommendations,we contend that it is more appropriate to view the
recommendation problem as a sequential decision problem. Next,
we mainly review some techniques developed for recommender
systems with temporal or sequential considerations.

The most well-known class of recommender system is based on
collaborative filtering (CF) [19]. Several attempts have been made
to incorporate temporal components into the collaborative filtering
setting to model users’ drifting preferences over time. A common
way to deal with the temporal nature is to give higher weights to
events that happened recently. [6, 7, 15] introduced algorithms
for item-based CF that compute the time weightings for different
items by adding a tailored decay factor according to the user’s own
purchase behavior. For low dimensional linear factor models, [11]
proposed a model called “TimeSVD” to predict movie ratings for
Netflix by modeling temporal dynamics, including periodic effects,
via matrix factorization. As retraining latent factor models is costly,
one alternative is to learn the parameters and update the decision
function online for each new observation [1, 16]. [10] applied the
online CF method, coupled with an item popularity-aware weight-
ing scheme on missing data, to recommending social web contents
with implicit feedbacks.

Markov models are also applied to recommender systems to learn
the transition function over items. [24] treated recommendation as
a univariate time series problem and described a sequential model
with a fixed history. Predictions are made by learning a forest of
decision trees, one for each item. When the number of items is big,
this approach does not scale. [17] viewed the problem of generating
recommendations as a sequential decision problem and they con-

Proceedings of the 10th International Conference on Educational Data Mining 25



sidered a finite mixture of Markov models with fixed weights. [4]
applied Markov models to recommendation tasks using skipping
and weighting techniques for modeling long-distance relationships
within a sequence. A major drawback of these Markov models is
that it is not clear how to choose the order of Markov chain.

Online algorithms for recommendation are also proposed in sev-
eral literatures. In [18], a Q-learning-based travel recommender is
proposed, where trips are ranked using a linear function of several
attributes and the weights are updated according to user feedback.
A multi-armed bandit model called LinUCB is proposed by [13]
for news recommendation to learn the weights of the linear reward
function, in which news articles are represented as feature vectors;
click-through rates of articles are treated as the payoffs. [20] pro-
posed a similar recommender for music recommendation with rat-
ing feedback, called Bayes-UCB, that optimizes the nonlinear re-
ward function using Bayesian inference. [14] used a Markov De-
cision Process (MDP) to model the sequential user preferences for
recommending music playlists. However, the exploration phase of
these methods makes them adapt slowly. As user preferences drift
fast in many recommendation setting, it is not effective to explore
all options before generating useful ones.

Within the context of recommendation for MOOCs, [23] proposed
an adaptive feature-based matrix factorization framework for course
forum recommendation, and the adaptation is achieved by utilizing
only recent features. [22] designed a context-aware matrix factor-
ization model to predict student preferences for forum contents, and
the context considered includes only supplementary statistical fea-
tures about students and forum contents. In this paper, we focus on
a class of recommender systems based on a structure, called con-
text tree [21], which was originally used to estimate variable-order
Markov models (VMMs) for lossless data compression. Then, [2,
12, 5] applied this structure to various discrete sequence predic-
tion tasks. Recently it was applied to news recommendation by
[8, 9]. The most important property of online algorithms is the no-
regret property, meaning that the model learned online is eventually
as good as the best model that could be learned offline. Accord-
ing to [21], the no-regret property is achieved by context trees for
the data compression problem. Regret analysis for CT was con-
ducted through simulation by [5] for stochastically generated hid-
den Markov models with small state space. They show that CT
achieves the no-regret property when the environment is stationary.
As we focus on dynamic recommendation environments with time-
varying preferences and limited observations, the no-regret prop-
erty can be hardly achieved while the model adaptation is a bigger
issue for better performance.

3. CONTEXT TREE RECOMMENDER
Due to the sequential item consumption process, user preferences
can be summarized by the last several items visited. When model-
ing the process as a fixed-order Markov process [17], it is difficult
to select the order. A variable-order Markov model (VMM), like a
context tree, alleviates this problem by using a context-dependent
order. The context tree is a space efficient structure to keep track
of the history in a variable-order Markov chain so that the data
structure is built incrementally for sequences that actually occur. A
local prediction model, called expert, is assigned to each tree node,
it only gives predictions for users who have consumed the sequence
of items corresponding to the node. In this section, we first intro-
duce how to use the CT structure and the local prediction model for
sequential recommendation. Then, we discuss adaptation proper-
ties and the model complexity of the CT recommender.

3.1 The Context Tree Data Structure
In CT, a sequence s = 〈n1 , . . . ,nl〉 is an ordered list of items
ni ∈ N consumed by a user. The sequence of items viewed until
time t is st and the set of all possible sequences S.

A context S = {s ∈ S : ξ ≺ s} is the set of all possible sequences
in S ending with the suffix ξ. ξ is the suffix (≺) of s if last elements
of s are equal to ξ. For example, one suffix ξ of the sequence
s = 〈n2, n3, n1〉 is given by ξ = 〈n3, n1〉.

A context tree T = (V, E) with nodes V and edges E is a partition
tree over all contexts of S. Each node i ∈ V in the context tree
corresponds to a context Si. If node i is the ancestor of node j then
Sj ⊂ Si. Initially the context tree T only contains a root node
with the most general context. Every time a new item is consumed,
the active leaf node is split into a number of subsets, which then
become nodes in the tree. This construction results in a variable-
order Markov model. Figure 2 illustrates a simple CT with some
sequences over an item set 〈n1, n2, n3〉. Each node in the CT cor-
responds to a context. For instance, the node 〈n1〉 represents the
context with all sequences end with item n1.

Figure 2: An example context tree. For the sequence s = 〈n2, n3, n1〉,
nodes in red-dashed are activated.

3.2 Context Tree for Recommendation
For each context Si, an expert µi is associated in order to compute
the estimated probability P(nt+1|st) of the next item nt+1 under
this context. A user’s browsing history st is matched to the CT and
identifies a path of matching nodes (see Figure 2). All the experts
associated with these nodes are called active. The set of active
experts A(st) = {µi : ξi ≺ st} is the set of experts µi associated
to contexts Si = {s : ξi ≺ st} such that ξi are suffix of st. A(st)
is responsible for the prediction for st.

3.2.1 Expert Model
The standard way for estimating the probability P(nt+1|st), as pro-
posed by [5], is to use a Dirichlet-multinomial prior for each expert
µi. The probability of viewing an item x depends on the number of
times αxt the item x has been consumed when the expert is active
until time t. The corresponding marginal probability is:

Pi(nt+1 = x|st) =
αxt + α0∑

j∈N αjt + α0
(1)

where α0 is the initial count of the Dirichlet prior
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3.2.2 Combining Experts to Prediction
When making recommendation for a sequence st, we first identify
the set of contexts and active experts that match the sequence. The
predictions given by all the active experts are combined by mixing
the recommendations given by them:

P(nt+1 = x|st) =
∑

i∈A(st)

ui(st)Pi(nt+1 = x|st) (2)

The mixture coefficient ui(st) of expert µi is computed in Eq. 3
using the weight wi ∈ [0, 1]. Weight wi is the probability that
the chosen recommendation stops at node i given that the it can be
generated by the first i experts, and it can be updated in using Eq.5.

ui(st) =

{
wi

∏
j:Sj⊂Si

(1− wj), if st ∈ Si

0, otherwise
(3)

The combined prediction of the first i experts is defined as qi and
it can be computed using the recursion in Eq. 4. The recursive
construction that estimates, for each context at a certain depth i,
whether it makes better prediction than the combined prediction
qi−1 from depth i− 1.

qi = wiPi(nt+1 = x|st) + (1− wi)qi−1 (4)

The weights are updated by taking into account the success of a
recommendation. When a user consumes a new item x, we update
the weights of the active experts corresponding to the suffix ending
before x according to the probability qi(x) of predicting x sequen-
tially via Bayes’ theorem. The weights are updated in closed form
in Eq. 5, and a detailed derivation can be found in [5].

w′i =
wiPi(nt+1 = x|st)

qi(x)
(5)

3.2.3 CT Recommender Algorithm
The whole recommendation process first goes through all users’ ac-
tivity sequences over time incrementally to build the CT; the local
experts and weights updated using Equations 1 and 5 respectively.
As users browse more contents, more contexts and paths are added
and updated, thus building a deeper, more complete CT. The rec-
ommendation for an activity or context in a sequence is generated
using Eq. 2 continuously as experts and weights are updated. At
the same time, a pool of candidate items is maintained through a
dynamically evolving context tree. As new items are added, new
branches are created. At the same time, nodes corresponding to old
items are removed as soon as they disappear from the current pool.

The CT recommender is a mixture model. On the one hand, the
prediction P(nt+1 = x|st) is a mixture of the predictions given
by all the activated experts along the activated path so that it’s a
mixtures of local experts or a mixture of variable order Markov
models whose oder are defined by context depths. On the other
hand, one path in a CT can be constructed or updated by multiple
users so that it’s a mixture of users’ preferences.

3.3 Adaptation Analysis
Our hypothesis, which is validated in later experiments, is that the
CT recommender can be applied elegantly to domains where adap-
tation and timeliness are of concern. Two properties of the CT
methods are crucial to the goal. First, the model parameter learn-
ing process and recommendations generated are online such that
the model adapts continuously to a dynamic environment. Second,
adaptability can be achieved by the CT structure itself as knowl-
edge is organized and activated by context. New items or paths are
recognized in new contexts, whereas old items can still be accessed

in their old contexts. It allows the model to make predictions us-
ing more complex contexts as more data is acquired so that old and
new knowledge can be elegantly combined. For new knowledge
or patterns added to an established CT, they can immediately be
identified through context matching. This context organization and
context matching mechanism help new patterns to be recognized to
adapt to changing environments.

3.4 Complexity Analysis
Learning CT uses the recursive update defined in Eq. 4 and rec-
ommendations are generated by weighting the experts’ predictions
along the activated path given by Eq. 2. For trees of depth D, the
time complexity of model learning and prediction for a new ob-
servation are both O(D). For input sequence of length T , the up-
dating and recommending complexity are O(M2), where M =
min(D,T ). Space complexity in the worst case is exponential to
the depth of the tree. However, as we do not generate branches
unless the sequence occurs in the input, we achieve a much lower
bound determined by the total size of the input. So the space com-
plexity is O(N), where N is the total number of observations.
Compared with the way that Markov models are learned, in which
the whole transition matrix needs to be learned simultaneously, the
space efficiency of CT offers us an advantage for model learning.
For tasks that involve very long sequences, we can limit the depth
D of the CT for space and time efficiency.

4. DATASET AND PROBLEM ANALYSIS
4.1 Dataset Description
In this paper, we work with recommending discussion forum threads
to MOOC students. A forum thread can be updated frequently and
it contains multiple posts and comments within the topic. As we
mentioned before that the challenge is adapting to drifting user
preferences and evolving forum threads as a course progresses. For
the experiments elaborated in the following section, we use forum
viewing data from three courses offered by École polytechnique
fédérale de Lausanne on Coursera. These three courses include
the first offering of “Digital Signal Processing”, the third offer-
ing of “Functional Program Design in Scala”, and the first offer-
ing of “’Reactive Programming’. They are referred to Course 1,
Course 2 and Course 3. Some discussion forum statistics for the
three courses are given in Table 1. From the number of forum
participants, forum threads, and thread views, we can see that the
course scale increase from Course 1 to Course 3. A student on
MOOCs often accesses course forums many times during the span
of a MOOC. Each time the threads she views are tracked as one
visit session by the web browser. The total number of visit sessions
and the average session lengths for three courses are presented in
Table 1. The length of a session is the number of threads she viewed
within a visit session. The thread viewing sequences correspond-
ing to these regular visit sessions are called separated sequences
in our later experiments and they treat threads in one visit session
as one sequence. Models built using separated sequences try to
catch short-term patterns within one visit session and we do not
differentiate the patterns from different students. Another setting,
called combined sequences, concatenates all of a student’s visit ses-
sions into one longer sequence so that models built using combined
sequences try to learn long-term patterns across students. The av-
erage length of combined sequences is the average session length
times the average number of sessions per student. From Course 1
to Course 3, average lengths for separated and combined sequences
both increase.
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Course 1 Course 2 Course 3
# of forum participants 5,399 12,384 13,914
# of forum threads 1,116 1,646 2,404
# of thread views 130,093 379,456 777,304
# of sessions 19,892 40,764 30,082
avg. session length 6.5 9 25.8
avg. # of sessions per student 3.7 3.3 2.2

Table 1: Course forum statistics for three datasets.

Another important issue that we can discover from the statistics is
that thread viewing data available for sequential recommendation is
very sparse. For example in Course 1, the average session length is
6.5 and the number of threads is around 1116. Then the complete
space to be explored will be 11166.5, which is much larger than
the size of observations (130,093 thread views). The similar data
sparsity issue is even more severe in the other two datasets.

4.2 Forum Thread View Pattern
Next, we study the thread viewing pattern which highlights the sig-
nificance of adaptation issues for thread recommendation. Figure
3 illustrates the distribution of thread views against freshness for
three courses. The freshness of an item is defined as the relative
creation order of all items that have been created so far. For ex-
ample, when a student views a thread tm which is the m-th thread
created in the currently existing pool of n threads, then freshness
of tm is defined as:

freshness =
m

n
(6)

We can see from Figure 3 that there is a sharp trend that the new
forum threads are viewed much more frequently than the old ones
for all three courses. It is mainly due to the fact that fresh threads
are closely relevant to the current course progress. Moreover, fresh
threads can also supersede the contents in some old ones to be
viewed. This tendency to view fresh items leads to drifting user
preferences. Such drifting preferences, coupled with the evolv-
ing nature of forum contents, requires recommendations adaptive
to drifting or recent preferences.
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Figure 3: Thread viewing activities against freshness

A further investigation through those views on old threads leads us
to a classification of threads into two categories: general threads
and specific threads. Some titles of the general and specific threads
are listed in Table 2. We could see the clear difference between
these two classes of threads as the general ones corresponds to
broad topics and specific ones are related to detailed course con-
tents or exercises. We also found that only a very small part of the
old threads are still rather active to be viewed and they are mostly
general ones. Different from general threads, specific threads that
subject to a fine timeliness are viewed very few times after they get

old. In general, sequential patterns are observed more often within
specific threads as some specific follow-up threads might be related
and useful to the one that you are viewing. So the patterns learned
could be used to guide your forum browsing process. On the con-
trary, sequential patterns on general threads are relatively random
and imperceptible.

General Threads Specific Threads
“Using GNU Octave” “Homework Day 1 / Question 9”
“Any one from INDIA??” “Quiz for module 4.2”
“Where is everyone from? “quiz -1 Question 04”
“Numerical Examples in pdf” ‘Homework 3, Question 11”
“How to get a certificate” “Week 1: Q10 GEMA problem”

Table 2: Sample thread titles of general and specific threads.

5. RESULTS AND EVALUATION
In this section, we compare the proposed CT method against var-
ious baseline methods in both non-sequential and sequential set-
tings. The results show that the CT recommender performs better
than other methods under different setting for all three MOOCs
considered. Through the adaptation analysis, we validate our hy-
pothesis that the superior performance of CT recommender comes
from the adaptation power to drifting preferences and trendy pat-
terns in the domain. In the end, a regularization technique for CT,
called partial context matching (PCT), is introduced. It is demon-
strated that PCT helps better generalize among sequence patterns
and further boost performance.

5.1 Baseline Methods
5.1.1 Non-sequential Methods

Matrix factorization methods proposed by [23, 22] are the state-of-
the-art for MOOCs course content recommendation. Besides the
user-based MF given in [23], we also consider item-based MF that
generates recommendations based on the similarity of the latent
item features learned from standard MF. In our case, each entry in
the user-item matrix of MF contains the number of times a student
views a thread. We also test a version where the matrix had a 1 for
any number of views, but the performance was not as good, so the
development of this version was not taken any further. MF mod-
els considered here are updated periodically (week-by-week). To
enable a fair comparison against non-sequential matrix factoriza-
tion techniques, we implemented versions where the CT model is
updated at fixed time intervals, equal to those of the MF models.
In the “One-shot CT” version, we compute the CT recommenda-
tions for each user based on the data available at the time of the
model update, and the user then receives these same recommenda-
tions at every future time step until the next update. This mirrors
the conditions of user-based MF. To compare with item-based MF,
the “Slow-update CT” version updates the recommendations, but
not the model, at each time point based on the sequential forum
viewing information available at that time.

5.1.2 Sequential Methods
Sequential methods update model parameters and recommenda-
tions continuously as items are consumed. The first two simple
methods are based on the observation and heuristic that fresh threads
are viewed much frequently than old ones. Fresh_1 recommends
the last 5 updated threads, and Fresh_2 recommends the last 5 cre-
ated threads. Another baseline method, referred as Popular, recom-
mends the top 5 threads among the last 100 threads viewed before
the current one. We also consider an online version of MF [10] that
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Figure 4: Overall performance comparison of CT and non-sequential methods

is currently the state-of-the-art sequential recommendation method,
referred to “online-MF”, in which the corresponding latent factor
of the item i and user u are updated when a new observation Rui

arrive. The model optimization is implemented based on element-
wise Alternating Least Squares. The number of latent factors is
tuned to be 15, 20, 25 for three datasets, and the regularization pa-
rameter is set as 0.01. Moreover, the weight of a new observation is
the same as old ones during optimization for achieving the best per-
formance. Furthermore, the proposed CT recommender refers to
the full context tree algorithm with a continuously updated model.

5.2 Performance and Adaptation Analysis
5.2.1 Evaluation Metrics

In our case, all methods recommend top-5 threads each time. Two
evaluation metrics are adopted in the following experiments:

• Succ@5: the mean average precision (MAP) of predicting
the immediately next thread view in a sequence.

• Succ@5Ahead: the MAP of predicting the future thread
views within a sequence. In this case, a recommendation
is successful even if it is viewed later in a sequence.

5.2.2 Comparison of Non-sequential Methods
Figure 4 shows the performance comparison between different ver-
sions of methods based on MF and CT on three datasets. “CT”
is the sequential method with a continuously updated model, and
all other methods Figure 4 are non-sequential versions. Combined
sequences are used for the CT methods here to have a parallel com-
parison against MF. We found that a small value of the depth limit
of the CTs hurts performances, yet a very large depth limit does
not increase performance at the cost of computation and memory.
Through experiments, we tune depths empirically and set them as
15, 20, 30 for three datasets.

Among non-sequential methods, one-shot CT and user-based MF
perform the worst for all three courses, which means that recom-
mending the same content for the next week without any sequence
consideration is ineffective. Slow-update CT performs consistently
the best among non-sequential methods, and it proves that adapting
recommendations through context tree helps boost performance al-
though the model itself is not updated continuously. Compared
to slow-update CT, item-based MF performs much worse. They
both update model parameters periodically and the recommenda-
tions are adjusted given the current observation. However, using
the contextual information within a sequence and the correspond-
ing prediction experts of slow-update CT are much more powerful
than just using latent item features of item-base MF. Moreover, we
can clearly see that the normal CT with continuous update outper-
forms all other non-sequential methods by a large margin for three
datasets. It means that drifting preferences need to be followed
though continuous and adaptive model update, so sequential meth-
ods are better choices. Next, we focus on sequential methods, and

we validate our hypothesis that the CT model has superior perfor-
mances because it better handles drifting user preferences.

5.2.3 Comparison of Sequential Methods
The results presented in Table 3 show the performance of the full
CT recommender compared with other sequential baseline meth-
ods under different settings and evaluation metrics. Each result
tuple contains the performance on the three datasets. We also con-
sider a tail performance metric, referred to personalized evaluation,
where the most popular threads (20, 30, and 40 for three courses)
are excluded from recommendations. The depth limits of CTs us-
ing separated sequences are set to 8, 10, and 15 for three courses.

We notice that the online-MF method, with continuous model up-
date, performs much worse compared with the CT recommender
for all three datasets. This result shows that matrix factorization,
which is based on interpolation over the user-item matrix, is not
sensitive enough to rapidly drifting preferences with limited ob-
servations. The performances of two versions of the Fresh rec-
ommender are comparable with online-MF, and Fresh_1 even out-
performs online-MF in many cases, especially for Succ@5Ahead.
It means that simply recommending fresh items even does a bet-
ter job than online-MF for this recommendation task with drifting
preferences. We can see that the CT recommender outperforms
all other sequential methods under various settings, except for us-
ing non-personalized Succ@5Ahead for Course 2. The Popular
recommender is indeed a very strong contender when using non-
personalized evaluation since there is a bias that students can click a
“top threads” tag from user interface to view popular threads which
are similar to the ones given by Popular recommender. From the
educational perspective, the setting using separated sequences and
personalized evaluation is the most interesting as it reflects shot-
term visiting patterns within a session over those specific and less
popular forum threads. We could see from the upper right part of
Table 3 that the CT recommender outperforms all other methods by
a large margin under this setting.

Non-personalized Personalized
Succ@5 Succ@5Ahead Succ@5 Succ@5Ahead

Separated Sequences
CT [25, 23, 21]% [48, 53, 52]% [19, 14, 16]% [41, 37, 42]%

online-MF [15, 12, 8]% [33, 29, 23]% [10, 7 ,6 ]% [27, 25, 20]%
Popular [15, 20, 16]% [40, 61, 51]% [9, 8 ,8 ]% [34, 31, 36]%
Fresh_1 [12, 14, 10]% [37, 43, 41]% [10, 10, 8]% [33, 31, 37]%
Fresh_2 [9, 8, 6]% [31, 31, 29]% [8, 7, 6 ]% [30, 30, 28]%

Combined Sequences
CT [21, 20, 20]% [55, 55, 56]% [16, 13, 14]% [46, 39, 46]%

online-MF [9, 8, 7]% [34, 27, 23]% [7,6,6]% [29, 24, 20]%
Popular [13, 14, 14]% [52, 62, 58]% [9, 8, 7]% [45, 36, 43]%
Fresh_1 [10, 12, 9]% [48, 44, 44]% [8, 9, 8]% [44, 34, 42]%
Fresh_2 [7, 6, 6]% [43, 34, 32]% [6, 6, 6]% [42, 32, 31]%

Table 3: Performance comparison of sequential methods

5.2.4 Adaptation Comparison
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Figure 5: Distribution of recommendation freshness of CT and online-MF
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Figure 6: Conditional success rate of CT and online-MF

After seeing the superior performance of the CT recommender, we
move to an insight analysis of the results. To be specific, we com-
pare CT and online-MF in terms of their adaptation capabilities
to new items. Figure 5 illustrates the cumulative density func-
tion (CDF) of the threads recommended by different methods against
thread freshness. We can see that the CDFs of CT increase sharply
when thread freshness increases, which means that the probability
of recommending fresh items is high compared to online-MF. In
other words, CT recommends more fresh items than online-MF. As
we mentioned before that a large portion of fresh threads are spe-
cific ones, instead of general ones, so CT recommends more spe-
cific and trendy threads to students while methods based on matrix
factorization recommend more popular and general threads.

Other than the quantity of recommending fresh and specific threads,
the quality is crucial as well. Figure 6 shows the conditional suc-
cess rateP (Success|Freshness) across different degrees of fresh-
ness for three courses. P (Success|Freshness) is defined as the
fraction of the items successfully recommended given the item fresh-
ness. For instance, if an item with freshness 0.5 is viewed 100 times
throughout a course, then P (Success|Freshness = 0.5) = 0.25
means it is among the top 5 recommended items 25 times. As
the freshness increases, the conditional success rate of online-MF
drops speedily while the CT method keeps a solid and stable per-
formance. It is significant that CT outperforms online-MF by a
large margin when freshness is high, in other words, it is particu-
larly strong for recommending fresh items. Fresh items are often
not popular in terms of the total number of views at the time point
of recommendation. So identifying fresh items accurately implies
a strong adaptation power to new and evolving forum visiting pat-
terns. The analysis above validates our hypothesis that the CT rec-
ommender can adapt well to drifting user preferences. Another
conclusion drawn from Figure 6 is that the performance of CT is as
good as online-MF for items with low freshness. This is because
that the context organization and context matching mechanism help
old items to be identifiable though old contexts. To conclude, CT is
flexible at combining old knowledge and new knowledge so that it
performances well for items with various freshness, especially for
fresh ones with drifting preferences.

5.3 Partial Context Matching (PCT)

At last, we introduce another technique, built on top of the stan-
dard CT, to generalize to new sequence patterns and further boost
the recommendation performance. The standard CT recommender
adopts a complete context matching mechanism to identify active
experts for a sequence s. That is, active experts of s come exactly
from the set of suffixes of s. We design a partial context match-
ing (PCT) mechanism where active experts of a sequence are not
constrained by exact suffixes, yet they can be those very similar
ones. Two reasons bring us to design the PCT mechanism for con-
text tree learning. First, PCT mechanism is a way of adding regu-
larization. Sequential item consumption process does not have to
follow exactly the same order, and slightly different sequences are
also relevant for both model learning and recommendation gener-
ation. Second, the data sparsity issue we discussed before for se-
quential recommendation setting can be solved to some extent by
considering similar contexts for learning model experts. The way
PCT does aims to activate more experts to train the model, and to
generate recommendations from a mixture of similar contexts.

We will focus on a skip operation that we add on top of the standard
CT recommender. Some complex operations, like swapping item
orders, are also tested, but they do not generate better performance.
For a sequence 〈sp, . . . , s1〉 with length p, the skip operation gen-
erates p candidate partially matched contexts that skip one sk for
k ∈ [1 . . . p]. All the contexts on the paths from root to partially
matched contexts are activated. For example, the path to context
〈n2, n1〉 can be activated from the context 〈n2, n3, n1〉 by the skip-
ping n3. However, for each partially matched context, there may
not exist a fully matched path in the current context tree. In this
case, for each partially matched context, we identify the longest
path that corresponds it with length q. If q/p is larger than some
threshold t, we update experts on this paths and use them to gener-
ate recommendations for the current observation. Predictions from
multiple paths are combined by averaging the probabilities.

Success@5 Success@5Ahead Ratio
PCT-0.5 [+0.4, +0.6, +0.2]% [+0.8, +0.9, +0.4]% [4.9, 4.5, 3.3]
PCT-0.6 [+0.5, +0.8, +0.3]% [+1.1, +1.3, +0.5]% [4.4, 4.1, 2.9]
PCT-0.7 [+0.7, +0.9, +0.5]% [+1.6, +1.9, +0.7]% [3.7, 3.2, 2.5]
PCT-0.8 [+0.8, +1.1, +0.6]% [+1.9, +2.4, +1.0]% [3.2, 2.9, 2.1]
PCT-0.9 [+1.0, +1.4, +0.7]% [+2.0, +2.7, +1.3]% [2.4, 2.2, 1.4]

Table 4: Performance comparison of PCT against CT for three courses
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Table 4 shows the performance of applying PCT for both model
update and recommendation with threshold t (PCT-t). Results are
compared with the full CT recommender with separated sequences
and non-personalized evaluation. For cases where the threshold is
smaller than 0.5, we sometimes obtain negative results since par-
tially matched contexts are too short to be relevant. The “Ratio”
column is the ratio of the number of updated paths in PCT com-
pared with standard CT. We can see that PCT updates more paths
and it offers us consistent performance boosts at the cost of com-
putation.

6. CONCLUSION AND FUTURE WORK
In this paper, we formulate the MOOC forum recommendation
problem as a sequential decision problem. Through experimental
analysis, both performance boost and adaptation to drifting prefer-
ences are achieved using a new method called context tree. Further-
more, a partial context matching mechanism is studied to allow a
mixture of different but similar paths. As a future work, exploratory
algorithms are interesting to be tried. As exploring all options for
all contexts are not feasible, we consider to explore only those top
options from similar contexts. Deploying the CT recommender in
some MOOCs for online evaluation would be precious to obtain
more realistic evaluation.
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zoran@cs.washington.edu

Center for Game Science, Computer Science and Engineering
University of Washington
Seattle, WA 98195, USA

ABSTRACT
Problem-solving skills in creative, open-ended domains are both
important and little understood. These domains are generally ill-
structured, have extremely large exploration spaces, and require
high levels of specialized skill in order to produce quality solutions.
We investigate problem-solving behavior in one such domain, the
scientific-discovery game Foldit. Our goal is to discover differentiat-
ing patterns and understand what distinguishes high and low levels
of problem-solving skill. To address the challenges posed by the
scale, complexity, and ill-structuredness of Foldit solver behavior
data, we devise an iterative visualization-based methodology and use
this methodology to design a concise, meaning-rich visualization of
the problem-solving process in Foldit. We use this visualization to
identify key patterns in problem-solving approaches, and report how
these patterns distinguish high-performing solvers in this domain.

Keywords
Problem Solving; Scientific-Discovery Games; Visualization

1. INTRODUCTION
As efforts in scalable online education expand, interest continues
to increase in moving beyond small, highly constrained tasks, such
as multiple choice or short answer questions, and incorporating
creative, open-ended activities [7, 14]. Existing research supports
this move, showing that problem-based learning can enhance stu-
dents’ problem-solving and metacognitive skills [11]. Scaling such
activities poses significant challenges, however, in terms of both as-
sessment and feedback. It will be vital to devise scalable techniques
not only to assess students’ final products, but also to understand
their progress through complex and heterogeneous problem-solving
spaces. These techniques will apply to a broad range of education
settings, from purely online programs like Udacity’s Nanodegrees
to more traditional settings where new standards like the Common
Core emphasize strategic problem solving.

A growing body of work has found that educational and serious
games are fertile ground for assessing students’ capabilities and
problem-solving skills [6, 10]. Our work continues this general
line of inquiry by examining creative, problem-solving behavior
among players in the scientific-discovery game Foldit. By modeling
the functions of proteins, the workhorses of living cells, Foldit
challenges players, hereafter referred to as solvers, to resolve the
shape of proteins as a 3D puzzle. These puzzles are completely
open and often under-specified, making it a highly suitable setting
in which to gain insight into student progress through complex
solution spaces. In the Foldit scientific-discovery community, the
focus is on developing people from novices to experts that are
eventually capable of solving protein structure problems that are

currently unsolved by the scientific community. In fact, solutions
produced in Foldit have led to three results published in Nature [3,
5, 16]. Foldit is an attractive learning space domain because its
solvers are capable of contributing to state-of-the-art biochemistry
results, and the vast majority of best performing solvers had no
exposure to biochemistry prior to joining Foldit community. Hence,
solver behavior in Foldit represents development of highly effective
problem-solving in an open-ended domain over long time horizons.
In this work, we identify six strategic patterns employed by Foldit
solvers and show how these patterns differentiate between successful
and less successful solvers. These patterns cover instances where
solvers investigate multiple hypotheses, explore more greedily or
more inquisitively, try to escape local optima, and make structured
use of the manual or automated tools available in Foldit.

The aspects of the Foldit environment that make it an attractive
setting in which to study problem solving also present significant
challenges. Problems in Foldit share many of the properties Jonassen
attributes to design problems, which they describe as “among the
most complex and ill-structured kinds of problems that are encoun-
tered in practice” [13]. These properties include a vague goal with
few constraints (in Foldit, the goal is often entirely open-ended:
find a good configuration of the protein), answers that are neither
right or wrong, only better or worse, and limited feedback (in Foldit,
real-time feedback and solution evaluation are limited to a single
numerical score corresponding to the protein’s current energy state,
and solvers frequently must progress through many low-scoring
states to reach a good configuration; more nuanced feedback from
biochemists is sometimes available, but on a timescale of weeks).
The ill-structured nature of problems posed in Foldit necessarily
deprives us of the structures, such as clear goal states and straight-
forward relationships between intermediate states and goal states,
that typically form the basis of existing detailed and quantitative
analyses of problem-solving behavior.

The size and complexity of Foldit’s problem space presents another
major challenge. Even though the logs of solver interactions consist
only of regular snapshots of a solver’s current solution (along with
attendant metadata), the record of a single solver’s performance on
a given problem frequently consists of thousands of such snapshots
(which in turn are just a sparse sampling of the actual solving pro-
cess). Furthermore, the nature of the solution state, the configuration
of hundreds of components in continuous three-dimensional space,
renders collapsing the state space by directly comparing solution
states impractical. Compounding the size of the problem space is
the complexity of the actions available to Foldit solvers. In addition
to manual manipulation of the protein configuration, solvers can
invoke various low-level automated optimization routines (some
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of which run until the solver terminates them) and place different
kinds of constraints on the protein configuration (rubber bands in
Foldit parlance) that restrict its modification in a variety of ways.
Solvers can also deploy many of these tools programmatically via
Lua scripts called recipes. Taken together these challenges of ill-
structuredness, size, and complexity threaten to make analysis of
high-level problem-solving behavior in Foldit intractable.

To overcome these obstacles, we devise a visualization-based method-
ology capable of producing tractable representations of Foldit solvers’
problem-solving behavior while maintaining the key encodings nec-
essary for analysis of high-level strategic behavior. A process of
iterative summarization forms the core of this methodology, and
ensures that the transformations applied to the raw data do not
elide structures potentially relevant to understanding solvers’ unique
strategic behavior. Using this methodology, we examine solver activ-
ity logs from 11 Foldit puzzles, representing 970 distinct solvers and
nearly 3 million solution snapshots. Leveraging metadata present
in the solution snapshots, we represent solving behavior as a tree,
and apply our methodology to visualize a summarized tree showing
where they branched off to investigate multiple hypotheses, how
they employed some of the automated tools available to them, and
other salient problem-solving behavior. We use these depictions to
determine key distinguishing features of this exploration process.
We subsequently use these features to better understand the patterns
of expert-level problem solving.

Our work focuses on the following research questions: (1) how
can we visually represent an open-ended exploration towards a
high-quality solution in a large, ill-structured problem space? (2)
what are the key patterns of problem-solving behavior exhibited
by individuals?, and (3) what are the key differences along these
patterns between high-performing and lower-performing solvers in
an open-ended domain like Foldit? In addressing these questions we
find that high-performing solvers explore the solution space more
broadly. In particular, they pursue more hypotheses and actively
avoid getting stuck in local minima. We also found that both high-
and lower-performing solvers have similar proportion of manual and
automated tool actions, indicating that better performance on open-
ended challenges stems from the quality of the action intermixing
rather than aggregate quantity.

2. RELATED WORK
While automated grading has mostly been explored for well-specified
tasks where the correct answer has a straightforward and concise
description, some previous work has developed techniques for more
complex activities. Some achieve scalability through a crowd-
sourcing framework such as Udacity’s system for hiring external
experts as project reviewers [14]. Other work has demonstrated
automated approaches that leverage machine learning to enable scal-
able grading of more complex assignments. For example, Geigle et
al. describe an application of online active learning to minimize the
training set a human grader must produce [7] when automatically
grading an assignment where students must analyze medical cases.
Our work does not focus on grading problem-solving behavior, but
instead approaches the issue of scalability at a more fundamental
level: understanding fine-grained problem-solving strategies and
how they contribute to success in an open-ended domain.

A robust body of prior work has addressed the challenge of both
visualizing and gleaning insight from player activity in educational
and serious games. Andersen et al. developed Playtracer, a gen-
eral method for visualizing players’ progress through a game’s

state space when a spatial relationship between the player and the
virtual environment is not available [1]. Wallner and Kriglstein pro-
vide a thorough review of visualization-based analysis of gameplay
data [21]. Prior work has analyzed gameplay data without visual-
ization as well. Falakmasir et al. propose a data analysis pipeline
for modeling player behavior in educational games. This system
can produce a simple, interpretable model of in-game actions that
can predict learning outcomes [6]. Our work differs in its aims from
this prior work. We do not seek to develop a general visualization
technique, but instead to design and leverage a domain-specific
visualization to analyze problem-solving behavior. We are also
not predicting player behavior, nor modeling players in terms of
low-level actions, but rather identifying higher-level strategy use.

The work most similar to ours is that which focuses on problem-
solving behavior, including both the long-running efforts in edu-
cational psychology to develop general theories and more recent
work data-driven on understanding the problem-solving process.
Our formulation of solving behavior in Foldit as a search through
a problem space follows from classic information-processing the-
ories of problem solving (e.g., [9, 19]). Gick reviews research on
both problem-solving strategies and the differences in strategy use
between experts and novices [8]. Our work complements the ex-
isting literature by focusing on understanding problem solving in
the little-studied domain of scientific-discovery games, and on the
ill-structured problems present in Foldit. Our findings on the differ-
ences in strategy use between high- and lower-performing solvers in
Foldit are consistent with the consensus in the literature that expert’s
knowledge allows them to effectively use strategies that are poorly
or infrequently used by less-skilled solvers. We also contribute a
granular understanding of the specific strategies and differences at
work in the Foldit domain.

Significant recent work has investigated problem-solving behavior
in educational games and intelligent tutoring systems using a variety
of techniques. Tóth et al. used clustering to characterize problem-
solving behavior on tasks related to understanding a system of linear
structural equations. The clusters distinguished between students
that used a vary-one-thing-at-a-time strategy (both more and less
efficiently) and those that used other strategies [20]. Through a
combination of automated detectors, path analysis, and classroom
studies, Rowe et al. investigated the relationship between a set
of six strategic moves in a Newtonian physics simulation game
and performance on pre- and post-assessments. They found that
the use of some moves mediated the relationship between prior
achievement and post scores [18]. Eagle et al. discuss several ap-
plications of using interaction networks to visualize and categorize
problem-solving behavior in education games and intelligent tu-
toring systems. These networks offer insight for hint generation
and a flexible method for visualizing student work in rule-using
problem solving environments [4] . Using decision trees to build
separate models for optimal and non-optimal student performance,
Malkiewich et al. gained insight into how learning environments
can encourage elegant problem solving [17]. Our primary contri-
bution is to extend analysis of problem-solving behavior to a more
complex and open-ended domain that those studied in similar pre-
vious work. The size and complexity of Foldit’s problem space,
the volume of data necessary to capture exploration in this space,
and the ill-structured nature of the Foldit problems all pose unique
challenges. We devise a visualization-based methodology focused
on iterative summarization, and successfully apply it to identify key
problem-solving patterns exhibited by Foldit solvers.
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3. FOLDIT
Foldit is a scientific-discovery game that crowdsources protein fold-
ing. It presents solvers with a 3D representation of a protein and
tasks them with manipulating it into the lowest energy configura-
tion. Each protein posed to the solvers is called a puzzle. Solvers’
solutions to each puzzle are scored according to their energy config-
uration, and solvers compete to produce the highest scoring results.

Figure 1: The Foldit interface. Foldit solvers use a variety of
tools to interactively reshape proteins. In this figure, a solver
uses rubber bands to pull together two sheets, long flat regions
of the protein.

Solvers have many tools at their disposal when solving Foldit puz-
zles. They can manipulate and constrain the structure in various
ways, employ low-level automated optimization (e.g., a wiggle tool
makes small, rapid, local adjustments to try and improve the score),
and trigger solver-created automated scripts called recipes that can
programmatically use the other tools. There is, however, a subset of
the basic actions that cannot be used by recipes. We will call these
manual-only actions. Previous work analyzing solver behavior in
Foldit has focused primarily on recipe use and dissemination [2] and
recipe authoring [15].

Foldit has several different types of puzzles for solvers to solve. In
this work, we focus on the most common type of puzzle, prediction
puzzles. These are puzzles in which biochemists know the amino
acids that compose the protein in question, but do not know how
the particular protein folds up in 3D space. This is in contrast to
design puzzles in which solvers insert and delete which amino acids
compose the protein to satisfy a variety of scientific goals, including
designing new materials and targeting problematic molecules in
diseases. We focus on prediction puzzles in this work to simplify
our analysis by having a consistent objective (i.e., maximize score)
across the problem-solving behavior we analyze.

4. METHODOLOGY
Prior work has demonstrated the power of visualization to support
understanding of problem-solving behavior (e.g., [12]). Hence, we
devise a methodology capable of producing concise, meaning-rich
visualizations of the problem-solving process in Foldit, and then
leverage these visualizations to identify key patterns of solver be-
havior. We are specifically interested in how solvers navigate from
a puzzle’s start state to a high-quality solution, what states they
pass through in between, and what other avenues they explored.

Since solving a Foldit puzzle can be represented as a directed search
through a problem space, the clear encoding of parent-child rela-
tionships between nodes offered by a tree make it well-suited for
visualizing these aspects of the solving process.

The scale of the Foldit data necessitates significant transformation
of the raw data in order to render concise visualizations. Without
any transformation, meaningful patterns are overwhelmed by sparse,
repetitive data and would be far more challenging to identify. While
there are many existing techniques for large-scale tree visualization,
we find clear benefits to developing a visualization tailored to the
Foldit domain. Specifically, preserving the semantics of our visual
encoding is crucial for allowing us to connect patterns in the visual-
ization to concrete strategic behavior in Foldit. To accomplish this,
the process by which concise visualization are constructed must
be carefully designed to maintain these links. Hence, we devise a
design methodology focused on iterative summarization.

This process begins by visualizing the raw data. This is followed
by iteratively building and refining a set of transformations to sum-
marize the raw data while preserving meaning. The design of these
transformations should be guided by frequently occurring structures.
That is, those structures that the transformations can condense with-
out eliding structures corresponding to unique strategic behavior.
In parallel to this iterative design, a set of visual encodings are de-
veloped to represent the solving process as richly as possible. Key
to this entire process is frequent consultation with domain experts,
in our case experts on Foldit and its community. By applying this
iterative methodology for several cycles, we designed a domain-
specific visualization that we use to identify patterns of strategic
behavior among Foldit solvers. We follow up on these patterns with
computational investigation, and quantify their application by high-
and lower-performing solvers.

4.1 Data
For our analysis, we selected 11 prediction puzzles spanning the
range of time for which the necessary data is available. Though
Foldit has been in continuous use since 2010, the data necessary to
track a solver’s progress through the problem space has only been
collected since mid-2015. Our chosen dataset represents 970 unique
solvers and nearly 3 million solution snapshots. These 11 puzzles are
just a small subset of the available Foldit data. We chose a subset of
similar puzzles (i.e., a subtype of relatively less complex prediction
puzzles) in order to make common solving-behavior patterns easier
to identify. The size of the subset was also guided by practical
constraints, as each puzzle constitutes a large amount of data (20-60
GB for the data from all players on a single puzzle).

The data logged by Foldit primarily consists of snapshots of solver
solutions as they play, stored as text files using the Protein Data
Bank (pdb) format. These snapshots include the current protein
pose, a timestamp, the solution’s score, the number of times the
solver has invoked each action and recipe, and a record of the inter-
mediate states that led up to the solution at the time of the snapshot.
This record, or solution history, is a list of unique identifiers each
corresponding to a previous solution state. This list is extended
every time the solver undoes an action or reloads a previous solution.
Hence, by comparing the histories of two snapshots from the same
solver, we can answer questions about their relationship (e.g., does
one snapshot represent the predecessor of another; where did two
related snapshots diverge). The key relationship for the purposes of
this analysis is the direct parent-child relationship, which we use to
generate trees that represent a solver’s solving process.
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4.2 Visualizing Solution Trees
We applied our methodology to our chosen subset of Foldit data to
design a visualization of an individual’s problem-solving process
as a solution tree. Several key principles guided this design. First,
since our goal is to discover key patterns, the visualization needs
to highlight distinctly different strategies and approaches. These
differences cannot be buried amidst enormous structures, nor de-
stroyed by graph transformations. Second, the visualization must
depict the closeness of each step to the ultimate solution in both time
and quality to give a sense of the solver’s progression. Third, the
solver’s use of automation in the form of recipes should be apparent
since the use of automation is an important part of Foldit.

The fundamental organization of the visualization is that each node
corresponds to a solution state encountered while solving. Using the
solution history present in the logged snapshots of solver solutions,
we establish parent-child relationships between solutions. If solution
β is a child of solution α , it indicates that β was generated when
the solver performed actions on α . One crucial limitation, however,
is that a snapshot of the solver’s current solution is captured far less
often (only once every two minutes) than the solver takes actions.
This means that our data is sparsely distributed along a solution’s
history going back to the puzzle’s starting state. Hence, when naively
constructing the tree from the logged solution histories, it ends up
dominated by vast quantities of nodes with no associated data.

We address this issue by performing summarization on the solution
trees, condensing them into concise representations amenable to
analysis for important features. This summarization takes place
in two stages. The first stage trims out nodes that (1) do not have
corresponding data and (2) have zero children. This eliminates
large numbers of leaf nodes that we are unable to reason about
given that we lack the corresponding data. This stage also combines
sequences of nodes each with only one child into a single node. For
the median tree, this stage reduced the number of nodes by an order
of magnitude from over 12,000 nodes to about 1,600.

The second stage consists of four phases, each informed by our
observations of common patterns in trees produced by the first stage
that would benefit from summarization. The first phase, called
prune, focuses on simplifying uninteresting branches. We observed
many of the branches preserved by the first stage were small, with
at most three children, and only continued the tree from one of
those children. Prune removes the leaf children of these branches
from the tree. Collapse, the second phase, transforms each of the
sequences of single-child nodes left behind after prune into single
nodes. The third phase, condense, targets another common pattern
where a sequence of branches feed into each other, with a child of
each branch the parent of the next branch. These sequences are
summarized into a single node labeled CASCADE along with the
depth (number of branches) and width (average branching factor)
of the summarized branches. See Figure 2 for an example of the
features summarized by these three phases. The final phase, clean,
targets the ubiquitous empty nodes (i.e., nodes for which we lack
associated data) shown in black in Figure 2. We eliminate them by
merging them with their parent node, doing so repeatedly until they
all have been merged into nodes that contain data. In addition to
making the trees more concise, this step allows us to reason more
fully over the trees since all nodes are guaranteed to contain data.
This second stage of summarization further reduced the number of
nodes in the median tree by another order of magnitude to about
300 nodes. Summarization similarly reduces the space required to
store the data by two orders of magnitude.

Figure 2: A solution tree after only the first stage of summa-
rization. The non-black node color represents the score of the
solution at that node (red is worse). The black nodes are empty
in that we do not have solution data corresponding to that node.
This figure also shows examples of the features targeted by the
second summarization stage: prune and collapse eliminate long
chains like the one on the right, and condense combines se-
quences of branches like those going down to left in single CAS-
CADE nodes.

Child-parent relationships are not the only part of the data we visu-
ally encoded in the solution trees. Nodes are colored on a continuous
gradient from red to blue according to the score of the solution rep-
resented by that node (red is low-scoring, blue is high-scoring). The
best-scoring node is highlighted as a yellow star. Edges are colored
on a continuous gradient from light to dark green according to the
time the corresponding transition took place, and the children of
each node are arranged left to right in chronological order. Finally,
use of automation via recipes is an important aspect of problem-
solving in Foldit. Since the logged solution snapshots contain a
record of which recipes have been used at that point, we can use this
to annotate nodes where a recipe was triggered. The annotations
consist of the id of that recipe (a 4 to 6 digit number) and the number
of times it was started.

One major weakness in the data available to us is the lack of a con-
sistent way to determine when the execution of a recipe ended (some
recipes save and restore, possibly being responsible for multiple
nodes in the graph beyond where they were triggered). We partially
address this by further annotating a node with the label MANUAL
whenever the solver took a manual-only action at that node. This
indicates that no previously triggered recipe continued past that node
because no recipe could have performed the manual-only action.
Since nodes in the summarized trees can represent many individual
steps, it is possible for them to have several of these recipe and
manual action annotations.

5. RESULTS
Using visualized solution trees for a large set of solvers across our
sample of 11 puzzles, we identify a set of six prominent patterns in
solvers’ problem-solving behavior. These patterns do not encompass
all solving behavior in Foldit, but instead capture key instances of
strategic behavior in three categories: exploration, optimization, and
human-computer collaboration. Future work is needed to generate
a comprehensive survey of the strategic patterns in these and other
categories. In this analysis, our focus is on identifying a small,
diverse set of commonly occurring patterns to both provide initial
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insight into problem-solving behavior, and to demonstrate the poten-
tial of our approach. In addition to identification, we also perform
a quantitative comparison of how these patterns are employed by
high-performing and lower-performing solvers to gain an under-
standing of how these patterns contribute to success in an open-end
environment like Foldit.

5.1 Problem-Solving Patterns

Exploration. Foldit solvers are confronted with a highly discon-
tinuous solution space with many local optima, creating a trade-off
between narrowly focusing their efforts or taking the time to explore
a broader range of possibilities. In our first two patterns, we exam-
ine the broader exploration side of this trade-off at two different
scales. Taking the macro-scale first, we identify a pattern where
solvers make significant progress on distinct branches of the tree
(see Figure 3 for an example). We interpret this pattern as the solver
investigating multiple hypotheses about the puzzle solution, using
multiple instances of the game client or Foldit’s save and restore fea-
tures to deeply explore them all. We call this the multiple hypotheses
pattern.

Figure 3: An example of the multiple hypotheses pattern. The
two hypotheses branch out one of the nodes at the top and con-
tinue to the left (A) and right (B).

At the micro-scale, solvers very frequently generate a large number
of possible next steps (i.e., a branch with a large number of children),
but most often proceed to explore only one of them further. This is
natural given the iterative refinement needed to successfully partici-
pate in Foldit. Hence, solvers that exhibit a pattern of much more
frequently exploring multiple local possibilities demonstrate an un-
usual effort to explore more broadly. We call this the inquisitive
pattern. Figure 4 shows an example of this behavior.

Figure 4: An example of the inquisitive pattern. Note how fre-
quently multiple children of the same node are explored when
compared to the tree in Figure 3.

Optimization. Navigating the extremely heterogeneous solution
space is the primary challenge in Foldit, so we look closely at how
solvers attempt to optimize their solutions, digging deeper into
solvers’ approach to exploration than the previous two patterns.
We identify two related patterns describing solvers’ fine-grained
approach to optimization. The solution spaces of Foldit puzzles
contain numerous local optima that solvers must escape, and we
identify an optima escape pattern highly suggestive of a deliberate
attempt to escape a local optima. This pattern occurs when a solver

has a high-scoring node with a low-scoring child, and then chooses
to explore from the low-scoring child. The solver was willing to
ignore the short-term drop in score to try and reach a more beneficial
state in the long-term. Figure 5 gives an example of this pattern.

Figure 5: An example of the optima escape pattern. The solver
transitions from a relatively high-scoring (i.e., blue) state in the
upper left to a low-scoring (i.e., red) state. What makes this
an example of the pattern is that exploration from the low-
scoring state. In this case, the perseverance paid off as the
solver reaches even higher-scoring states in the lower right.

In the other direction, we identify the greedy pattern in which solvers
exclusively explore from the best-scoring of the available options.
Obviously, some amount of greedy exploration is necessary in order
to refine solutions, but in its extreme form deserves recognition
as a pattern with significant potential impact on problem-solving
success. Naturally, these two patterns do not cover all the ways
solvers explore the problem space, but they do characterize specific
strategic behavior of interest in this analysis.

Figure 6: An example of the repeated recipe pattern. At three
points in this solution tree snippet, the solver applies recipe
49233 to every child of a node.

Human-computer collaboration. Human-computer collabo-
ration is a vital part of Foldit, and managing the trade-off between
automation and manual intervention is a key feature of solving
Foldit puzzles. We identify two patterns that each focus on one
side of this trade-off. The first, the manual pattern, corresponds to
extended sections of exclusively manual exploration. Since recipe
use is very common, extended manual exploration represents a sig-
nificant investment in the manual intervention side of the trade-off.
Limitations with Foldit logging data prevent us from capturing all
the manual exploration (i.e., it is not always possible to determine
whether an action was performed by a solver manually or triggered
as part of an automated recipe), but what can be captured is still an
important dimension of variance among problem-solving behavior.

Our final pattern concerns recipe use. Some solvers apply a recipe
to every child of a node periodically throughout their solution tree,
using it as a clean-up or refinement step before continuing on (see
Figure 6). We call this the repeated recipe pattern. Recipe use is
very diverse and frequently doesn’t display any specific structure,
making this pattern interesting for its regimented way of managing
some of the automation while solving.
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Figure 7: The number of hypotheses pursued in each solution
tree for high- and lower-performing solvers. High-performing
solvers frequently pursue two or more hypotheses, whereas
lower-performing solvers most often pursue just one. Red cir-
cles show the distribution of individual solvers.

5.2 Problem-Solving Patterns and
Solver Performance

To understand how the patterns we identify relate to skillful problem-
solving in an open-ended domain like Foldit, we compare their use
among high-performing solvers to that among lower-performing
solvers. Specifically, we analyze the occurrence of these patterns in
the 15 best-scoring solutions from each puzzle and compare that to
the occurrence in solutions from each puzzle ranked from 36th to
50th. Though it varies somewhat between puzzles, in general the
solutions ranked 36th to 50th represent a middle ground in terms
of quality. They fall outside the puzzle’s state-of-the-art solutions,
but remain well above the least successful efforts. Throughout these
comparisons we use non-parametric Mann-Whitney U tests with
α = 0.008 confidence (Bonferroni correction for six comparisons,
α = 0.05/6), as our data is not normally distributed. For each test,
we report the test statistic U , the two-tailed significance p, and the
rank-biserial correlation measure of effect size r. In addition, since
some of the metrics we compute may not apply to all solution trees
(e.g., the tree contains no branches where the inquisitive pattern
can be evaluated), we report the number of solvers involved in the
comparison n for each test (the full sample is n = 330).

We find high-performing solvers explore more broadly than lower-
performing solvers. For the multiple hypotheses pattern, high-
performing solvers pursued significantly more hypotheses than
lower-performing solvers (U = 10569, p = 0.000014, r = 0.217,
n = 330) (see Figure 7). For the inquisitive pattern, we compute
the proportion of each solver’s exploration that matches the pattern
(i.e., of all the branches in a solver’s solution tree, in what frac-
tion of them did the solver explore more than one child) and find
high-performing solvers explore inquisitively more often than lower-
performing solvers (U = 9343, p = 0.000295, r = 0.231, n = 313)

Figure 8: The proportion of all the branches in a solver’s so-
lution tree in which the solver explored more than one child
for high- and lower-performing solvers. Red circles show the
distribution of individual solvers.

(see Figure 8).

We also find high-performing solvers work harder to avoid local
optima. For the optima escape pattern, we compute the num-
ber of times this behavior occurs in each solution and find that
high-performing solvers engage in this behavior more than lower-
performing solvers (U = 11183.5, p= 0.00185, r = 0.173, n= 330)
(see Figure 9). For the greedy pattern, we compute the propor-
tion of each solver’s exploration that matches the pattern (i.e., of
all the branches in a solver’s solution tree, in what fraction of
them did the solver only explore the best-scoring child). While
high-performing solvers engaged in greedy optimization less often
than lower-performing solvers, the difference was not significant
(U = 9079, p = 0.0158, r =−0.163, n = 295) (see Figure 10).

Finally, we find no significant difference between high- and lower-
performing solvers in the frequency they manually explore and
employ recipes. For the manual pattern, we compute the number of
manual exploration sections in each solution and find no significant
difference between high- and lower-performing solvers (U = 13334,
p = 0.789, r = 0.014, n = 330). For the repeated recipe pattern,
we computed the median frequency of recipe use along all paths
in the solution (i.e., for each path from the root to a leaf, in what
fraction of the nodes did the solver trigger at least one recipe) and
though lower-performing solvers used recipes more frequently, the
difference between high- and lower-performing solvers was not
significant (U = 11342, p = 0.0140, r =−0.157, n = 329).

6. DISCUSSION
The results from our analysis of our solution tree visualizations illu-
minate some key problem-solving patterns exhibited by individual
Foldit solvers. Namely, how broadly an individual explores, both
on a macro- and micro-scale, how actively an individual avoids
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Figure 9: The number of times in each solution a solver en-
gages in optima escape behavior for high- and lower-performing
solvers. Red circles show the distribution of individual solvers.

local optima by engaging in less greedy optimization and actively
pursuing locally suboptimal lines of inquiry, and how an individual
manages the interplay between automation and manual intervention.

Comparing high- and lower-performing solvers in their applica-
tion of these patterns suggests that skillful problem-solving in an
open-end domain like Foldit involves broader exploration and more
conscious avoidance of local minima. This finding that a key feature
of high-skill solving behaviors is not being enamored by the current
best solution and possessing strategies for avoiding myopic thinking
had implications for the strategies that should be taught to develop
successful problem solvers. Further work is required on other large
open-ended domains to confirm this trend.

The finding that solvers of different skill use greedy exploration,
manual exploration, and automation in similar amounts suggests
skillful deployment of non-greedy exploration, automation, and
manual intervention takes place at a more fine-grained level than
overall quantity. Though this work focuses on the presence or
absence of specific solving behavior, the timing and sequencing of
strategic moves are likely to be critical to success. Further work is
needed to investigate what differentiates effective and ineffective
use of specific solving strategies.

The Foldit dataset itself presented significant challenges for our
analysis, and we addressed these through an iterative visualization-
based methodology. This process served as a design method for
generating a visual grammar to describe a complex problem-solving
process. We do not study the generalization of this approach to
other datasets and domains in this work, but the prerequisites for
its application to other open-ended problem-solving domains can
be concisely enumerated: (1) the logs of solver activity establish
clear temporal relationships between solution states such that those
states can be visualized as a progression through the solution space,

Figure 10: The proportion of all the branches in a solver’s so-
lution tree in which the solver explored only the best-scoring
child for high- and lower-performing solvers. The fact that the
median for both categories of solver is above 0.5 indicates that
this pattern in an important part of refining solutions in Foldit.
Red circles show the distribution of individual solvers.

(2) the solution state or associated metadata is amenable to visual
encoding, so that the visualized progressions can represent fine-
grained details of the solving process, and (3) deep problem-solving
domain expertise is available to provide the necessary context for
interpreting and summarizing the visualized structures.

Our chosen subset of Foldit data represents only a small fraction
of the total available data. In particular, we limited our analysis
to a sample of similar prediction puzzles, and compared specific
ranges of high- and lower-performing solvers. Though these choices
are well-motivated, it is an important question for future work as
to whether our results hold across different datasets and groups of
comparison. More broadly, Foldit supports numerous variations
on the prediction and design puzzle archetypes, which offers an
exciting opportunity to study problem solving across a number of
related contexts with varying goals, constraints, inputs, and tools.

7. CONCLUSION
Gaining a better understanding of key patterns in problem-solving
behavior in complex, open-ended environments is important for de-
ploying this kind of activity in an educational setting at scale. In this
work, we identified six key patterns in problem-solving behavior
among solvers of Foldit. The protein folding challenges in Foldit
present rich, completely open, heterogeneous solution spaces, mak-
ing them a compelling domain in which to analyze these patterns.
To facilitate the identification of these patterns, we used an iterative
methodology to design visualizations of solvers’ problem-solving
activity as solution trees. The size and complexity of the Foldit data
required us to develop domain-specific techniques to summarize the
solution trees and render them tractable for analysis while preserv-
ing the salient problem-solving behaviors. Finally, we compared the
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occurrence of the patterns we identified between high- and lower-
performing solvers. We found that high-performing solvers explore
more broadly and more aggressively avoid local optima. We also
found that both categories of solvers employ automation and manual
intervention in similar quantities, inviting future work to study how
these tools are used at a more fine-grained level.

We have only scratched the surface in our analysis of a subset of
Foldit data. Two integral aspects of the Foldit environment are
not within the scope of this work: collaboration and expert feed-
back. We only considered solutions produced by individual solvers,
but Foldit solver can also take solutions produced by others and
try and improve them. This collaborative framework may involve
specialization and unique solving strategies, and deserves careful
study. Expert feedback comes into play for design puzzles, where
biochemists will select a small number of the solutions to try and
synthesize in the lab. Experts will also impose additional constraints
on future design puzzles to try and guide solutions toward more
promising designs. The interaction of these channels for expert
feedback and problem-solving behavior is an important topic for
future research. Also outside the scope of this work is how individ-
ual solvers change their problem-solving behavior over time. Many
solvers have been participating in the Foldit community for many
years, and studying how their behavior evolves could yield insights
into the acquisition of high-level problem-solving skills.

Looking more broadly at the impact of this work, our methodology
and analysis can serve as a first step toward discovering the scaffold-
ing necessary to develop high-level problem-solving skills. These
results could contribute to a hint generation system, where solvers
could be guided toward known effective strategies, or a meta-planner
component in Foldit that could tailor the parameters of particular
puzzles to optimize the quality of the scientific results. In all of
these cases, this work contributes to the necessary foundational
understanding of the problem-solving behavior involved.
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ABSTRACT
Replayability has long been touted as a benefit of educa-
tional games. However, little research has measured its im-
pact on learning, or investigated when students choose to re-
play prior content. In this study, we analyzed data on a sam-
ple of 4,827 3rd-5th graders from ST Math, a game-based ed-
ucational platform integrated into classroom instruction in
over 3,000 classrooms across the U.S. We identified features
that describe elective replays relative to prior gameplay per-
formance, and associated elective replays with in-game accu-
racy, confidence, and general math ability assessments out-
side of the games. We found some elective replay patterns
were associated with learning, whereas others indicated that
students were struggling in the current educational content.
We suggest, therefore, that educational games should use
elective replay behaviors to target interventions according
to when and whether replay is helpful for learning.

Keywords
Educational Games, Serious Game Analytics, Replayability

1. INTRODUCTION
“Replayability is an important component of successful games.”
[15] In most games, there are two types of plays: play and
replay to pass a level (pass attempts) and replay after pass-
ing a level (elective replay). In this paper, we investigate
the latter. Elective replay (ER) is particularly interesting
because the motivations behind a student’s decision to re-
play and the impact of those replays are relatively unknown.
This paper explores potential associations between elective
replay and student characteristics and performance in the
domain of educational games.

Replayability has been touted as a benefit of educational
games [9]. Replayability encourages players to engage in

repeated judgement-behavior-feedback loops, where users
make decisions based on the situation and/or feedback, act
on those decisions, and receive feedback based on their ac-
tions [18]. In the RETAIN model designed by Gunter et al.
[10] to evaluate educational games, replayability is a crite-
ria for naturalization – an important component in helping
students make their knowledge automatic, reducing the cog-
nitive load of low-level details to allow for higher order think-
ing. In the RETAIN model, “replay is encouraged to assist
in retention and to remediate shortcomings.” [10] Mean-
ingful elective replay is often encouraged by game features
such as score leaderboards, which inspire students to re-
play for higher scores [4]. Because higher scores typically
require a deeper understanding of the educational content
in a well-designed game, encouraging elective replay may
promote mastery. Games with replay also allow the stu-
dent to be exposed to more material and give them more
freedom to control their learning. Studies have shown that
giving students control over their learning process can in-
crease motivation, engagement, and performance [6, 8].

However, few studies have investigated when students choose
to replay, why they do so, or have measured the outcomes as-
sociated with elective replay. One reason is that educational
game studies are often comparatively brief, so replayability
is often minimally assessed with post-game questionnaires
asking about students’ intention for future play [14, 5]. Con-
sequently, there is a need to investigate elective replay with
actual logged actions in a game setting where students have
sufficient time and freedom to replay.

This work analyzed gameplay logs from a series of math
games within the year-long supplemental digital mathemat-
ics curriculum Spatial Temporal (ST) Math. We analyzed
gameplay data from 4,827 3rd-5th graders throughout the
2012-2013 school year. Our data contained 37,452 logged
elective replays, accounting for 1.48% of the logged play.
We analyzed gameplay and elective replay features in as-
sociation with students’ demographic information, in-game
math objective tests, and the state standardized math test.
We sought to answer three research questions: Q1: What are
the characteristics of students who engage in elective replay,
Q2: What gets replayed, and under what circumstances?
And Q3: Is elective replay associated with improvements
in students’ accuracy on math objectives, confidence, and
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general math ability?

2. RELATED WORK
2.1 Factors Influencing Elective Replay
Few empirical studies have investigated the motivations be-
hind elective replay in educational games. Burger et al. [5]
studied the effect of verbal feedback from a virtual agent
on replay in the context of a brain-training game. They
found that elaborated feedback increases, whereas compar-
ative feedback decreases, the students’ interest in future re-
play. They also found that negative feedback generated an
immediate interest in replay, whereas positive feedback cre-
ated long term interest in the educational content. In an-
other study, Plass et al. [14] compared three conditions in a
math game: working individually, competing with another
player, or collaborating with a peer. The study showed that
both competition and collaboration modes heightened stu-
dents’ intention to replay when compared with the individ-
ual mode, with the latter result being statistically signifi-
cant. However, both studies measured replay via question-
naires asking the students’ desire to play the entire game
again instead of observed replay behavior. Moreover, these
studies sought to understand replay only from the angle of
game design, and did not address the connections, if any,
between student characteristics and interest in replay.

Other studies suggest elective replay is a habitual behavior
that arises from individual need, although these studies did
not directly investigate replay. Bartle [3] found one type
of player who is primarily motivated by concrete measure-
ments of success. In ST Math, these achiever-type players
may largely use replay to get better ’scores’ (losing fewer
lives when passing a level). Mostow et al. [12] observed
a student in a reading tutor who used the learner-control
features to spend the majority of time replaying stories or
writing ”junk” stories instead of progressing to new mate-
rial. Thus, some students may also use replay as a form
of work avoidance – playing already passed levels instead
of solving the current problem or moving on. Sabourin et
al. [17] found that students in an educational game used
off-task behaviors to cope with frustration, implying that
off-task behavior can be a productive self-regulation of neg-
ative emotions. In ST Math, when students get frustrated
with the current educational content but still have to play
the game in the classroom, they may replay already learned
content as a mental break from the current task. These
studies showed that the circumstances of replay and stu-
dents’ characteristics influence their decisions to replay and
its outcomes.

2.2 The Outcomes of Replay
Despite the believed benefits of replayability [9, 18, 10, 4],
few studies have investigated the educational impact of elec-
tive replay. Boyce et al. [4] evaluated the effects of game
elements that were designed to motivate gameplay and elec-
tive replay. These included a leaderboard that shows each
student’s rank based upon their score, a tool for creating
custom puzzles, and a social system for messaging among
players. The experimental design required students to play
the game in one session, and to replay the game as more
features were added in the subsequent sessions. The study
found a sharp increase in test scores as these features were

added to the game. The authors concluded that features de-
signed to increase replayability can increase learning gains.
However, this result may be due to increased time on task as
the same group replaying the base game with new features.
In another study, Clark et al. [7] analyzed logged student-
initiated elective replay in a digital game. They found that
frequency of elective replay did not correlate with learning
gains, prior gaming habits/experience, or how much stu-
dents liked the game. They also found that, while there
was no statistically significant difference between the male
and female students, males replayed more than the females.
This may have been responsible for their slightly higher, al-
though not statistically significant, “best level scores” – the
highest score received on each level. These studies showed
that elective replay may lead to increased learning or higher
in-game performance. However, more research is needed to
understand the potential educational impact of replay in ed-
ucational games, particularly elective replays initiated solely
by the players.

3. GAME, DATA AND FEATURES
3.1 ST Math Game

Figure 1: ST Math Content and Examples

ST Math is designed to act as a supplemental program to
a school’s existing mathematics curriculum. ST Math is
mostly played during classroom sessions, but students have
the option to play it at home. In ST Math [16], mathematics
concepts are taught through spatial puzzles within various
game-like arenas. ST Math games are structured at the top
level by objectives, which are broad learning topics. Within
each objective, individual games teach more targeted con-
cepts through presentation of puzzles, which are grouped
into levels for students to play. Students start by complet-
ing a series of training games on the use of the ST Math
platform and features. They are then guided to complete
the first available objective in their grade-level curriculum,
such as “Multiplication Concepts.” Students can only see
this objective and must complete a pre-test before beginning
the content. Games represent scenarios for problem-solving
using a particular mathematical concept, such as “finding
the right number of boots for X animals of Y legs.” Each
game contains between one and ten levels, which follow the
same general structure of the game, but increase in difficulty.
Figure 1 illustrates the hierarchy of ST Math content and
examples.

As with many games, the student is given a set number of
‘lives’ at the start of each level. Every time they fail to
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complete a puzzle correctly they lose one life. If all of their
lives for a given level are exhausted, they will fail the level
and be required to restart the level with a new set of lives.
Once a student has passed a level, they can elect to replay
it at any time. After a student has passed every level in an
objective, they can take the objective post-test. Students
cannot progress to the next objective until they have com-
pleted the last objective post-test. Both the objective pre-
and post-tests consist of 5-10 multiple choice questions re-
lated to the objective. The post-tests parallel the pre-tests
in both the question format and difficulty of the content.
While answering each question in both tests, students indi-
cate their relative confidence in their answer (low/high).

3.2 Data
MIND Research Institute (MIND), the developers of ST-
Math, collected and provided to the researchers gameplay
data from 4,827 3rd-5th graders during the school year 2012-
2013. These students came from 17 schools and 221 class-
rooms. Table 1 summarizes students’ demographic informa-
tion. These demographic data, together with students’ state
standardized test scores in 2012 and 2013, were matched to
gameplay data through anonymized IDs.

Table 1: Populations’ Demographics Information

Grade3 Grade4 Grade5

#Students 1567 1528 1732

Male
50.6% 50.1% 52.2%
na:2.9% na:2.0% na:3.5%

Eligible for Reduced
Lunch

80.7% 77.8% 81.4%
na:2.9% na:2.1% na:3.2%

Hispanic or Latino
84.7% 82.3% 83.5%
na:2.8% na:1.9% na:3.1%

English Language
Learner

66.2% 56.1% 53.0%
na:2.9% na:2.1% na:3.2%

with Listed Disability
10.9% 11.5% 11.9%
na:2.1% na:1.7% na:2.8%

This gameplay data includes pre- and post-tests for each
objective and the number of level attempts. For each pre-
and post-test, ST Math logged students’ accuracy and self-
reported confidence level (1 for ’high’ and 0 for ’low) for
each question. For each play at a level, ST Math logged the
student’s ID, timestamp, and the number of puzzles com-
pleted. From these data, we identified ER as plays made
after a student initially passed the level. We found ERs in
89.6% of all objectives in ST Math, accounting for 1.48%
of all level attempts. Among 4,827 students, 59.85% ERed
at least one level, with an average of 7.84 levels (SD=12.99,
95% CI [7.37, 8.32]) across 3.06 average objectives replayed
per student. In the next section, we describe the features
we created to analyze ER.

3.3 Features
We created features at three different levels of granularity
(from finest to largest): level, objective, and student. For
the level granularity, we treated each unique student-level
combination as an observation. We calculated the features
by averaging all gameplay for a specific student at a spe-
cific level. For objective granularity, each unique student-
objective combination was treated as a single observation.

Features were created by averaging across all levels played by
a specific student within a single objective. The objective
granularity also included the objective pre- and post-test
accuracy and confidence. For the student granularity, we
treated each student as a single observation. We calculated
the features by averaging across all objectives played by a
student over the entire year. The student granularity also
included student demographic data and state standardized
math test scores. These granularities ensured that our anal-
ysis did not favor units with the majority of data logs. Each
student was considered equally in our analysis, regardless
of how many objectives they played. Our data contained
4,827 students and 2,524,681 plays, which yielded 1,462,660
student-level observations, and 74,985 student-objective ob-
servations.

Table 2 shows five example plays of “Division-Level3,” in-
cluding four pass attempts and one ER of this level, inter-
spersed with ERs from other levels. We consider consecutive
ERs as an ER Session, as these ERs are circumstanced on
the same pass attempts.

Table 2: Example of ER and Pass Attempts
Play Objective-Level Passed? Play Type
1 Division- Level3 No Pass Attempt
2 Division- Level3 No Pass Attempt
3 Division-Level1 Yes ER (ER Session1)
4 Division- Level3 No Pass Attempt
5 Division-Level1 Yes ER (ER Session2)
6 Division- Level3 Yes Pass Attempt
7 Division- Level3 Yes ER (ER Session3)
8 Subtraction-Level1 No ER (ER Session3)

3.3.1 Pass Attempt Features
We defined performance to be the percentage of puzzles a
student completed before losing all lives on the level. Pass
attempts are plays prior to ER, where we assumed stu-
dents play with the intention of passing the level. Pass at-
tempt features included: performance when a student first
attempted a level (1st pass attempt performance), number of
attempts taken to pass a level (# pass attempts), and aver-
age performance of all pass attempts (average pass attempt
performance). At the student granularity, students took an
average of 1.91 (sd=0.89) attempts to pass each level, with
average performance of 0.80 (sd=0.10) on the first pass at-
tempt, and 0.87 (sd=0.07) on all pass attempts (indicating
overall improved performance on later attempts).

3.3.2 Elective Replay Features
Table 3 shows ER features that describe ER from three an-
gles: (I) the frequencies of ER, (II) the performance of ER,
and (III) the circumstances of ER in terms of the ER’s prior
plays. To summarize, the majority of ERs had higher per-
formance than their levels’ first attempt, and resulted in
another pass of their levels. Levels that were ERed had sim-
ilar performance compared to levels that weren’t ERed, but
levels that were followed(54.65%) or interrupted (54.35%)
by ER had much lower performance than those that weren’t
followed or interrupted by ER. Most ERs’ immediately prior
pass attempts were from different levels or objectives. There
were few instances (9.80%) where students passed a level and
immediately ERed it following the pass.
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Table 3: Elective replay (ER) Features and their Descriptive Statistics among Students who Electively Re-
played, Collapsed to the Student Granularity.

ER Features Descriptive Stats

I. Frequencies of ER
% ER out of all plays M=2.40%, SD=4.26%
% Objectives that have been electively replayed M=22.94%, SD=20.89%
% Objectives whose pass attempts were interrupted/followed by ER M=19.48%, SD=17.57%
II. Performance of ER
Performance of ER M=0.71, SD=0.28
% ERs performed better than the level’s first attempt M=71.96%, SD=31.44%
% ERs that result in another pass of the level M=60.36%, SD=35.51%
III. Circumstances of ER
The Replayed Level E.g. “Division-lvl1,”“Division-lvl3,” and “Subtraction-lvl1” in Table 2
Pass Attempts Features M=0.79, 1.98, 0.87 for 1st performance, #pass at-

tempts, and avg performance
The Immediately-Prior play of the ER E.g. Play 2 is the immediately-prior play of play 3 in Table2
Performance on the immediately-prior play M=0.63, SD=0.29
% ERs whose immediately-prior plays is also an ER M=0.31, SD=0.28
% ER whose immediately prior pass attempt is on the same level M=9.80%, SD=23.84%
% ...... on a different level in the same objective M=40.75%, SD=39.09%
% ...... on a different objective M=49.44%, SD=40.76%
The Immediate Prior Pass Attempts followed or interrupted by ER and ER Session E.g. “Division-lvl3” for
all ER Sessions in Table 2
Pass Attempts Features M=0.51, 3.62, 0.55 for 1st performance, #pass at-

tempts, and avg performance
% ER sessions whose prior pass attempt passed the level M=45.65%, SD=40.69%

Note. statistics are reported at the student granularity, which are calculated through averaging across all objectives played by a student,
and then averaged across all students who electively replayed. This means each student contributes equally to the average, regardless of
how many objectives s/he played.

3.3.3 Student Grouping From ER Features
We created student groups to encapsulate the circumstances
under which ER occurred, based on students’ majority ER
and ER sessions. Based on prior literature, we hypothesized
that ER is a habitual behavior that arises from individual
needs, such as gaining higher scores [3], avoiding progress on
the current task [12], or taking a mental break from nega-
tive emotions [17]. Thus, grouping students based upon the
circumstances of replay based on their majority behaviors
provides high level profiles to investigate characteristics of
students who engaged in ER and benefited from ER.

We characterized ER by the timing relative to the student’s
current learning objectives and gameplay. The first group-
ing describes whether the majority ER sessions started be-
fore (Group B) or after (Group A) passing the previous at-
tempted level (current learning objective). If there is a tie
between the two types of replay session, the student be-
longs to neither group. For example, Table 2 describes a
group B student, who has two replay sessions before passing
“Division-level3,” and one replay session after passing this
level but before moving on to the next level.

The second grouping describes whether an ER followed plays
on the same level (SL), a different level under the same ob-
jective (DLSO), or a different objective (DO). For our ex-
ample in Table 2, the student’s pass attempts on “Division-
Level3”was interrupted twice on the third and fifth plays, by
replays on“Division-level1”(DLSO). After passing“Division-

level3”, the student replayed the same level(SL) once during
the seventh play, and a different objective “ Subtraction-
level1” (DO) once during the eighth play. This Group B
student had two DLSO replays, one SL, and one DO replays.
Thus, this student also belongs to Group DLSO, because the
two groupings are independent of each other.

4. METHODS & RESULTS
4.1 Who Engaged in Elective Replay?
We first investigated the demographic characteristics of stu-
dents who engaged in elective replay. We found that males
did so more often than females (male: 63.2%, female: 57.0%,
c2(1, N=4827) = 17.99, p<.001). We also found that English
Language Learners (ELL) did so more often than their non-
ELL peers (ELL: 62.3%, non-ELL: 57.1%, c2(1, N=4827)
= 12.69, p<.001 ), as did students with reported disabil-
ities (disability: 68.7%, non disability: 59.1%, c2(1, N =
4827) = 18.17, p<.001). There were no statistically sig-
nificant differences in the frequencies of ER based on race
when operationalized as Hispanic/non Hispanic, or based
on free/reduced lunch eligibility. The frequency of ER was
not found to be correlated with other out-of-game student
factors, such as state standardized math test scores.

The frequency of ER was also not correlated with in-game
pre-test accuracy and confidence at the objective granular-
ity. Next, we investigated the gameplay characteristics of
students who electively replayed. We first separated stu-
dents into groups based on their replay patterns. The first
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Table 4: Mann-Whitney U Tests Comparing Gameplay Characteristics between ER Pattern Student Groups

Group (# stu-
dents)

Pre-test
Accuracy

Pre-test
Confidence

Avg Pass At-
tempts’ Per-
formance

Avg 1st At-
tempt Per-
formance

#Pass At-
tempts

ER Perfor-
mance

Base:No ER
(N=1938)

M=0.61 M=0.75 M=0.88 M=0.81 M=1.82 NA
SD=0.17 SD=0.23 SD=0.08 SD=0.11 SD=0.84

ER (N=2889)
*M=0.57 M=0.74 *M=0.87 *M=0.80 *M=1.92 M=0.72
SD=0.17 SD=0.24 SD=0.07 SD=0.10 SD=0.78 SD=0.29

Group A
(N=1114)

M=0.62 M=0.77 *M=0.90 *M=0.84 *M=1.62 *M=0.77
SD=0.16 SD=0.22 SD=0.05 SD=0.08 SD=0.52 SD=0.27

Group B
(N=1464)

*M=0.52 *M=0.72 *M=0.84 *M=0.75 *M=2.28 *M=0.67
SD=0.17 SD=0.25 SD=0.07 SD=0.09 SD=1.09 SD=0.29

Group SL
(N=173)

M=0.61 M=0.75 M=0.88 M=0.81 M=1.82 *M=0.84
SD=0.17 SD=0.23 SD=0.07 SD=0.09 SD=0.81 SD=0.29

Group DLSO
(N=983)

*M=0.54 M=0.73 *M=0.84 *M=0.76 *M=2.27 *M=0.67
SD=0.18 SD=0.24 SD=0.08 SD=0.10 SD=1.16 SD=0.32

Group DO
(N=1399)

*M=0.58 M=0.75 M=0.88 M=0.81 M=1.80 M=0.73
SD=0.16 SD=0.23 SD=0.06 SD=0.08 SD=0.71 SD=0.26

Note. 1) Green and red indicate statistically significances higher and lower than the base class, with *p < .001, +p < .01 2)
Group A, B: most ER sessions happened before (B), after (A) passing the prior non-replay level. Group SL, DLSO, DO: most
ER followed pass attempts on the same level(SL), different level in same objective(DLSO), or different objective (DO)

5 columns of Table 4 shows the results of Mann-Whitney U
tests with Benjamini-Hochberg correction to compare each
group in-game performance to the students who never elec-
tively replayed any levels (the Base group). The last column
compares the averaged ER performance of each group to the
rest of students who electively replayed.

Compared to the base group, students for whom most re-
plays happened before passing the prior non-replay level
(Group B) and students for whom most replays followed a
different level on the same objective (Group DLSO) started
with significantly lower pre-test scores and did worse in game-
play, as measured by the three pass attempt features de-
scribed in section 3.3.2. For example, students in Group
B started with lower accuracy and confidence at pre-test,
took an average 0.5 more attempts to pass a level, and had
lower performance on the 1st pass attempt and all pass at-
tempts (including the 1st). It seems that Group B students
who replayed earlier levels before passing the current one
had less prior knowledge, and struggled more in the game.
By contrast, students in Group A, for whom most replay
happened after passing the current level, did slightly bet-
ter in gameplay compared to students who never electively
replayed (the Base group). Because these students started
with pre-test scores that were not statistically significantly
different from the base group, their replay patterns are as-
sociated with higher gameplay performance.

4.2 What Gets Replayed, and When?
Next, we studied what levels get replayed, and under what
circumstances. We used a decision tree classifier which al-
lowed us to identify which factors are most important in
relative to ER. Our goal was not to find precise predictive
models, but to augment our understanding of performance
and its relationship to ER. We used R’s rpart package with
parameters minsplit=5% and cp=0.02 to build trees to clas-
sify levels that were replayed from levels that were not re-
played, and levels whose pass attempts were interrupted or

followed by replay from levels that were not interrupted or
followed by replay. We randomly undersampled the major-
ity class (levels without replay, levels were not interrupted
or followed by replay), so that each class represented half of
the observations. We used pass attempt features at the level
granularity together with pre-test results, objective, and de-
mographic information to build our tree. We used 10-fold
cross validation to access the trees’ accuracies.

Table 5 reports the trees and the importance of the features.
We found that a student’s performance on a particular level
influenced whether replay happened during/after the level’s
pass attempts. For example, a student was more likely to
replay a different level under the same objective (DLSO)
if they took more than two attempts to pass the current
level. This result is related to the previous result in Table 4,
showing that, at the student level, those with lower game-
play performance were more likely to replay another level
under the same objective.

On the other hand, the objective to which a level belongs
influences whether or not a level would be ERed. We built
trees to predict if a level is replayed following the same level
(same condition of the last row in Table 5, N=1,776), the
same objective but a different level (N=12,616), or a dif-
ferent objective (N=31,852). For all three conditions, the
trees only contains a single node – objective, with accuracy
of 55.2%, 62.0%, and 66.9% respectively. This ER decision
could have been influenced by either the content or timing
of the objectives. In our tree node, we noticed that many
objectives with a higher chance of ER occurred earlier in
the curriculum, this could be because students had more
time in which these objectives were available for ER. Our
tree model also had only 55.2% accuracy when predicting
whether a level would be ERed following the pass attempts
of itself. One explanation is that we do not have puzzle
granularity data on how many lives a student actually lost.
From prior literature [4] [7], students may replay the same
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Table 5: Decision Trees to Predict Levels whose Pass
Attempts were Interrupted or Followed by ER

Condition: inter-
rupted/followed by

Trees

ER from a different
level in the same ob-
jective (N=8,094)

77.8% accuracy
#pass attempts < 2.5, No
#pass attempts ≥ 2.5, Yes

ER from a different
objective (N=12,506)

78.7% accuracy
1st attempt performance ≥ 0.94
-objective group A, No
-objective group B, Yes
1st attempt performance < 0.94
-objective group A
—# pass attempts < 6.5, No
—# pass attempts ≥ 6.5, Yes
-objective group B, Yes

ER on the same level
(N=1,766)

55.2% accuracy
objective group A, No
objective group B, Yes

Note. Trees are presented in text format. For example, the first
tree shows that if a student passed a level with less than 2.5 pass
attempts, the tree predicts this student will not replay another
level during/after this level.

level following it pass attempts to get a better score, which
means losing fewer lives (making fewer errors) at a level. As
shown in Table 4, Group SL students who performed most
of their ERs after the same level also achieved the highest
ER performance.

4.3 Is Elective Replay Associated with Gains?
In this section we will address our second research question.
As part of our analysis we considered three gain scores: ac-
curacy gain, confidence gain, and math gain. The first two
were measured by in-game pre- and post-tests. Recall that
both before and after a student attempts an objective, ST
Math logs the students’ correctness and confidence scores
on each question on the pre- and post-tests. We averaged
these scores across the pre- and post-test questions to com-
pute the first two gain scores. These were assessed at the
objective granularity. Math gain was calculated based upon
the difference between the students’ state standardized math
test scores in years 2012 and 2013. This was assessed at the
student granularity.

11.8% of the students were excluded from the math gain
analysis due to missing state math test records. These ex-
cluded students performed statistically significantly worse in
the game as measured by the three pass attempt features;
this implies that we excluded weaker students. 8.5% of the
objective observations were excluded from the accuracy and
confidence gain analysis due to missing pre- or post-tests.
These excluded observations were not statistically signifi-
cantly different from the rest as measured by pass attempt
features. The accuracy and confidence gains were signif-
icantly correlated (r=0.37, p<0.001), but these two gains
were not strongly correlated with math gain scores at the
student granularity (r<0.1, p<0.001). Table 6 reports the
percentage of data points that gained, dropped (mainly for
avoiding ceiling effect in this data), and did not gain for each

Figure 2: Decision Tree to Predict Whether a Stu-
dent will Gain in State Standardized Math Test

type of gain based on the Marx and Cummings Normaliza-
tion method [11].

Table 6: %Observations with Gains, No Gains, and
Percentage Dropped for the Three Gains

Gain Types ER? Gained Dropped No Gain

Accuracy
(N=75,083)

ER 48.10% 8.60% 37.90%
No ER 43.70% 6.10% 36.60%

Confidence
(N=75,083)

ER 28.30% 42.60% 23.70%
No ER 26.40% 37.40% 22.70%

Math Test
(N=4,827)

ER 41.60% 0.40% 46.90%
No ER 40.80% 0.50% 45.70%

Note. 1)Observations in the ’Dropped’ column (pre- and post-
tests were both 0 or 1) were excluded from analysis. 2)Accu-
racy and Confidence Gains were measured at objective granular-
ity, Math gain was measured at student granularity. 3)ER and no
ER were collapsed across level.

We first constructed decision trees to partition our data to
see which factors influence gains, using the method described
in the prior section. No sampling was necessary because the
groups had similar sizes. We used pass attempt features,
ER features, pre-test results, and demographics. For stu-
dent granularity, we also added the percentage of required
objectives attempted by the student.

At the objective granularity, we found that pre-test accuracy
and confidence were the only selected nodes that predicted
accuracy (70.0% accuracy) and confidence gain (74.1% accu-
racy). Students with a pre-test accuracy of < 0.71 (at least 2
questions wrong out of 5-10) had a 64.7% chance of positive
accuracy gain in the same objective, while the remainder of
the students had only a 25.9% chance. Students with high
pre-test confidence (≤0.95, indicated confidence on almost
all questions) had a 62.5% chance of positive confidence gain
in the same objective. It could be that these in-game tests
were too easy, as 18.9% of pretests achieved full scores in
accuracy and 54.5% achieved full scores in confidence.

Our decision tree for the student granularity is shown in
Figure 2, with a cross-validated accuracy of 57.8%. Stu-
dents who started with medium level of math abilities (2012
state test math scores <474, and ≥ 347) improved their
scores when they performed well in ST Math (average pass
attempts performance > 0.8857). This shows that the game-
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play data in ST Math has predictive power for assessment
outside of the game. However, for all three gain scores, the
ER features were not selected for inclusion in the decision
tree nor was any correlation found with the students gains.

Table 7: Mann-Whitney U Tests Comparing Gains
between ER Pattern Student Groups.

Group (#
students)

Math
(max=600)

Accuracy
(max=1)

Confidence
(max=1)

Base:No ER
(N=1938)

M=31.5 M=0.31 M=0.33
SD=146.6 SD=0.25 SD=0.38

ER (N=2889)
M=27.3 M=0.30 M=0.32
SD=139.7 SD=0.25 SD=0.37

Group A
(N=1114)

M=53.4 *M=0.35 +M=0.38
SD=167.9 SD=0.24 SD=0.36

Group B
(N=1464)

+M=6.7 *M=0.24 *M=0.26
SD=109.0 SD=0.25 SD=0.37

Group SL
(N=173)

M=46.2 M=0.31 M=0.31
SD=161.2 SD=0.28 SD=0.37

Group DLSO
(N=983)

M=21.4 *M=0.25 *M=0.27
SD=123.0 SD=0.26 SD=0.37

Group DO
(N=1399)

M=32.3 M=0.32 M=0.34
SD=150.6 SD=0.23 SD=0.36

Note. green and red indicate statistically significances higher
and lower than the base class, with *p < .001, +p < .01

Finally, we investigated how ER patterns relate to gains.
Table 7 reports the result from separating students into 6
groups based on ER patterns and conducting Mann-Whitney
U tests with Benjamini-Hochberg correction (as in the previ-
ous section). Moreover, although decision trees constructed
from the complete dataset show that low pre-test results
led to more gains, some ER pattern groups showed opposite
trends. For example, Group B, who primarily ERed before
passing the current level, started with lower pre-test scores,
did worse in the game, and had less gains, which were sta-
tistically significant, in all three gain measures. The same
applies to Group DLSO. These two groups of students also
had the lowest ER performance.

On the other hand, the Base group and Group A (who
mostly ERed after passing the current level) started with
pre-test accuracy and confidence scores that are not signif-
icantly different (Table 4), but Group A did significantly
better in game, and had higher gains in accuracy and confi-
dence, which were statistically significant. Because the mean
pre-test score for the Base and A groups is approximately
0.6, these students were reasonably familiar with the objec-
tive before they began playing it. The difference in accuracy
and confidence gains suggest that ER after students success-
fully pass a level helped students learn, or implied better
learning in the previous gameplay.

5. DISCUSSION AND CONCLUSIONS
This work presents a significant extension on prior studies of
replay which have typically taken place over a short period of
time and have assessed replay via intentional questionnaires
not observed behaviors [14, 5]. This work analyzed logged
student-initiated elective replay from a sample of 4,827 3rd-
5th graders during school year 2012-2013 in ST Math in
a natural educational setting. We sought to answer three

research questions: Q1: What are the characteristics of stu-
dents who electively replay? Q2: What gets replayed, and
under what circumstances? And Q3: Is elective replay as-
sociated with improvements in students’ accuracy on math
objectives, confidence, and general math ability?

We concluded that, with over half of students who electively
replayed at least one level, ER is a common behavior in ST
Math. Moreover, examining elective replay can enhance our
understanding about how students play and the character-
istics of successful play. For example, we found that stu-
dents who did poorly on the current level were more likely
to electively replay a different level during/after the level’s
pass attempts. We also found that students who generally
engaged in elective replay before passing the current level
(Group B) started with lower pre-test scores, did worse dur-
ing gameplay, and had the lowest objective-level accuracy
and confidence gain and math gains. One explanation for
this result is that weaker students used ER as a work avoid-
ance tactic, as found in Mostow et al. [12], and that in-
stances of ER stand in for lower motivation or engagement
for the objective topic, ST Math, or mathematics overall.

On the other hand, compared to students who didn’t ER,
students who mostly electively replayed after passing the
current level (Group A) started with pre-test scores that
were not significantly different, did better in the game, and
had higher learning and confidence gains. One reason could
be that these students electively replayed for a better score,
as we also found that students who mostly replayed the
same level immediately after passing it (Group SL) had the
highest ER performance. This association is especially true
among achiever-type players [3] that prefer to gain concrete
measurements of success. Because losing fewer lives in ST
Math requires better mastery of the math content, ER may
have helped these students learn. Another explanation is
that these students’ ERs could imply better learning during
prior gameplay, as Table 4 also shows that Group A students
had better pass attempt performance. Possibly, successful
prior performance motivated these students to electively re-
play more of the game. Moreover, because successful prior
performance feeds self-efficacy [2, 13], confidence gains in
Group A students, who chose more ER, may be linked to
electively replaying levels they have already mastered.

From the application perspective, as expected from this com-
plex environment, our effect-sizes are too small to claim ER
itself as a powerful intervention for learning. Instead, our
findings suggest the potential of using ER patterns to iden-
tify weaker students and their struggling moments for inter-
vention. For example, students with Group B ER patterns
started weaker, did poorly in the game, and had lower gains
in learning, confidence, and math state test scores. It may
be the case that Group B ER (before passing a level) is a
signal that students are struggling in current content and
are in need of a mental break [17] or help. If this is the case,
it would be beneficial upon detecting these ER patterns for
ST Math to alert teachers or to provide interventions, such
as suggesting the student to take a break or providing sup-
plemental resources to further explain the math concepts
from the pass attempts interrupted by ER. Our results also
suggest avenues for experimental studies that designs a more
effective ER experience, such as preventing work-avoidance
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in ER. For example, changing the number of lives students
have at each replay, or constraining the problems offered
each time they are replayed to be isomorphic but not iden-
tical.

This work has several limitations. First, the in-game pre-
post- tests may be too easy for students, as 18.9% of pretests
achieved a full score in accuracy, and 54.5% achieved a full
score in confidence. The high percentage of students with
non-positive learning and accuracy gain could also be caused
by students’ slipping or guessing in multiple-choice questions
(e.g., 1 incorrect answer reduces accuracy by 14%-20%). The
accuracy of the pre- and post-test questions for assessing
knowledge might be improved by using short answer ques-
tions. The second limitation is that we did not have puzzle
granularity data on how many lives a student actually lost
or the types of errors they made. Third, the grouping of stu-
dents based on the majority of elective replay assumes that
elective replay is a habitual and consistent behavior. Future
research should investigate other groupings, as well as ex-
amining whether there were changes in how students used
replay, and what caused the changes. Fourth, future work
may also include creating quantified features to compare the
content and game features across objectives so we may bet-
ter understand how the game’s content influence students’
decision to engage in elective replay.

In summary, this work adds new insights to our understand-
ing of elective replay in educational games. Our work reveals
differential associations between elective replay and perfor-
mance when replay is categorized by the timing in relation to
the student’s current learning objectives and gameplay. Our
work suggests that low-performing students did not benefit
from ER; high-performing students both chose ER at better
times and their ERs were associated with benefits from ei-
ther ER or previous gameplay, which supports the results of
prior self-regulation research by Aleven et al [1]. This work
presents prospects for both examining more detailed charac-
teristics of replay and utilizing experimental manipulations.
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ABSTRACT
There is a critical need to develop new educational technol-
ogy applications that analyze the data collected by univer-
sities to ensure that students graduate in a timely fashion
(4 to 6 years); and they are well prepared for jobs in their
respective fields of study. In this paper, we present a novel
approach for analyzing historical educational records from
a large, public university to perform next-term grade pre-
diction; i.e., to estimate the grades that a student will get
in a course that he/she will enroll in the next term. Accu-
rate next-term grade prediction holds the promise for bet-
ter student degree planning, personalized advising and au-
tomated interventions to ensure that students stay on track
in their chosen degree program and graduate on time. We
present a factorization-based approach called Matrix Factor-
ization with Temporal Course-wise Influence that incorpo-
rates course-wise influence effects and temporal effects for
grade prediction. In this model, students and courses are
represented in a latent “knowledge” space. The grade of a
student on a course is modeled as the similarity of their la-
tent representation in the “knowledge” space. Course-wise
influence is considered as an additional factor in the grade
prediction. Our experimental results show that the proposed
method outperforms several baseline approaches and infer
meaningful patterns between pairs of courses within aca-
demic programs.

Keywords
next-term grade prediction, course-wise influence, temporal
effect, latent factor

1. INTRODUCTION
Data analytics is at the forefront of innovation in several
of today’s popular Educational Technologies (EdTech) [17].
Currently, one of the grand challenges facing higher educa-
tion is the problem of student retention and graduation [19].
There is a critical need to develop new EdTech applications

that analyze the data collected by universities to ensure that
students graduate in a timely fashion (4 to 6 years), and they
are well prepared for jobs in their respective fields of study.
To this end, several universities deploy a suite of software
and tools. For example, degree planners 1 assist students
in deciding their majors or fields of study, choosing the se-
quence of courses within their chosen major and providing
advice for achieving career and learning objectives. Early
warning systems [27] inform advisors/students of progress,
and additionally provide cues for intervention when students
are at the risk of failing one or more courses and dropping
out of their program of study. In this work, we focus on the
problem of next-term grade prediction where the goal is to
predict the grade that a student is expected to obtain in a
course that he/she may enroll in the next term (future).

In the past few years, several algorithms have been devel-
oped to analyze educational data, including Matrix Factor-
ization (MF) algorithms inspired from recommender system
research. MF methods decompose the student-course (or
student-task) grade matrix into two low-rank matrices, and
then the prediction of the grade for a student on an untaken
course is calculated as the product of the corresponding vec-
tors in the two decomposed matrices [22, 11]. Traditional
MF algorithms have shown a strong ability to deal with
sparse datasets [14] and their extensions have incorporated
temporal and dynamic information [12]. In our setting, we
consider that a student’s knowledge is continuously being
enriched while taking a sequence of courses; and it is im-
portant to incorporate this dynamic influence of sequential
courses within our models. Therefore, we present a novel
approach referred as Matrix Factorization with Temporal
Course-wise Influence (MFTCI) model to predict next term
student grades. MFTCI considers that a student’s grade on
a certain course is determined by two components: (i) the
student’s competence with respect to each course’s topics,
content and requirement, etc., and (ii) student’s previous
performance over other courses. We performed a compre-
hensive set of experiments on various datasets. The experi-
mental results show that the proposed method outperforms
several state-of-the-art methods. The main contributions of
our work in this paper are as follows:

1. We model and incorporate temporal course-wise in-
fluence in addition to matrix factorization for grade

1http://www.blackboard.com/mobile-
learning/planner.aspx
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prediction. Our experimental results demonstrate sig-
nificant improvement from course-wise influence.

2. Our model successfully captures meaningful course-
wise influences which correlate to the course content.

3. The learned influences between pairs of courses help
in understanding pre-requisite structures within pro-
grams and tuning academic program chains.

2. RELATED WORK
Over the past few years, several methods have been de-
veloped to model student behavior and academic perfor-
mance [2, 9], and they gain improvement of learning out-
comes [21]. Methods influenced by Recommender System
(RS) research [1], including Collaborative Filtering (CF) [18]
and Matrix Factorization [13], have attracted increasing at-
tention in educational mining applications which relate to
student grade prediction [32] and in-class assessment pre-
diction [8]. Sweeney et. al. [31, 30] performed an exten-
sive study of several recommender system approaches in-
cluding SVD, SVD-kNN and Factorization Machine (FM) to
predict next-term grade performance. Inspired by content-
based recommendation [20] approaches, Polyzou et. al. [23]
addressed the future course grade prediction problem with
three approaches: course-specific regression, student-specific
regression and course-specific matrix factorization. More-
over, neighborhood-based CF approaches [25, 4, 6] predict
grades based on the student similarities, i.e., they first iden-
tify similar students and use their grades to estimate the
grades of the students with similar profiles.

In order to capture the changing of user dynamics over time
in RS, various dynamic models have been developed. Many
of such models are based on Matrix Factorization and state
space models. Sun et. al. [28, 29] model user preference
change using a state space model on latent user factors, and
estimate user factors over time using noncausal Kalman fil-
ters. Similarly, Chua et.al. [5] apply Linear Dynamical Sys-
tems (LDS) on Non-negative Matrix Factorization (NMF)
to model user dynamics. Ju et. al. [12] encapsulate the
temporal relationships within a Non-negative matrix for-
mulation. Zhang et. al. [34] learn an explicit transition
matrix over the latent factors for each user, and estimate
the user and item latent factors and the transition matri-
ces within a Bayesian framework. Other popular methods
for dynamic modeling include time-weighting similarity de-
caying [7], tensor factorization [33] and point processes [16].
The method proposed in this paper tackle the challenges of
next-term grade prediction which relates to the evolvement
of student knowledge over taking a sequence of courses. Our
key contribution involves how we incorporate the temporal
course-wise relationships within a MF approach. Addition-
ally, the proposed approach learns pairwise relationships be-
tween courses that can help in understanding pre-requisite
structures within programs and tuning academic program
chains.

3. PRELIMINARIES
3.1 Problem Statement and Notations
Formally, student-course grades will be represented by a se-
ries of matrices {G1, G2, ..., GT } for T terms. Each row
of Gt represents a student, each column of Gt represents a

course, and each value in Gt, denoted as gts,c, represents a
grade that student s got on course c in term t (gts,c ∈ (0, 4],
gts,c = 0 indicates that student s did not take the course c in
term t. We add a small value to failing grade to distinguish
0 score from such situation.). Student-course grades up to
the tth term will be represented by Gt=

∑t
i=1Gi with size

of n ×m, where n is the number of students and m is the
number of courses. Given the database of (student, course,
grade) up to term (T − 1) (i.e., GT−1), the next-term grade
prediction problem is to predict grades for each student on
courses they might enroll in the next term T . To simplify
the notations, if not specifically stated in this paper, we will
use gs,c to denote gts,c. Our testing set is then (student,
course, grade) triples in the Tth term, represented by matrix
GT . Rows from the grade matrices representing a student s
will simply be represented as G(s, :) and the specific courses
that student has a grade for in this row can be given by
c′ ∈ G(s, :).

In this paper, all vectors (e.g., uT
s and vc) are represented

by bold lower-case letters and all matrices (e.g., A) are rep-
resented by upper-case letters. Column vectors are repre-
sented by having the transpose supscriptT, otherwise by de-
fault they are row vectors. A predicted/approximated value
is denoted by having a ˜ head.

4. METHODS
4.1 MF with Temporal Course-wise Influence
We consider the student s’ grade on a certain course c, de-
noted as gs,c, as determined by two factors. The first factor
is the student s’ competence with respect to the course c’s
topics, content and requirement. This is modeled through
a latent factor model, in which s’ competence is captured
using a size-k latent factor us, c’s topics and contents are
captured using a size-k latent factor vc in the same latent
space as us. Then the competence of s over c is modeled
by the “similarity” between us and vc via their dot product
(i.e., uT

svc).

The second factor is the previous performance of student s
over other courses. We hypothesize that if course c′ has a
positive influence on course c, and student s achieved a high
grade on c′, then s tends to have a high grade on c. Under
this hypothesis, we model this second factor as a product
between the performance of student on a previous “related”
course where the pairwise course relationships are learned
in our formulation. Note that we consider this pairwise
course influence as time independent, i.e., the influence of
one course over another does not change over time. How-
ever, the impact from previous performance/grades can be
modeled using a decay function over time. Taking these two
factors, the estimated grade is given as follows:

g̃s,c = uT
svc

+ e−α
∑
c′∈GT−1(s,:) A(c′, c)gs,c′

|GT−1(s, :)|︸ ︷︷ ︸
∆(T−1)

+ e−2α

∑
c′′∈GT−2(s,:) A(c′′, c)gs,c′′

|GT−2(s, :)|︸ ︷︷ ︸
∆(T−2)

,

(1)
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in whichA(c′, c) is the influence of c′ on c, GT−1(s, :)/GT−2(s, :
) is the subset of courses out of all courses that s has taken in
the first/second previous terms, |GT−1(s, :)|/|GT−2(s, :)| is
the number of such taken courses. e−α/e−2α denote the
time-decay factors. In Equation 1, we consider previous
two terms. More previous terms can be included with even
stronger time-decay factors. Given the grade estimation as
in Equation 1, we formulate the grade prediction problem
for term T as the following optimization problem,

min
U,V,A

1

2

∑

s,c

(gs,c − g̃s,c)2 +
γ

2
(‖U‖2F + ‖V ‖2F )

+ τ‖A‖∗ + λ‖A‖`1
s.t., A ≥ 0

where U and V are the latent non-negative student factors
and course factors, respectively; ‖A‖∗ is the nuclear norm
of A, which will induce an A of low rank; and ‖A‖`1 is the
`1 norm of A, which will introduce sparsity in A. In addi-
tion, the non-negativity constraint on A is to enforce only
positive influence across courses.

4.1.1 Optimization Algorithm of MFTCI
We apply the ADMM [3] technique for Equation 2 by refor-
mulating the optimization problem as follows,

min
U,V,A,U1,U2,Z1,Z2

1

2

∑

s,c

(gs,c − g̃s,c)2 +
γ

2
(‖U‖2F + ‖V ‖2F )

+τ‖Z1‖∗ + λ‖Z2‖`1
+
ρ

2
(‖A− Z1‖2F + ‖A− Z2‖2F )

+ρ(tr(UT
1 (A− Z1)))

+ρ(tr(UT
2 (A− Z2)))

s.t., A ≥ 0

where Z1 and Z2 are two auxiliary variables, and U1 and U2

are two dual variables. All the variables are solved via an
alternating approach as follows.

Step 1: Update U and V . Fixing all the other variables and
solving for U and V , the problem becomes a classical matrix
factorization problem:

min
U,V

1

2

∑

s,c

(fs,c − uT
svc)

2 +
γ

2
(
∑

s

‖us‖22 +
∑

c

‖vc‖22) (2)

where fs,c = gs,c − ∆(T − 1) − ∆(T − 2) (See Eq 1). The
matrix factorization problem can be solved using alternating
minimization.

Step 2: Update A. Fixing all the other variables and solv-
ing for A, the problem becomes

min
A

1

2

∑

s,c

(gs,c − g̃s,c)2 +
ρ

2
(‖A− Z1‖2F + ‖A− Z2‖2F )

+ρ(tr(UT
1 (A− Z1))) + ρ(tr(UT

2 (A− Z2)))

s.t., A ≥ 0

Using the gradient descent, the elements in A can be up-
dated as follows.

A(ci, cj) = A(ci, cj)− lr × [ρ(A(ci, cj)− Z1(ci, cj))

+ ρ(A(ci, cj)− Z2(ci, cj)) + ρU1(ci, cj) + ρU2(ci, cj)

−
∑

s,cj

(gs,cj − g̃s,cj )

×
{

e−α
|GT−1(s,:)|gs,ci (if ci is taken in term T − 1)

e−2α

|GT−2(s,:)|gs,ci (if ci is taken in term T − 2)]

(3)
with projection into [0,+∞), where lr is a learning rate.

Step 3: Update Z1 and Z2. For Z1, the problem becomes

min
Z1

τ‖Z1‖∗ +
ρ

2
‖A− Z1‖2F + ρ(tr(UT

1 (A− Z1))) (4)

The closed-form solution of this problem is

Z1 = S τ
ρ

(A+ U1) (5)

where Sα(X) is a soft-thresholding function that shrinks the
singular values of X with a threshold α, that is,

Sα(X) = Udiag((Σ− α)+)V T (6)

where X = UΣV T is the singular value decomposition of X,
and

(x)+ = max(x, 0). (7)

For Z2, the problem becomes

min
Z2

λ‖Z2‖`1 +
ρ

2
‖A− Z2‖2F + ρ(tr(UT

2 )(A− Z2)) (8)

The closed-form solution is

Z2 = Eλ
ρ

(A+ U2) (9)

where Eα(X) is a soft-thresholding function that shrinks the
values in X with a threshold α, that is,

Eα(X) = (X − α, 0)+ (10)

where ()+ is defined as in Equation 7.

Step 4: Update U1 and U2. U1 and U2 are updated based
on standard ADMM updates:

U1 = U1 + (A− Z1); U2 = U2 + (A− Z2) (11)

In addition, we conduct computational complexity analysis
of MFTCI and put it in Appendix.

5. EXPERIMENTS
5.1 Dataset Description
We evaluated our method on student grade records obtained
from George Mason University (GMU) from Fall 2009 to
Spring 2016. This period included data for 23,013 transfer
students and 20,086 first-time freshmen (non-transfer i.e.,
students who begin their study at GMU) across 151 majors
enrolled in 4,654 courses.

Specifically, we extracted data for six large and diverse ma-
jors for both non-transfer and transfer students. These ma-
jors include: (i) Applied Information Technology (AIT), (ii)
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Table 1: Dataset Descriptions

Major
Non-Transfer Students Transfer Students
#S #C #(S,C) #S #C #(S,C)

AIT 239 453 5,739 982 465 14,396
BIOL 1,448 990 33,527 1,330 833 22,691
CEIE 393 642 9,812 227 305 4,538
CPE 340 649 7,710 91 219 1,614
CS 908 818 18,376 480 464 7,967

PSYC 911 874 22,598 1504 788 24,661
Total 4,239 1,115 97,762 4,614 1,019 75,867

#S, #C and #S-C are number of students, courses and student-course
pairs in educational records across the 6 majors from Fall 2009 to
Spring 2016, respectively.

Fall 2009 to Fall 2014 Spring 2015

Fall 2009 to Spring 2015 Fall 2015

Fall 2009 to Fall 2015 Spring 2016

Training set:

Test set:

Figure 1: Different Experimental Protocols

Biology (BIOL), (iii) Civil, Environmental and Infrastruc-
ture Engineering (CEIE), (iv) Computer Engineering (CPE)
(v) Computer Science (CS) and (vi) Psychology (PSYC).
Table 1 provides more information about these datasets.

5.2 Experimental Protocol
To assess the performance of our next-term grade prediction
models, we trained our models on data up to term T − 1
and make predictions for term T . We evaluate our method
for three test terms, i.e., Spring 2016, Fall 2015 and Spring
2015. As an example, for evaluating predictions for term
Fall 2015, data from Fall 2009 to Spring 2015 is considered
as training data and data from Fall 2015 is testing data.
datasets. Figure 1 shows the three different train-test splits.

5.3 Evaluation Metrics
We use Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) as metrics for evaluation, and are
defined as follows:

RMSE =

√∑
s,c∈GT (gs,c − g̃s,c)2

|GT |
,

MAE =

∑
s,c∈GT |gs,c − g̃s,c|

|GT |
where gs,c and g̃s,c are the ground truth and predicted grade
for student s on course c, and GT is the testing set of (stu-
dent, course, grade) triples in the Tth term. Normally, in
next-term grade prediction problem, MAE is more intuitive
than RMSE since MAE is a straightforward method which
calculates the deviation of errors directly while RMSE has
implications such as penalizing large errors more.

For our dataset, a student’s grade can be a letter grade (i.e.
A, A-, . . . , F). As done previously by Polyzou et. al. [24] we

define a tick to denote the difference between two consecu-
tive letter grades (e.g., C+ vs C or C vs C-). To assess the
performance of our grade prediction method, we convert the
predicted grades into their closest letter grades and com-
pute the percentage of predicted grades with no error (or
0-ticks), within 1-tick and within 2-ticks denoted by Pct0,
Pct1 and Pct2, respectively. For the problem of course se-
lection and degree planning, courses predicted within 2 ticks
can be considered sufficiently correct. We name these met-
rics as Percentage of Tick Accuracy (PTA).

5.4 Baseline Methods
We compare the performance of our proposed method to the
following baseline approaches.

5.4.1 Matrix Factorization
Matrix factorization is known to be successful in predict-
ing ratings accurately in recommender systems [26]. This
approach can be applied directly on next-term grade predic-
tion problem by considering student-course grade matrix as
a user-item rating matrix in recommender systems. Based
on the assumption that each course and student can be rep-
resented in the same low-dimensional space, corresponding
to the knowledge space, two low-rank matrices containing
latent factors are learned to represent courses and students
[30]. Specifically, the grade a student s will achieve on a
course c is predicted as follows:

g̃s,c = µ+ ps + qc + uT
svc (12)

where µ is a global bias term, ps (p ∈ Rn) and qc (q ∈
Rm) are the student and course bias terms (in this case, for
student s and course c), respectively, and us (U ∈ Rk×n)
and vc (V ∈ Rk×m) are the latent factors for student s and
course c, respectively.

5.4.2 Matrix Factorization without Bias (MF0)
We only considered the student and course latent factors to
predict the next-term grades. Therefore, the grade a student
s will achieve on a course c is calculated as follows:

g̃s,c = uT
svc (13)

5.4.3 Non-negative Matrix Factorization (NMF) [15]
We add non-negative constraints on matrix U and matrix V
in Equation 13. The non-negativity constraints allows MF
approaches to have better interpretability and accuracy for
non-negative data [10].

6. RESULTS AND DISCUSSION
6.1 Overall Performance
Table 2 presents the comparison of Pct0, Pct1 and Pct2 for
non-transfer students for the three terms considered as test:
Spring 2016, Fall 2015 and Spring 2015. We observe that the
MFTCI model outperforms the baselines across the different
test sets. On average, MFTCI outperforms the MF, MF0

and NMF methods by 34.18%, 11.59% and 4.08% in terms of
Pct0, 16.64%, 7.96% and 4.03% in terms of Pct1, and 2.10%,
3.00% and 1.98% in terms of Pct2, respectively. We observe
similar results for transfer students as well (not included
here for brevity).
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Table 2: Comparison Performance with PTA (%)

Methods
Spring 2016 Fall 2015 Spring 2015

Pct0(↑) Pct1(↑) Pct2(↑) Pct0 Pct1 Pct2 Pct0 Pct1 Pct2

MF 13.25 27.71 58.02 12.05 26.63 58.89 13.03 26.09 54.83
MF0 16.52 31.65 57.46 15.51 30.03 55.64 15.53 29.53 54.94

NMF 13.21 27.04 57.18 15.33 30.12 56.15 15.56 29.23 54.93
MFTCI 19.78 35.52 61.44 19.71 35.16 60.12 18.56 32.78 58.80

i) “↑” indicates the higher the better. ii) Reported values of Pct0, Pct1 and Pct2 are percent-
ages. iii) Best performing methods are highlighted with bold.

Table 3 presents the performance of the baselines and MFTCI
model for the three different terms of both non-transfer and
transfer students using RMSE and MAE as evaluation met-
rics. The MFTCI model consistently outperforms the base-
lines across the different datasets in terms of MAE. In ad-
dition, the results shows that MF0, NMF and MFTCI tend
to have better performance for Spring 2016 term than Fall
2015 term. Similar trend is observed between Fall 2015 term
and Spring 2015 term. This suggests that MFTCI is likely
to have better performance with more information in the
training set.

6.2 Analysis on Individual Majors
We divide non-transfer students based on their majors and
test the baselines and MFTCI model on each major, sep-
arately. Table 4 shows the comparison of Pct0, Pct1 and
Pct2 on different majors. The results show that MFTCI has
the best performance for almost all the majors. Among all
the results, MFTCI has the highest accuracy when predict-
ing grades for PSYC and BIOL students for which we have
more student-course pairs in the training set.

6.3 Effects from Previous Terms on MFTCI
In order to see the influence of number of previous terms
considered in MFTCI, we run our model with only ∆(T −1)
in Equation 1. This method is represented as MFTCIp1.
Figure 2 shows the comparison results of MAE for six sub-
sets of data which are reported in Table 3, where “NTR”
stands for non-transfer students and “TR” stands for trans-
fer students. The results show that MFTCI consistently
outperforms MFTCIp1 on all datasets. This suggests that
considering two previous terms is necessary for achieving
good prediciton results. Moreover, since we consider that
the student’s knowledge is modeled using an exponential
decaying function over time, we do not include the influence
from the third previous term in our model as its influence
for the grade prediction is negligible in comparison to the
previous two terms.

6.4 Visualization of Course Influence
To interpret what is captured in the course influence matrix
A (See Eq 1), we extract the top 20 values with the corre-
sponding course names (and topics) for analysis. Figure 3
and 4 show the captured pairwise course influences for CS
and AIT majors, respectively. Each node corresponds to
one course which is represented by the shortened course’s
name. We can notice from the figures that most influences
reflect content dependency between courses. For example,
in the CS major, “Object Oriented Programming” course
has significant influence on performance of “Low-Level Pro-

NTR Spring 
 2016

NTR Fall 
 2015

NTR Spring 
 2015

TR Spring 
 2016

TR Fall 
 2015

TR Spring 
 2015

0.60

0.62

0.64

0.66

0.68

0.70

M
A

E

MFTCIp1
MFTCI

Figure 2: Comparison performance for MFTCIp1 and
MFTCI

gramming” course (the former one is also the latter one’s
prerequisite course); “Linear Algebra” and “Discrete Math-
ematics” have influence on each other; “Formal Methods &
Models” course has influence on “Analysis of Algorithms”
course. In case of the AIT major, both “Introductory IT”
course and “Introductory Computing” course have influence
on “IT Problem & Programming” course; “Multimedia &
Web Design” course has influence on both “Applied IT Pro-
gramming” course and “IT in the Global Economy” course.
GMU has a sample schedule of eight-term courses for each
major in order to guide undergraduate students to finish
their study step by step based on the level, content and
difficulty of courses 2. Among the identified relationships
shown in Figures 3 and 4 we found 17 and 13 of the CS and
AIT courses influences in the guide map, respectively. The
rest of the identified influences are among other general elec-
tives but required courses (e.g., “Public Speaking” course),
or specific electives pertaining to the major (e.g., “Research
Methods” course). This shows that our model learns mean-
ingful course-wise influences and successfully uses it to im-
prove MF model.

Figure 5 shows the identified course influences for the BIOL,
CEIE, CPE and PSYC majors. These identified course-wise
influences seem to capture similarity of course content.

7. CONCLUSION AND FUTURE WORK
We presented a Matrix Factorization with Temporal Course-
wise Influence (MFTCI) model that integrates factorization
models and the influence of courses taken in the preceding
terms to predict student grades for the next term.

We evaluate our model on the student educational records
from Fall 2009 to Spring 2016 collected from George Ma-

2http://catalog.gmu.edu

Proceedings of the 10th International Conference on Educational Data Mining 52



Table 3: Comparison Performance with RMSE and MAE.

Methods
Non-Transfer Students Transfer Students

Spring 2016 Fall 2015 Spring 2015 Spring 2016 Fall 2015 Spring 2015
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MF 0.999 0.754 1.037 0.786 1.023 0.784 0.925 0.688 0.921 0.686 0.985 0.732
MF0 0.929 0.714 0.977 0.752 1.014 0.778 0.893 0.668 0.944 0.705 1.011 0.765

NMF 1.020 0.769 0.967 0.746 1.000 0.771 0.906 0.683 0.932 0.701 0.979 0.746
MFTCI 0.928 0.685 0.982 0.717 1.012 0.750 0.887 0.636 0.927 0.662 1.000 0.721

Object Oriented Programming

Low-Level Programming

0.691

Discrete Mathematics

0.3512

Data Structures

0.3661

Linear Algebra

0.37970.4392

Public Speaking

Advanced Composition

0.6033

Research Methods

Computer Ethics

0.563

0.4953 0.3852

Western History

0.3646

0.536

Reading & Writng

0.3526

0.4314

0.49290.4122

Digital Electronics

0.4313

Formal Methods & Models

0.3691

Introductory Programming

0.4264

Analytic Geometry & Calculus

0.4199

Analysis of Algorithms

0.3512

Figure 3: Identified course influences for CS major

Table 4: Comparison Performance for Different Majors

Methods AIT BIOL CEIE CPE CS PSYC

Pct0

MF 18.71 18.00 15.99 12.99 15.98 20.18
MF0 19.45 22.10 16.70 14.21 16.47 22.12

NMF 19.77 22.16 17.01 14.32 16.61 22.17
MFTCI 22.30 24.24 16.80 14.32 17.32 25.83

Pct1

MF 37.95 35.43 31.47 27.86 31.53 39.41
MF0 37.21 39.68 31.87 27.97 30.51 39.63

NMF 36.79 39.74 31.67 27.19 30.43 39.36
MFTCI 39.64 40.87 32.38 27.53 31.78 42.29

Pct2

MF 67.02 67.78 58.66 52.28 56.91 71.01
MF0 66.17 67.54 58.35 50.72 56.24 67.74

NMF 66.70 67.54 58.55 51.17 56.17 67.79
MFTCI 66.70 68.25 58.76 52.94 58.18 68.29

son University. The dataset in this study contains both
non-transfer and transfer students from six different ma-
jors. Our experimental evaluation shows that MFTCI con-
sistently outperforms the different state-of-the-art methods.
Moreover, we analyze the effects from previous terms on
MFTCI, and we make the conclusion that it is necessary
to consider two previous terms. In addition, we visualize
the patterns learned between pairs of courses. The results
strongly demonstrate that the learned course influences cor-
relate with the course content within academic programs.

In the future, we will explore incorporation of additional con-
straints over the the pairwise course influence matrix, such
as prerequisite information, compulsory and elective provi-
sion of a course. We will explore using the course influence

information to build a degree planner for future students.
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APPENDIX
A. COMPUTATIONAL COMPLEXITY ANAL-

YSIS
The computational complexity of MFTCI is determined by
the four steps in the alternating approach as described above.
To update U and V as in Equation 2 using gradient de-
scent method via alternating minimization, the computa-
tional complexity is O(niteruv(k× ns,c + k×m+ k× n)) =
O(niteruv(k×ns,c)) (typically ns,c ≥ max(m,n)), where ns,c
is the total number of student-course dyads, n is the num-
ber of students, m is the number of courses, k is the latent
dimensions of U and V , and niteruv is the number of itera-
tions. To update A as in Equation 3 using gradient descent
method, the computational complexity is upper-bounded by
O(nitera(ncc×ns,c

m
)), where ncc is the number of course pairs

that have been taken by at least one student,
ns,c
m

is the av-
erage number of students for a course, which upper bounds
the average number of students who co-take two courses,
and nitera is the number of iteractions. Essentially, to up-
date A, we only need to update A(ci, cj) where ci and cj
have been co-taken by some students. For A(ci, cj) where
ci and cj have never been taken together, they will remain
0. To update Z1 as in Equation 4, a singular value decom-
position is involved and thus its computational complexity
is upper bounded by O(m3). To update Z2 as in Equa-
tion 8, the computational complexity is O(m2). To update
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Figure 5: Identified course influences for different majors

U1 and U2 as in Equation 11, the computational complexity
is O(m2). Thus, the computational complexity for MTFCI
is O(niter(niteruv(k×ns,c) + nitera(ncc× ns,c

m
) +m3 +m2))

= O(niter(niteruv(k×ns,c)+nitera(ncc× ns,c
m

)+m3)), where
niter is the number of iterations for the four steps. Al-
though the complexity is dominated by m3 due to the SVD
on A+ U1, since n (i.e., the number of courses) is typically
not large, the run time will be more dominated by ns,c (i.e.,
the number of student-course dyads).
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ABSTRACT 

Expertise in a domain of knowledge is characterized by a greater 

fluency for solving problems within that domain and a greater 

facility for transferring the structure of that knowledge to other 

domains. Deliberate practice and the feedback that takes place 

during practice activities serve as gateways for developing domain 

expertise. However, there is a difficulty in consistently aligning 

feedback about a learner’s practice performance with the intended 

learning outcomes of those activities – especially in situations 

where the person providing feedback is unfamiliar with the 

intention of those activities. To address this problem, we propose 

an intelligent model to automatically label opportunities for 

practice (assessment questions) according to the learning outcomes 

intended by the course designers. As a proof of concept, we used a 

reduced version of Bloom’s Taxonomy to define the intended 

learning outcomes. Using a factorial design, we employed term 

frequency-inverse document frequency (TF-IDF) and latent 

Dirichlet allocation (LDA) to transform questions from text to word 

weightages with support vector machine (SVM) and extreme 

learning machine (ELM) to train and automatically label the 

questions. We trained our models with 120 questions labeled by the 

subject matter expert of an undergraduate engineering course. 

Compared to existing works which create models based on a self-

generated dataset, our proposed approach uses 30 untrained 

questions from online/textbook sources to validate the performance 

of our models. Exhaustive comparison analysis of the testing set 

showed that TF-IDF with ELM outperformed the other 

combinations by yielding 0.86 reliability (F1 measure) with the 

subject matter expert.  

Keywords 

Learning outcomes, Term frequency-inverse document frequency, 

Latent Dirichlet allocation, Extreme learning machine, Support 

vector machine 

1. INTRODUCTION 
Increasingly, modern curriculum design in tertiary and adult 

learning settings has become a collaborative endeavor between 

subject matter experts, learning designers, and learning 

technologists. While these teams employ a variety of process 

models for the planning, execution, and revision of their curriculum 

and activity designs, often greater attention is paid to the 

construction of a course design and the course content rather than 

the assessment practices that measure learning and their ongoing 

maintenance.  

The algorithms and use case described in this paper exist in a 

particular context of outcome-based education. In this context, 

learning is defined by observable changes in a learner’s behavior. 

These changes commensurate with Krathwohl’s model of learning 

objectives [1] but learning outcomes go beyond objectives. 

Learning outcomes are predicated on having learners observably 

demonstrate their growing understanding of a topic or proficiency 

within a field [2]. When learning activities become more open-

ended and exploratory, and when learners are offered choices for 

how to proceed, learners often look to how they will ultimately be 

assessed to gauge which learning strategies they should employ [3]. 

When a course’s learning activities support its assessment practices 

and the assessment practices support the types of outcomes that are 

relevant to learners in the future, the course’s activities and 

intended learning outcomes exhibit constructive alignment with 

each other [2]. Adhering to constructive alignment creates a 

seamless path from learning, to applying, to transferring concepts 

and relationships when solving novel problems. 

However, the promise of constructive alignment is not easily 

delivered upon. Oftentimes, a course’s learning outcomes cannot 

be measured by its assessment practices, or its assessment practices 

are decontextualized from the types of activities and practices 

learners are actually preparing for [4]. Whether in the context of 

higher learning or professional development, when thinking about 

developing flexible, life-long learners it is paramount to have 

mechanisms in place to support learners as they work to gain 

domain expertise. These processes should reliably measure 

learning and link assessment practices to authentic activities. 

1.1 Learning design for domain expertise 
Prior work in designing for adaptive domain expertise, the kind of 

expertise necessary for learners to function in changing 

environments and flexible job scopes, has shown that learning 

design teams need to be cognizant of three elements which will be 

discussed in turn.  

1.1.1 Levels of learning outcomes 
Learning outcomes range in sophistication and vary by field. In 

medicine, Miller’s Pyramid [5] lists learning outcomes beginning 

with knowing about a subject, progressing to knowing how to do 

something, to being able to actually demonstrate it in a contrived 

setting like a role-play with actors, and to being able to demonstrate 

it in a real environment like a surgical theater [6]. The idea is based 

on the belief that the development of expertise is a progression from 
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the recall of facts to the execution of skills. However, as research 

on problem based learning has shown, demonstration of skill and 

the recall of facts can proceed independently of each other 

depending on the learning environment [7]. 

In [8], a field agnostic method of classifying learning outcomes 

based on their quality is presented. Essentially, the Structure of 

Observed Learning Outcomes (SOLO) taxonomy identifies the 

level of cognitive sophistication a learning outcome requires. 

Lower level learning outcomes indicate a learner is capable of 

remembering facts in isolation. More sophisticated levels require 

learners to assimilate information from various sources to make 

connections and transform that understanding into something new. 

Perhaps the most popular listing of learning outcomes is Bloom’s 

Taxonomy. Similar to Miller’s Pyramid, Bloom’s Revised 

Taxonomy also begins with the retrieval of facts and information 

as its foundation and builds up to application of knowledge and 

further to analyzing, evaluating, and creating. Because of its 

simplicity and familiarity with learning designers and subject 

matter experts alike, Bloom’s Taxonomy can easily be used to 

identify the levels of learning outcomes in a course [9].  

1.1.2 Opportunities for deliberate practice 
Along with identifying a learning activity’s intended outcomes, 

expertise development requires opportunities for deliberate 

practice. In contrast to repetitive practice intended for learners to 

develop automaticity in either the recall of information or the 

application of a skill, often during time-limited tasks, deliberate 

practice focuses on mastering the nuances of the domain itself to 

fine-tune performance [10]. In fact, a learner’s level of grit, a 

combination of perseverance and passion, predicts how close to 

expert performance a learner will eventually show [11].  

The key difference in processes between repetitive practice and 

deliberate practice leads to different forms of expertise: adaptive 

and routine [12]. Routine forms of expertise allow a learner to 

conduct a task at an optimal level. Adaptive expertise allows 

learners to learn new tasks or solve novel problems at an 

accelerated rate. In an industrial setting, routine expertise helps a 

worker complete a particular job function. Adaptive expertise 

enables that same worker to retrain to fill new job functions. 

Typically, the amount of time necessary to achieve expert 

performance in a domain is in the order of years to decades [13]. 

However, incremental improvement can be seen in a few practice 

cycles when activities align to the intended learning outcomes. 

1.1.3 Formative assessments and actionable 

feedback 
Hand in hand with creating opportunities for deliberate practice is 

providing formative feedback to the learner about how to improve 

that practice while that improvement is still relevant. Imagine 

students who diligently answer every question in an engineering 

textbook but never receive feedback on the quality of their 

solutions. In this case, the learners would be unable to gauge their 

performance in relation to the course learning outcomes or have an 

idea about how to improve their performance in the future. Now 

imagine if those same students do receive feedback, but that 

feedback arrives after the course’s final examination. If the content 

of the course is mostly self-contained and will not be revisited, the 

feedback is mostly irrelevant.  

Formative feedback consists of two parts: 1) an interpretable 

indication of a learner’s performance on an assessment of learning 

with respect to a standard of performance (learning outcome) and 

2) the opportunity to improve performance before the final 

evaluation [14].  

Cognitive tutors provide a clear example of the power of coupling 

formative assessment and actionable feedback together in the 

domain of mathematics learning [15]. By presenting learners with 

a series of structured problems, cognitive tutors are capable of 

intervening at any point during the problem-solving process to 

provide students with feedback about their performance. This 

feedback may be the identification of an error, the presentation of 

a hint, or the request for more information about the learner’s 

reasoning. After the feedback, learners have the opportunity to 

adjust their problem-solving heuristics to improve their 

performance going forward.  

Such an interaction sequence works with highly structured tasks 

with application-oriented learning outcomes. However, the 

feedback cycle is more difficult to manage when the learning 

outcomes are aligned to higher-order reasoning like evaluation, 

analyzing and creating. These outcomes have multiple paths for 

reaching a satisfactory answer.  

With this difficulty in mind, we looked at techniques to automate 

the process of identifying the reasoning level of text-based 

assessment items (questions) with the intention of better aligning 

questions to learning outcomes as a first step toward being able to 

provide opportunities for deliberate practice. Subsequently, the 

outcome of our proposed work is to link actionable feedback to a 

learner’s performance on assessment items. 

1.2 Automated question classification 

techniques 
Prior work has shown the viability of automatically labeling 

questions in accordance with a course’s learning outcomes. 

However, our work goes beyond labeling existing content to 

helping course instructors promote deliberate practice and expertise 

development by providing a method of finding new questions that 

align to the course designer’s original intended learning outcomes. 

We highlight the drawbacks of prior work and how our proposed 

approach addresses those limitations. 

1.2.1 Labeling questions based on difficulty level 
Early attempts at automatically labeling questions relied on subject 

matter experts to pre-define the difficulty levels of questions. 

Artificial neural network trained by backpropagation then used the 

question features and assigned difficulty levels in the training set to 

classify new questions. A five-dimensional feature vector that 

consisted of query-text relevance, mean term frequency, length of 

questions and answers, term frequency distribution (variance), 

distribution of questions and answers in a text were used. The 

method yielded an F1 measure, a classification reliability metric 

that measures a test’s accuracy, of 0.78 [16]. However, a major 

pitfall this method is its lack of semantic analysis.  

Entropy-Based Decision Tree has also been used to label questions 

[17]. The weakness in this strategy is that there is high possibility 

of overfitting the model during the training phase that then 

negatively affects the subsequent prediction performance. 

1.2.2 Labeling questions based on Bloom’s 

Taxonomy using Natural Language Processing 
Natural Language Processing (NLP) has been used for the 

generation of assessments, answering questions, supporting users 

in Learning Management Systems and preparing course materials. 

The Wordnet package has been used to detect semantic similarity. 

By performing a rule-based approach, the accuracy of labeling a 
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question based on Bloom’s Taxonomy reaches 82% [18]. To 

improve the rule-based approach, a hybrid technique of using an N-

gram classifier with a rule-based approach has also been explored. 

Rules were based on combining parts-of-speech tagging, and the 

N-gram classifier found the probabilities of predicting certain 

words. Such a hybrid method yielded an F1 measure of 0.86 [19].  

1.2.3 Labeling questions based on Bloom’s 

Taxonomy using machine learning techniques 
Machine learning algorithms can be broadly split into either 

supervised or unsupervised training implementations. Generally, 

supervised training is adopted when, during training, labels have 

been pre-determined and questions are labeled by an expert. The 

most commonly used method in such cases is the term frequency-

inverse document frequency (TF-IDF). The algorithm assigns 

weightages to individual words in a question statement to define a 

custom vector space to each question.  

Machine learning techniques such k-nearest neighbors, Naïve 

Bayes and support vector machine (SVM) have been implemented 

for labeling questions. When doing a performance comparison 

among these three techniques, an F1 measure of 0.71 was achieved 

using SVM [20]. To increase the accuracy level, additional features 

were incorporated in future versions of the work. Three different 

feature selection processes, namely: Odd Ratio, Chi-square statistic 

and Mutual Information were used with the three machine learning 

techniques. The F1 measure result reached 0.9 [21].  

Furthermore, an integrated approach of feature extraction has been 

proposed by using headword, semantic, keyword and syntactic 

extractions, which are fed into SVM [22]. However, this work has 

not yet been completed by using a testing dataset to quantify the 

reliability of prediction. 

A major downside in existing works is that both the training as well 

as testing questions are part of the same course curriculum; the 

questions are generated by the same author/instructor. Even when 

a high F1 measure is achieved, it does not enable the algorithm to 

label questions written by another subject matter expert. Our work 

increases the flexibility of labeling methods by testing our models 

with a new set of questions compiled from textbook and online 

resources.  

In addition, our work introduces extreme learning machine (ELM), 

which has been shown to outperform SVM during similar labeling 

tasks [23]. Moreover, we introduce LDA as an alternative technique 

to TF-IDF for transforming question statements into numerical 

word weightages.  

By comparing combinations of these new techniques with more 

traditional techniques, we aim to gauge which combination attains 

the highest labeling reliability with the subject matter expert when 

automatically labeling untrained questions. For our purposes, using 

the combination with the highest F1 measure (fewest false 

negatives and false positives) becomes paramount. In our use case, 

a mislabeling by the algorithm will lead to the wrong set of practice 

questions to be given to students and diminish the impact of 

deliberate practice on reaching the intended learning outcomes.  

2. METHODS 

2.1 Materials 
2.1.1 Labeling scheme 
The core of this study centers on a labeling scheme for identifying 

the sophistication of learning outcomes based on a simplified 

version of Bloom’s Taxonomy. In this labeling scheme, the first 

two levels of Bloom’s Taxonomy (Remembering and 

Understanding) were collapsed into Remember. Applying 

remained its own category. All of the higher-order reasoning 

categories (Analyzing, Evaluating, and Creating) were collapsed 

into Transfer. Figure 1 shows how our labeling scheme categories 

map onto the original categories from Bloom’s Revised Taxonomy.  

 

 Figure 1: Mapping of Bloom's Revised Taxonomy [24] 

We collapsed the taxonomy into three categories for two reasons. 

First, the subject matter expert tasked with labeling the questions 

was unsure about how reliably the questions could be labeled by 

someone without a background in learning design, educational 

psychology, or curriculum development. Collapsing the categories 

to Remember, Apply, and Transfer made manually labeling 

hundreds of questions to train the machine learning algorithms 

more tractable. Second, collapsing the categories had the effect of 

making Bloom’s Taxonomy more analogous to the successful use 

cases of Miller’s Pyramid by subject matter experts in both higher 

education and professional development settings [5]. 

2.1.2 Question dataset 
The dataset consists of a total of 150 questions used for training and 

testing the machine learning algorithms based on the content of an 

undergraduate electrical and electronic engineering course.  

For this study, we formed a training set of 120 questions by 

randomly selecting 40 Remember, Apply, and Transfer items from 

the larger question pool of more than 200 questions used in that 

course. The pool came from a repository of four years’ worth of 

assignment, homework, quiz and exam questions presented to 

students. These questions prompt students for a range of answer 

types (i.e., open-ended, multiple-choice, short-structured, essay).  

We then created a testing set of 30 new questions compiled from 

external sources such as textbooks and online question banks. This 

set was also balanced with equal representation of Remember, 

Apply, and Transfer questions. 

2.2 Data pre-processing procedures 
We pre-processed the raw questions in two phases. First, the subject 

matter expert labeled every question according to the labeling 

scheme described above. Second, we transformed the text of every 

question into a machine-readable format before passing them 

through the machine learning algorithms. 

2.2.1 Subject matter expert pre-processing 
The subject matter expert manually labeled each question in the 

training set based on its intended learning outcome (Remember, 

Apply or Transfer). The subject matter expert then labeled the 30 

new questions in the testing set in the same manner. These new 

questions are labeled for the purpose of knowing the ground truth 

for performance evaluation. Table 1 below shows some examples 

of the labeled questions. 
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Table 1 - Examples of labeled questions 

Remember 

Consider a signal described by y[n] = 2n +4. What would be the 

amplitude of the signal at sample index n=3? 

Apply 

Consider the following input and output signals: find the transfer 

function and state the poles and zeros of this transfer function. 

Transfer 

Describe how the bandpass filter can be utilized for radar 

applications. 

2.2.2 Text pre-processing 
The text transformation began by excising all equations, 

mathematical symbols and diagrams from the questions. We only 

kept the core of the question prompts by removing the descriptive 

and explanatory text from scenario and hypothetical questions. For 

example, if a question began by setting the stage with “Peter has 

been asked to perform…”, followed by the question prompt “How 

much voltage should Peter expect in the circuit?”, all of the 

descriptive text prior to the question prompt was removed to 

improve the consistency of word length and usage between items. 

For the remaining words in the questions, we changed all of the 

characters to lower case, removed all punctuation marks, numbers, 

and non-unicode characters. We then stemmed the remaining 

words to obtain a list of root words. From this list of root words, we 

removed all words with fewer than three letters. Because we were 

unsure of the relationship between the words and the labels, we did 

not create a list of stopwords for removal. 

3. TECHNIQUES 
We tested four combinations (in no particular order) of word 

weighting and question labeling algorithms, as shown in Figure 2, 

to identify the techniques with the highest reliability for our 

automated learning outcome labeler.  

 

Figure 2: Four combinations of algorithms 

Every word in each question prompt was assigned a weightage 

value based on either term frequency-inverse document frequency 

(TF-IDF) or latent Dirichlet allocation (LDA). Subsequently, the 

vector values for each question were passed through either support 

vector machine (SVM) or extreme learning machine (ELM) to 

assign a label. All algorithms were implemented in R Studio. 

3.1 Term frequency-inverse document 

frequency 
Term frequency-inverse document frequency (TF-IDF) is a 

technique for finding the relative frequency of words in a given 

document, and comparing those frequencies with the inverse of 

how often each of those words appear in the complete document 

corpus. The resulting ratio can be used to signify the relevance of 

each unique word within a single document.  

We implemented a modified version of TF-IDF that used individual 

questions as the source of the analysis instead of complete 

documents. This focused the model on finding the relevance of each 

word within each single question. By converting each question into 

a vector of weightages based on word frequencies, the machine 

learning algorithms were then used to label the questions. The 

modified TF-IDF model can be described by 

               𝑇𝐹 − 𝐼𝐷𝐹(𝑤𝑖 , 𝑞𝑘) = #(𝑤𝑖 , 𝑞𝑘) × log
𝑇𝑅

#𝑇𝑅(𝑤𝑖)
                   (1) 

where wi refers to a particular word i, qk refers to a particular 

question k, #(wi,qk) refers to number of times wi occurs in qk, TR 

refers to total number of questions and #TR(wi) refers to question 

frequency, or the number of questions in which wi occurs [20].  

In the case where the term frequency (TF) count is biased towards 

longer questions, the TF count is normalized as 

                                       𝑇𝐹𝑖,𝑘 =  
𝑛𝑖,𝑘

∑ 𝑛𝑗,𝑘𝑗
                                           (2) 

where ni,k refers to the number of times wi occurs in qk, the 

denominator term (size of each question) refers to the sum of the 

number of times each word appears in qk  [25].  

For our work, the pre-processing procedures registered a total of 

465 unique stemmed words in our compilation of 120 training 

questions and 30 testing questions. This led to each question being 

represented as a vector of 1 row and 465 columns arranged in 

alphabetical order by stemmed word. When a word is present in a 

question, the normalized weight of that word is assigned to that 

question’s vector element. If a word is not present in the question, 

the weight is zero.  

After determining the unique word weightage vectors for all 150 

questions, the entire matrix is sorted such that for each question, the 

weightages are arranged in ascending order. The top ten weightages 

are chosen for each question. The 10 weightages may correspond 

to different words in each question, but their combinations remain 

question-specific and give a numerical representation of each 

question statement. This new vector of 10 columns per question 

serves as the input to the machine learning algorithms.  

As an example, we will use the pre-processed question prompt: 

for signal which begin when the one side unilateral ztransform given 

Table 2 below shows the weightages assigned to the above example 

after the application of the TF-IDF technique. The weightages are 

then arranged in ascending order and the top 10 values are taken. 

Table 2 - TF-IDF weightage arrangement 

Word (alphabetical order) Weightage 

begin 0.392 

for 0.140 

given 0.140 

one 0.222 

side 0.356 

signal 0.116 

the 0.007 

unilateral 0.392 

when 0.279 

which 0.230 

ztransform 0.216 
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3.2 Latent Dirichlet allocation 
Latent Dirichlet allocation (LDA) is a probabilistic technique for 

topic modeling based on the Bayesian model. The essential idea of 

LDA is that each document consists of a mixture of topics, with the 

continuous-valued mixture properties distributed in a Dirichlet 

random variable, a continuous multivariate probability distribution. 

Again, in the context of our work, we applied LDA to questions in 

the dataset by substituting the original notion of documents in the 

LDA algorithm with questions in our modified model. Therefore, 

the modified model attempted to find k number of topics (k is a 

user-defined parameter to determine the desired number of topics, 

or dimensionality of the Dirichlet distribution) for a given set of 

question statements based on the choice and usage of words in each 

question. The joint distribution of a topic mixture, a set of topics 

and a set of words can be represented by 

            𝑝(𝜃, 𝑡, 𝑤|𝛼, 𝛽) = 𝑝(𝜃|𝛼) ∏ 𝑝(𝑡𝑖|𝜃)𝑝(𝑤𝑖|𝑡𝑖 , 𝛽)𝑀
𝑖=1              (3) 

where parameter α is a k-vector with components more than zero, 

parameter β refers to the matrix of word probabilities, θ refers to a 

k-dimensional Dirichlet random variable, ti refers to a topic, wi 

refers to a word [26]. 

Figure 3 shows a graphical model representation of LDA. The 

bigger circle refers to questions while the smaller circle refers to 

the repeated choice of topics and words within each question. 

 

Figure 3: Graphical model representation of LDA 

Since LDA involves topic modeling, an appropriate k value chosen 

for our work was ten. This allowed a standard comparison between 

LDA and the top ten weightages from the TF-IDF method. The 

generated unique topics (based on the stemmed words) are shown 

in Table 3. 

Table 3 - Topic names generated by LDA 

Topic number Stemmed topic name 

1 differ 

2 discrete 

3 impulse 

4 signal 

5 filter 

6 apply 

7 dft 

8 output 

9 sample 

10 system 

Out of the entire set of stemmed words detected, ten words have 

been identified as topic names. Hence, LDA automatically 

associates the remaining words the above-mentioned ten topics. 

Based on the words that appear in each question, LDA displays the 

number of topics per question. Based on the topic assignments, the 

topic weightages for each question is generated. For topics not 

present in a question, a minimal weightage is given to those topics 

in lieu of a zero value. The value ensures that the topic weightages 

for a question sum to one. Similar to the TF-IDF output, the new 

vector of 10 columns per question becomes the input for the 

machine learning algorithms. 

3.3 Extreme learning machine 
Extreme learning machine (ELM) is a learning algorithm for 

single-hidden layer feedforward neural networks (SLFNs). ELM 

can be used for classification, regression, clustering, compression 

and feature learning. ELM randomly chooses the hidden nodes and 

determines the output weights of the neural networks.  

The following three-step learning model explains ELM. Given a 

training set that is labeled (information about the target nodes), 

hidden node activation function and number of hidden nodes, 

Step 1: Randomly assign hidden node parameters 

Step 2: Calculate the hidden layer output matrix, H 

Step 3: Calculate the output weight 𝛾 

Given a set of inputs with unknown labels, the objective is to find 

the target outputs [27]. Once the inter-layer weights have been 

found, the same weights are used during the testing phase. For a 

given set of input samples xk, the target/output is given by tk. For 

number of hidden nodes L and with a certain activation function 

f(x), the SLFN is modeled as 

  ∑ 𝛾𝑗
𝐿
𝑗=1 𝑓𝑗(𝑥𝑘) =  ∑ 𝛾𝑗𝑓(𝑤𝑗 ∙ 𝑥𝑘 + 𝑏𝑗) =  𝑜𝑘 , 𝑘 = 1, … , 𝐿 𝐿

𝑗=1    (4) 

where wj refers to the weight vector that stores the weights between 

input and hidden nodes, 𝛾j refers to the weight vector that stores the 

weights between the hidden and output nodes, bj refers to the 

threshold of the jth hidden nodes. The objective is that ok and tk 

(original target) should have zero difference [23] using possible 

activation functions that include sigmoid, sine, radial basis and 

hard-limit. 

In our case, the output of the ELM are three continuous values that 

represent the values assigned to the three learning outcome 

categories (Remember, Apply and Transfer). To convert the three 

values into a binary value for comparing the predicted labels with 

the actual labels, we set the learning outcome category with the 

highest value to one and the remaining two to zero. 

3.4 Support vector machine 
Support vector machine (SVM) is a mapping of data samples such 

that these samples can be distinctly labeled. The concept of SVM 

is derived from margins and subsequently separating data into 

groups with large gaps between them. Deriving an optimal 

hyperplane for identifying linearly separable patterns is the key to 

SVM. This idea is extended to cases where the patterns are non-

linearly separable, by using a kernel function to transform the 

original data samples to map onto a new space [28]. Possible 

kernels are: linear, polynomial, radial basis and sigmoid. 

For our work, we used the C-support vector classification type. 

Given a set of inputs and targets, the cost function is given by [29] 

                                min
𝑝,𝑚,𝜉

1

2
𝑝𝑇𝑝 + 𝐶 ∑ 𝜉𝑗 

𝑘
𝑗=1                                          (5) 

subject to 𝑦𝑗(𝑝𝑇𝜙(𝑣𝑗) + 𝑚) ≥ 1 − 𝜉𝑗 , 𝜉𝑗 ≥ 0, 𝑗 = 1, … , 𝑘  
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where C>0 is the regularization parameter, m is a constant, p is the 

vector of coefficients, 𝜉𝑗 refers to parameters that handle the inputs, 

index j refers to labeling the k training cases, v refers to the 

independent variables, y refers to the class labels, 𝜙 refers to the 

kernel used that transforms data from the input to the chosen feature 

space. 

Fundamentally, support vectors are data points that lie close to the 

decision boundary, which are the hardest to classify. SVM 

maximizes the margin around the hyperplane that separates these 

points. The cost function is determined based on the training 

samples (support vectors). These support vectors are the basic 

elements of a training set that would change the position of the 

hyperplane dividing the dataset. SVM becomes an optimization 

problem for determining the optimal hyperplane. 

3.5 Performance metrics 
To evaluate the reliability of our four technique combinations with 

the subject matter expert’s labels, we looked at using the F1 

measure. Accuracy is the number of correct labels divided by the 

size of testing data. The F1 measure is a harmonic mean of two 

other metrics: precision and recall. Precision refers to the 

correctness of questions that have been selected as a particular 

category. Recall refers to the correctness of selection of the correct 

category given all the questions that were correctly classified.  

Because minimizing the number of false positives and false 

negatives was important for accurately assigning new questions to 

the correct practice sets, we used the F1 measure as the basis for 

our algorithm comparisons. To explain the F1 measure, we will step 

through the confusion matrix used to describe the performance of a 

labeling model on a set of testing data. There are four concepts used 

to construct the confusion matrix: 

True positive (TP) refers to the number of questions that the 

algorithm correctly identifies as presenting a label. 

False positive (FP) refers to the number of questions that the 

algorithm identifies as presenting a label while the subject matter 

expert indicates the label was absent. 

True negative (TN) refers to the number of questions that the 

algorithm correctly identifies as having a label absent. 

False negative (FN) refers to the number of questions that the 

algorithm identifies as having a label absent while the subject 

matter expert indicates the label was present. 

The F1 measure is calculated as follows [30] 

                            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                           (6) 

                               𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                           (7) 

                   𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                           (8) 

4. RESULTS AND ANALYSIS 

4.1 Insights by subject matter expert 
When looking at every question presented to students over the 

course of a semester, the subject matter expert identified the 

number of questions corresponding to Remember, Apply and 

Transfer as shown in Table 4. Just by labeling the course questions, 

the subject matter expert realized how misaligned the course’s 

learning outcomes were with its assessment practices. A large 

emphasis on Apply questions was expected, but the dearth of 

Transfer questions was surprising. Of those 23 Transfer items, most 

were presented during the final exam.  

Table 4 - Frequency of questions aligned to learning outcomes 

Learning outcome Frequency (number of questions) 

Remember 62 

Apply 131 

Transfer 23 

 

One of the stated learning outcomes of the course was to prepare 

students to flexibly transfer course content to novel problems and 

new situations. However, waiting until the final exam to present 

students with such opportunities denied them actionable feedback 

during the semester. In response to the pre-processing labeling 

efforts, the subject matter expert then added 42 new transfer 

questions throughout the course for the next semester. 

4.2 Model reliability with subject matter 

expert 
The objective of this implementation is to evaluate whether the 

trained model is able to predict the type of question (Remember, 

Apply or Transfer). Based on the trained model using questions 

from the undergraduate course, the testing questions from 

textbooks and online sources were passed through our model to 

determine the level of reliability of labeling new questions that 

were not generated by the subject matter expert. In our intended use 

case, the testing dataset would not need to be manually labeled. 

However, to determine the level of reliability of our labeling 

algorithms, the subject matter expert’s manual labels served as a 

ground truth for the F1 measure calculations.  

4.2.1 Parameter selection 
We first determined the best set of parameters based on 10-fold 

cross validation of the training dataset. As there were 120 

questions, 90% of the questions (108 questions) were used for 

training and 10% of the questions (12 questions) were used as a 

validation set. This process was done 10 times using 10 different 

bundles of the 120 questions. The best set of parameters were 

chosen based on a grid search for both ELM and SVM. 

The parameters that were varied for ELM were: 

1. Number of hidden nodes 

2. Activation function (sigmoid / radial basis / hard-limit) 

The parameters yielding the best results corresponded to 72 hidden 

nodes using hard-limit activation function. 

The parameters that were varied for SVM were: 

1. Kernel (sigmoid / radial basis) 

2. Cost value 

3. Gamma value 

The parameters yielding the best results corresponded to sigmoid 

kernel, cost value = 1, gamma value = 0.26 

4.2.2 Comparing four combinations 
With respect to the F1 measure, calculations were done separately 

for the three labels. The mean of those calculations was then used 

as the algorithm’s overall performance measure. With respect to 

ELM, the calculation was repeated 10 times because the 

initialization weights are randomly assigned in each iteration. The 

mean value of the F1 measure was taken.  

Table 5 below shows the F1 measure values (for each individual 

class and overall F1 mean) for the four combinations. “R” refers to 

Remember, “A” refers to Apply, “T” refers to Transfer and “s.d.” 

refers to standard deviation. 
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Table 5 - F1 measure values for four combinations 

Combination R A T Mean s.d. 

1. TF-IDF 

with SVM 
0.870 0.737 0.667 0.758 0.084 

2. LDA with 

SVM 
0.400 0.593 0.556 0.516 0.084 

3. TF-IDF 

with ELM 
0.926 0.815 0.840 0.860 0.048 

4. LDA with 

ELM 
0.467 0.520 0.647 0.545 0.076 

 

TF-IDF with ELM achieved the highest mean F1 measure value 

and the lowest standard deviation – indicating that it was the most 

reliable combination. It can be seen that the Remember label yields 

the highest F1 values out of the three labels in Combination 3. In 

general, Remember-labeled questions are short, resulting in about 

four to five zero values in the TF-IDF vector of 10 columns that is 

passed as an input into the ELM. Hence, the algorithm identifies 

Remember-labeled questions very accurately due to their size.  

The result of high reliability in using ELM is as expected because 

it has already been demonstrated that ELM outperforms SVM when 

comparing in terms of standard deviation of training and testing 

root-mean-square values, time taken, network complexity, as well 

as performance comparison in real medical diagnosis application 

[23]. On the other hand, although LDA has been shown to achieve 

higher performance as it groups words together in terms of topics 

instead of looking at combinations of individual words which may 

not link together, in the context of our work, TF-IDF outperforms 

LDA instead. This is because for LDA, the goal is to correctly 

assign each document (or question) to a class label in a reduced 

dimensional space [31]. However, in our corpus of questions, there 

are several technical terms involved, without any prior labeling of 

topics. Hence, LDA is not appropriate for our analysis.  

5. CONCLUSIONS 
Based on the comparison of our four algorithms, our most reliable 

model (TF-IDF with ELM) is able to accurately label new course 

questions for the undergraduate electrical and electronic 

engineering course with 0.86 reliability in terms of F1 measure. 

Any novice instructor who takes over this course in the future or 

teaching assistants tasked with refreshing the course assignments 

would be able to extract new questions from any external source 

and pass them to the algorithm to automatically label the questions 

as the original course coordinator would. This allows members of 

the course design team without a strong background in learning to 

make curriculum decisions regarding the alignment of the course’s 

learning outcomes.  

As discussed earlier, outcome-based learning environments 

facilitate transforming the model of instruction from instructor-

centric and lecture-based to being more learner focused filled with 

a variety of activities and learning pathways. However, in learner-

centered environments, assessment is still the key driver, and often 

the key inhibitor of learning [3]. If the assessments require shallow 

understanding, then learners calibrate their efforts to achieve this 

low bar. When assessments require deep understanding or great 

proficiency, learners are likely to put in more effortful practice. 

In line with this assessment philosophy, our TF-IDF with ELM 

model is theoretically capable of matching any learning activity to 

any set of learning outcomes as long as the course designers or 

subject matter experts provide enough examples that are explicitly 

aligned to the intended learning outcomes when training the model. 

For the convenience of the subject matter expert in our context, we 

used a reduced version of Bloom’s Taxonomy in this study. 

However, the final algorithm is capable of using the full Bloom’s 

model, a different model, or a custom set of learning outcomes as 

its labeling framework.  

Hence, with the high reliability of the prediction algorithm 

presented in our work, our process for calibrating the algorithm can 

be used in any academic or industrial setting to provide the right set 

of formative assessment opportunities to students (enhancing 

subject knowledge) or employees (professional development). 

Once the learning outcomes of activities are labeled reliably, it is 

then easier to think about how to engage learners in deliberate 

practice to reach those outcomes and develop their expertise. Once 

opportunities for deliberate practice that align to the course learning 

outcomes are implemented into a course, it becomes easier to think 

about how to align the feedback regarding those opportunities to 

support the development of domain expertise.  

This work provides a first step at being able to regularly introduce 

learning activities that promote the development of adaptive 

expertise into a course by matching external sources of activities 

with the course’s learning outcomes. Deliberate practice requires 

repetition that varies in ways that highlight the structural elements 

of a domain. Having a way to incorporate new sources of questions 

and problems into a course that align with the course’s goals 

provides learners more opportunities for internalizing when to 

apply their domain specific skills and knowledge.  Finally, our 

algorithm is potentially useful for designing courses to reach non-

content-based learning outcomes, making policies that support 

constructive alignment, and evaluating course assessment of 

learning plans. 

6. FUTURE WORK 
Building off of our machine learning labeling work, we would like 

to explore constructing a new version of LDA that can be tailor-

made to label questions. There are situations in which weightages 

given to words are the same, with different words representing 

those weightages. Similarly, the same words can have different 

weightages. We are keen to continue working on features based on 

word arrangement, word context and word order that affect 

weightage assignments. In addition, ELM can be enhanced by 

using kernels. 

From the learning aspect, we would like to extend our question 

label categories to all six outcomes described in Bloom’s 

Taxonomy and expand the model to label outcomes based on the 

types of sentences used in forum conversations and other 

collaborative learning activities. Eventually, we aim to determine 

the proficiency level of learners so we can put learning supports in 

place to guide their learning journeys. Ultimately, we wish to 

provide learners with learning activities and opportunities for 

deliberate practice embedded with actionable feedback to develop 

their adaptive expertise.  
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ABSTRACT
We propose a new model for learning that relates video-
watching behavior and engagement to quiz performance. In
our model, a learner’s knowledge gain from watching a lecture
video is treated as proportional to their latent engagement
level, and the learner’s engagement is in turn dictated by a set
of behavioral features we propose that quantify the learner’s
interaction with the lecture video. A learner’s latent concept
knowledge is assumed to dictate their observed performance
on in-video quiz questions. One of the advantages of our
method for determining engagement is that it can be done
entirely within standard online learning platforms, serving
as a more universal and less invasive alternative to existing
measures of engagement that require the use of external
devices. We evaluate our method on a real-world massive
open online course (MOOC) dataset, from which we find that
it achieves high quality in terms of predicting unobserved
first-attempt quiz responses, outperforming two state-of-the-
art baseline algorithms on all metrics and dataset partitions
tested. We also find that our model enables the identification
of key behavioral features (e.g., larger numbers of pauses
and rewinds, and smaller numbers of fast forwards) that are
correlated with higher learner engagement.

Keywords
Behavioral data, engagement, latent variable model, learning
analytics, MOOC, performance prediction

1. INTRODUCTION
The recent and rapid development of online learning plat-
forms, coupled with advancements in machine learning, has
created an opportunity to revamp the traditional “one-size-
fits-all”approach to education. This opportunity is facilitated
by the ability of many learning platforms, such as massive
open online course (MOOC) platforms, to collect several
different types of data on learners, including their assessment
responses as well as their learning behavior [9]. The focus
of this work is on using different forms of data to model
the learning process, which can lead to effective learning
analytics and potentially improve learning efficacy.

1.1 Behavior-based learning analytics
Current approaches to learning analytics are focused mainly
on providing feedback to learners about their knowledge
states – or the level to which they have mastered given con-
cepts/topics/knowledge components – through analysis of
their responses to assessment questions [10, 24]. There are
other cognitive (e.g., engagement [17, 31], confusion [37], and

emotion [11]) as well as non-cognitive (e.g., fatigue, moti-
vation, and level of financial support [14]) factors beyond
assessment performance that are crucial to the learning pro-
cess as well. Accounting for them thus has the potential to
yield more effective learning analytics and feedback.

To date, it has been difficult to measure these factors of the
learning process. Contemporary online learning platforms,
however, have the capability to collect behavioral data that
can provide some indicators of them. This data commonly
includes learners’ usage patterns of different types of learning
resources [12, 15], their interactions with others via social
learning networks [7, 28], their clickstream and keystroke ac-
tivity logs [2, 8, 30], and sometimes other metadata including
facial expressions [35] and gaze location [6].

Recent research has attempted to use behavioral data to
augment learning analytics. [5] proposed a latent response
model to classify whether a learner is gaming an intelligent
tutoring system, for example. Several of these works have
sought to demonstrate the relationship between behavior and
performance of learners in different scenarios. In the context
of MOOCs, [22] concluded that working on more assignments
lead to better knowledge transfer than only watching videos,
[12] extracted probabilistic use cases of different types of
learning resources and showed they are predictive of certifica-
tion, [32] used discussion forum activity and topic analysis to
predict test performance, and [26] discovered that submission
activities can be used to predict final exam scores. In other
educational domains, [2] discovered that learner keystroke
activity in essay-writing sessions is indicative of essay qual-
ity, [29] identified behavior as one of the factors predicting
math test achievement, and [25] found that behavior is pre-
dictive of whether learners can provide elegant solutions to
mathematical questions.

In this work, we are interested in how behavioral data can
be used to model a learner’s engagement.

1.2 Learner engagement
Monitoring and fostering engagement is crucial to education,
yet defining it concretely remains elusive. Research has
sought to identify factors in online learning that may drive
engagement; for example, [17] showed that certain production
styles of lecture videos promote it. [20] defined disengagement
as dropping out in the middle of a video and studied the
relationship between disengagement and video content, while
[31] considered the relationship between engagement and the
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semantic features of mathematical questions that learners
respond to. [33] studied the relationship between learners’
self-reported engagement levels in a learning session and their
facial expressions immediately following in-session quizzes,
and [34] considered how engagement is related to linguistic
features of discussion forum posts.

There are many types of engagement [3], with the type of
interest depending on the specific learning scenario. Several
approaches have been proposed for measuring and quan-
tifying different types. These approaches can be roughly
divided into two categories: device-based and activity-based.
Device-based approaches measure learner engagement using
devices external to the learning platform, such as cameras to
record facial expressions [35], eye-tracking devices to detect
mind wandering while reading text documents [6], and pupil
dilation measurements, which are claimed to be highly corre-
lated with engagement [16]. Activity-based approaches, on
the other hand, measure engagement using heuristic features
constructed from learners’ activity logs; prior work includes
using replies/upvote counts and topic analysis of discussions
[28], and manually defining different engagement levels based
on activity types found in MOOCs [4, 21].

Both of these types have their drawbacks. Device-based
approaches are far from universal in standard learning plat-
forms because they require integration with external devices.
They are also naturally invasive and carry potential privacy
risks. Activity-based approaches, on the other hand, are
not built on the same granularity of data, and tend to be
defined from heuristics that have no guarantee of correlating
with learning outcomes. It is therefore desirable to develop a
statistically principled, activity-based approach to inferring
a learner’s engagement.

1.3 Our approach and contributions
In this paper, we propose a probabilistic model for inferring a
learner’s engagement level by treating it as a latent variable
that drives the learner’s performance and is in turn driven
by the learner’s behavior. We apply our framework to a
real-world MOOC dataset consisting of clickstream actions
generated as learners watch lecture videos, and question
responses from learners answering in-video quiz questions.

We first formalize a method for quantifying a learner’s behav-
ior while watching a video as a set of nine behavioral features
that summarize the clickstream data generated (Section 2).
These features are intuitive quantities such as the fraction
of video played, the number of pauses made, and the aver-
age playback rate, some of which have been associated with
performance previously [8]. Then, we present our statistical
model of learning (Section 3) as two main components: a
learning model and a response model. The learning model
treats a learner’s gain in concept knowledge as proportional
to their latent engagement level while watching a lecture
video. Concept knowledge is treated as multidimensional, on
a set of latent concepts underlying the course, and videos
are associated with varying levels to different concepts. The
response model treats a learner’s performance on in-video
quiz questions, in turn, as proportional to their knowledge
on the concepts that this particular question relates to.

By defining engagement to correlate directly with perfor-

mance, we are able to learn which behavioral features lead to
high engagement through a single model. This differs from
prior works that first define heuristic notions of engagement
and subsequently correlate engagement with performance,
in separate procedures. Moreover, our formulation of latent
engagement can be made from entirely within standard learn-
ing platforms, serving as a more universally applicable and
less invasive alternative to device-based approaches.

Finally, we evaluate two different aspects of our model (Sec-
tion 4): its ability to predict unobserved, first-attempt quiz
question responses, and its ability to provide meaningful
analytics on engagement. We find that our model predicts
with high quality, achieving AUCs of up to 0.76, and out-
performing two state-of-the-art baselines on all metrics and
dataset partitions tested. One of the partitions tested cor-
responds to the beginning of the course, underscoring the
ability of our model to provide early detection of struggling
or advanced students. In terms of analytics, we find that
our model enables us to identify behavioral features (e.g.,
large numbers of pauses and rewinds, and small numbers of
fast forwards) that indicate high learner engagement, and to
track learners’ engagement patterns throughout the course.
More generally, these findings can enable an online learn-
ing platform to detect learner disengagement and perform
appropriate interventions in a fully automated manner.

2. BEHAVIORAL DATA
In this section, we start by detailing the setup of lecture
videos and quizzes in MOOCs. We then specify video-
watching clickstream data and our method for summarizing
it into behavioral features.

2.1 Course setup and data capture
We are interested in modeling learner engagement while
watching lecture videos to predict their performance on in-
video quiz questions. For this purpose, we can view an
instructor’s course delivery as the sequence of videos that
learners will watch interspersed with the quiz questions they
will answer. Let Q = (q1, q2, . . .) be the sequence of questions
asked through the course. A video could have any number
of questions generally, including none; to enforce a 1:1 cor-
respondence between video content and questions, we will
consider the “video” for question qn to be all video content
that appears between qn−1 and qn. Based on this, we will
explain the formats of video-watching and quiz response data
we work with in this section.

Our dataset. The dataset we will use is from the fall 2012
offering of the course Networks: Friends, Money, and Bytes
(FMB) on Coursera [1]. This course has 92 videos distributed
among 20 lectures, and exactly one question per video.

2.1.1 Video-watching clickstreams
When a learner watches a video on a MOOC, their behavior
is typically recorded as a sequence of clickstream actions.
In particular, each time a learner makes an action – play,
pause, seek, ratechange, open, or close – on the video
player, a clickstream event is generated. Formally, the ith
event created for the course will be in the format

Ei =< ui, vi, ei, p
′
i, pi, xi, si, ri >
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Here, ui and vi are the IDs of the specific learner (user) and
video, respectively, and ei is the type of action that ui made
on vi. pi is the position of the video player (in seconds)
immediately after ei is made, p′i is the position immediately
before,1 xi is the UNIX timestamp (in seconds) at which ei
was fired, si is the binary state of the video player – either
playing or paused – once this action is made, and ri is the
playback rate of the video player once this action is made.
Our FMB dataset has 314,632 learner-generated clickstreams
from 3,976 learners.2

The set Eu,v = {Ei|ui = u, vi = v} of clickstreams for learner
u recorded on video v can be used to reconstruct the behavior
u exhibits on v. In Section 2.2 we will explain the features
computed from Eu,v to summarize this behavior.

2.1.2 Quiz responses
When a learner submits a response to an in-video quiz ques-
tion, an event is generated in the format

Am =< um, vm, xm, am, ym >

Again, um and vm are the learner and video IDs (i.e., the
quiz corresponding to the video). xm is the UNIX timestamp
of the submission, am is the specific response, and ym is the
number of points awarded for the response. The questions
in our dataset are multiple choice with a single response, so
ym is binary-valued.

In this work, we are interested in whether quiz responses
were correct on first attempt (CFA) or not. As a result,
with Au,v = {Am|um = u, vm = v}, we consider the event
A′u,v in this set with the earliest timestamp x′u,v. We also
only consider the set of clickstreams E′u,v ⊆ Eu,v that occur
before x′u,v, as the ones after would be anti-causal to CFA.

2.2 Behavioral features and CFA score
With the data E′u,v and A′u,v, we construct two sets of in-
formation for each learner u on each video v, i.e., each
learner-video pair. First is a set of nine behavioral features
that summarize u’s video-watching behavior on v [8]:

(1) Fraction spent. The fraction of time the learner spent
on the video, relative to the playback length of the video.
Formally, this quantity is eu,v/lv, where

eu,v =
∑

i∈S
min(xi+1 − xi, lv)

is the elapsed time on v obtained by finding the total UNIX
time for u on v, and lv is the length of the video (in seconds).
Here, S = {i ∈ A′u,v : ai+1 6= open}. lv is included as an
upper bound for excessively long intervals of time.

(2) Fraction completed. The fraction of the video that the
learner completed, between 0 (none) and 1 (all). Formally,
it is cu,v/lv, where cu,v is the number of unique 1 second
segments of the video that the learner visited.

1pi and p′i will only differ when i is a skip event.
2This number excludes invalid stall, null, and error events,
as well as open and close events which are generated auto-
matically.

Figure 1: Distribution of the number of videos that
each each learner completed in FMB. More than
85% of learners completed less than 20 videos.

(3) Fraction played. The fraction of the video that the
learner played relative to the length. Formally, it is calculated
as gu,v/lv, where

gu,v =
∑

i∈S
min(p′i+1 − pi, lv)

is the total length of video that was played (while in the
playing state). Here, S = {i ∈ A′u,v : ai+1 6= open ∧ si =
playing}.

(4) Fraction paused. The fraction of time the learner
stayed paused on the video relative to the length. It is
calculated as hu,v/lv, where

hu,v =
∑

i∈S
min(ti+1 − ti, lv)

is the total time the learner stayed in the paused state on this
video. Here, S = {i ∈ A′u,v : ai+1 6= open ∧ si = paused}.

(5) Number of pauses. The number of times the learner
paused the video, or

∑

i∈A′u,v

1{ai = pause}

where 1{} is the indicator function.

(6) Number of rewinds. The number of times the learner
skipped backwards in the video, or

∑

i∈A′u,v

1{ai = skip ∧ p′i < pi}

(7) Number of fast forwards. The number of times the
learner skipped forward in the video, i.e., with p′i > pi in the
previous equation.

(8) Average playback rate. The time-average of the
learner’s playback rate on the video. Formally, it is calculated
as

r̄u,v =

∑
i∈S ri ·min(xi+1 − xi, lv)∑

i∈S min(xi+1 − xi, lv)

where S = {i ∈ A′u,v : ai+1 6= open ∧ si = playing}.
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(9) Standard deviation of playback rate. The standard
deviation of the learner’s playback rate. It is calculated as ∑

i∈S(ri − r̄u,v)2 ·min(xi+1 − xi, lv)∑
i∈S min(xi+1 − xi, lv)

with the same S as the average playback rate.

The second piece of information for each learner-video pair
is u’s CFA score yu,v ∈ {0, 1} on the quiz question for v.

2.3 Dataset subsets
We will consider different groups of learner-video pairs when
evaluating our model in Section 4. Our motivation for doing
so is the heterogeneity of learner motivation and high dropoff
rates in MOOCs [9]: many will quit the course after watching
just a few lectures. Modeling in a small subset of data,
particularly those at the beginning of the course, is desirable
because it can lead to “early detection” of those who may
drop out [8].

Figure 1 shows the dropoff for our dataset in terms of the
number of videos each learner completed: more than 85%
of learners completed just 20% of the course. “Completed”
is defined here as having watched some of the video and
responded to the corresponding question. Let Tu be the
number of videos learner u completed and γ(v) be the index
of video v in the course, we define Ωu0,v0 = {(u, v) : Tu ≥
u0 ∧ γ(v) ≤ v0} to be the subset of learner-video pairs
such that u completed at least u0 videos and v is within the
first v0 videos. The full dataset is Ω1,92, and we will also
consider Ω20,92 as the subset of 346 active learners over the
full course and Ω1,20 as the subset of all learners over the
first two weeks3 in our evaluation.

3. STATISTICAL MODEL OF LEARNING
WITH LATENT ENGAGEMENT

In this section, we propose our statistical model. Let U
denote the number of learners (indexed by u) and V the
number of videos (indexed by v). Further, we use Tu to
denote the number of time instances registered by learner
u (indexed by t); we take a time instance to be a learner
completing a video, i.e., watching a video and answering the
corresponding quiz question. For simplicity, we use a discrete
notion of time, i.e., each learner-video pair will correspond
to one time instance for one learner.

Our model considers learners’ responses to quiz questions
as measurements of their underlying knowledge on a set of
concepts; let K denote the number of such concepts. Further,
our model considers the action of watching lecture videos
as part of learning that changes learners’ latent knowledge
states over time. These different aspects of the model are
visualized in Figure 2: there are two main components, a
response model and a learning model.

3.1 Response Model
Our statistical model of learner responses is given by

p(y(t)u = 1|c(t)
u ) = σ(wT

v(u,t)c
(t)
u − µv(u,t) + au), (1)

3In FMB, the first two weeks of lectures is the first 20 videos.

Figure 2: Our proposed statistical model of learning
consists of two main parts, a response model and a
learning model.

where v(u, t) : Ω ⊆ {1, . . . , U} × {1, . . . ,maxu Tu} →
{1, . . . , V } denotes a mapping from a learner index-time
index pair to the index of the video v that u was watching at

t. y
(t)
u ∈ {0, 1} is the binary-valued CFA score of learner u

on the quiz question corresponding to the video they watch
at time t, with 1 denoting a correct response (CFA) and 0
denoting an incorrect response (non-CFA).

The variable wv ∈ RK
+ denotes the non-negative, K-

dimensional quiz question–concept association vector that
characterizes how the quiz question corresponding to video v
tests learners’ knowledge on each concept, and the variable
µv is a scalar characterizing the intrinsic difficulty of the quiz

question. c
(t)
u is the K-dimensional concept knowledge vector

of learner u at time t, characterizing the knowledge level of
the learner on each concept at the time, and au denotes the
static, intrinsic ability of learner u. Finally, σ(x) = 1

1+e−x is
the sigmoid function.

We restrict the question–concept association vector wv to be
non-negative in order to make the parameters interpretable
[24]. Under this restriction, the values of concept knowledge

vector c
(t)
u can be understood as follows: large, positive values

lead to higher chances of answering a question correctly, thus
corresponding to high knowledge, while small, negative values
lead to lower chances of answering a question correctly, thus
corresponding to low knowledge.

3.2 Learning Model
Our model of learning considers transitions in learners’ knowl-
edge states as induced by watching lecture videos. It is given
by

c(t)
u = c(t−1)

u + e(t)u dv(u,t), t = 1, . . . , Tu, (2)

where the variable dv ∈ RK
+ denotes the non-negative, K-

dimensional learning gain vector for video v; each entry
characterizes the degree to which the video improves learners’
knowledge level on each concept. The assumption of non-
negativity on dv implies that videos will not negatively affect

learners’ knowledge, as in [23]. c
(0)
u is the initial knowledge

state of learner u at time t = 0, i.e., before starting the
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Ω20,92 Ω1,20 Ω1,92

ACC AUC ACC AUC ACC AUC

Proposed model 0.7293±0.0070 0.7608±0.0094 0.7096±0.0057 0.7045±0.0066 0.7058±0.0054 0.7216±0.0054

SPARFA 0.7209±0.0070 0.7532±0.0098 0.7061±0.0069 0.7020±0.0070 0.6975±0.0048 0.7124±0.0050

BKT 0.7038±0.0084 0.7218±0.0126 0.6825±0.0058 0.6662±0.0065 0.6803±0.0055 0.6830±0.0059

Table 1: Quality comparison of the different algorithms on predicting unobserved quiz question responses.
The obtained ACC and AUC metrics on different subsets of the FMB dataset are given. Our proposed model
obtains higher quality than the SPARFA and BKT baselines in each case.

course and watching any video.

The scalar latent variable e
(t)
u ∈ [0, 1] in (2) characterizes

the engagement level that learner u exhibits when watching
video v(u, t) at time t. This is in turn modeled as

e(t)u = σ(βT f (t)u ), (3)

where f
(t)
u is a 9-dimensional vector of the behavioral features

defined in Section 2.2, summarizing learner u’s behavior while
the video at time t. β is the unknown, 9-dimensional pa-
rameter vector that characterizes how engagement associates
with each behavioral feature.

Taken together, (2) and (3) state that the knowledge gain a
learner will experience on a particular concept while watching
a particular video is given by

(i) the video’s intrinsic association with the concept, mod-
ulated by

(ii) the learner’s engagement while watching the video, as
manifested by their clickstream behavior.

From (2), a learner’s (latent) engagement level dictates the
fraction of the video’s available learning gain they acquire
to improve their knowledge on each concept. The response
model (1) in turn holds that performance is dictated by a
learner’s concept knowledge states. In this way, engagement
is directly correlated with performance through the concept
knowledge states. Note that in this paper, we treat the en-

gagement variable e
(t)
u as a scalar; the extension of modeling

it as a vector and thus separating engagement by concept is
part of our ongoing work.

It is worth mentioning the similarity between our character-
ization of engagement as a latent variable in the learning
model and the input gate variables in long-short term mem-
ory (LSTM) neural networks [18]. In LSTM, the change
in the latent memory state (loosely corresponding to the

latent concept knowledge state vector c
(t)
u ) is given by the

input vector (loosely corresponding to the video learning
gain vector dv) modulated by a set of input gate variables

(corresponding to the engagement variable e
(t)
u ).

Parameter inference. Our statistical model of learning
and response can be seen as a particular type of recurrent neu-
ral network (RNN). Therefore, for parameter inference, we
implement a stochastic gradient descent algorithm with stan-
dard backpropagation. Given the graded learner responses

y
(t)
u and behavioral features f

(t)
u , our parameter inference

algorithm estimates the quiz question–concept association
vectors wv, the quiz question intrinsic difficulties µv, the the
video learning gain vectors dv, the learner initial knowledge

vectors c
(0)
u , the learner abilities au, and the engagement–

behavioral feature association vector β. We omit the details
of the algorithm for simplicity of exposition.

4. EXPERIMENTS
In this section, we evaluate the proposed latent engagement
model on the FMB dataset. We first demonstrate the gain
in predictive quality of the proposed model over two baseline
algorithms (Section 4.1), and then show how our model can
be used to study engagement (Section 4.2).

4.1 Predicting unobserved responses
We evaluate our proposed model’s quality by testing its
ability to predict unobserved quiz question responses.

Baselines. We compare our model against two well-known,
state-of-the-art response prediction algorithms that do not
use behavioral data. First is the sparse factor analysis
(SPARFA) algorithm [24], which factors the learner-question
matrix to extract latent concept knowledge, but does not use
a time-varying model of learners’ knowledge states. Second is
a version of the Bayesian knowledge tracing (BKT) algorithm
that tracks learners’ time-varying knowledge states, which
incorporates a set of guessing and slipping probability pa-
rameters for each question, a learning probability parameter
for each video, and an initial knowledge level parameter for
each learner [13, 27].

4.1.1 Experimental setup and metrics
Regularization. In order to prevent overfitting, we add
`2-norm regularization terms to the overall optimization
objective function for every set of variables in both the
proposed model and in SPARFA. We use a parameter λ to
control the amount of regularization on each variable.

Cross validation. We perform 5-fold cross validation on
the full dataset (Ω1,92), and on each subset of the dataset
introduced in Section 2.3 (Ω20,92 and Ω1,20). To do so, we
randomly partition each learner’s quiz question responses
into 5 data folds. Leaving out one fold as the test set, we use
the remaining four folds as training and validation sets to
select the values of the tuning parameters for each algorithm,
i.e., by training on three of the folds and validating on the
other. We then train every algorithm on all four observed
folds using the tuned values of the parameters, and evaluate
them on the holdout set. All experiments are repeated for
20 random partitions of the training and test sets.

For the proposed model and for SPARFA, we tune both the
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Feature Coefficient

Fraction spent 0.1941

Fraction completed 0.1443

Fraction played 0.2024

Fraction paused 0.0955

Number of pauses 0.2233

Number of rewinds 0.4338

Number of fast forwards −0.1551

Average playback rate 0.2797

Standard deviation of playback rate 0.0314

Table 2: Regression coefficient vector β learned over
the full dataset, associating each clickstream feature
to engagement. All but one of the features (number
of fast forwards) is positively correlated with engage-
ment.

number of concepts K ∈ {2, 4, 6, 8, 10} and the regulariza-
tion parameter λ ∈ {0.5, 1.0, . . . , 10.0}. Note that for the
proposed model, when a question response is left out as part
of the test set, only the response is left out of the training
set: the algorithm still uses the clickstream data for the
corresponding learner-video pair to model engagement.

Metrics. To evaluate the quality of the algorithms, we
employ two commonly used binary classification metrics:
prediction accuracy (ACC) and area under the receiver oper-
ating characteristic curve (AUC) [19]. The ACC metric is
simply the fraction of predictions that are made correctly,
while the AUC measures the tradeoff between the true and
false positive rates of the classifier. Both metrics take values
in [0, 1], with larger values indicating higher quality.

4.1.2 Results and discussion
Table 1 gives the evaluation results for the three algorithms.
The average and standard deviation over the 20 random data
partitions are reported for each dataset group and metric.

First of all, the results show that our proposed model consis-
tently achieves higher quality than both baseline algorithms
on both metrics. It significantly outperforms BKT in par-
ticular (SPARFA also outperforms BKT). This shows the
potential of our model to push the envelope on achievable
quality in performance prediction research.

Notice that our model achieves its biggest quality improve-
ment on the full dataset, with a 1.3% gain in AUC over
SPARFA and a 5.7% gain over BKT. This observation sug-
gests that as more clickstream data is captured and available
for modeling – especially as we observe more video-watching
behavioral data from learners over a longer period of time
(the full dataset Ω1,92 contains clickstream data for up to
12 weeks, while the Ω1,20 subset only contains data for the
first 2 weeks) – the proposed model achieves more significant
quality enhancements over the baseline algorithms. This
is somewhat surprising, since prior work on behavior-based
performance prediction [8] has found the largest gains in the
presence of fewer learner-video pairs, i.e., before there are
many question responses for other algorithms to model on.
But our algorithm also benefits from additional question re-

Figure 3: Plot of the latent engagement level e
(t)
j

over time for one third of the learners in FMB, show-
ing a diverse set of behaviors across learners.

sponses, to update its learned relationship between behavior
and concept knowledge.

The first two weeks of data (Ω1,20) is sparse in that the
majority of learners answer at most a few questions during
this time, many of whom will drop out (see Figure 1). In
this case, our model obtains a modest improvement over
SPARFA, which is static and uses fewer parameters. The
gain over BKT is particularly pronounced, at 5.7%. This,
combined with the findings for active learners over the full
course (Ω20,92), shows that observing video-watching behav-
ior of learners who drop out of the course in its early states
(these learners are excluded from Ω20,92) leads to a slight
increase in the performance gain of the proposed model over
the baseline algorithms. Importantly, this shows that our
algorithm provides benefit for early detection, with the ability
to predict performance of learners who will end up dropping
out [8].

4.2 Analyzing engagement
Given predictive quality, one benefit of our model is that it
can be used to analyze engagement. The two parameters to
consider for this are the regression coefficient vector β and

the engagement scalar e
(t)
u itself.

Behavior and engagement. Table 2 gives each of the
estimated feature coefficients in β for the full dataset Ω1,92,
with regularization parameters chosen via cross validation.
All of the features except for the number of fast forwards are
positively correlated with the latent engagement level. This
is to be expected since many of the features are associated
with processing more video content, e.g., spending more
time, playing more, or pausing longer to reflect, while fast
forwarding involves skipping over the content.

The features that contribute most to high latent engagement
levels are the number of pauses, the number of rewinds, and
the average playback rate. The first two of these are likely
indicators of actual engagement as well, since they indicate
whether the learner was thinking while pausing the video
or re-visiting earlier content which contains knowledge that
they need to recall or revise. The strong, positive correlation
of average playback rate is somewhat surprising though:
we may expect that a higher playback rate would have a
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(a) Learners that consistently exhibit
high engagement and finish the course.

(b) Learners that exhibit high engage-
ment but drop out early.

(c) Learners that exhibit inconsistent
engagement and drop out.

Figure 4: Plot of the latent engagement level e
(t)
j over time for selected learners in three different groups.

negative impact on engagement, like fast forwarding does, as
it involves speeding through content. On the other hand, it
may be an indication that learners are more focused on the
material and trying to keep their interest higher.

Engagement over time. Figure 3 visualizes the evolution

of e
(t)
u over time for 1/3 of the learners (randomly selected).

Patterns in engagement differs substantially across learners;
those who finish the course mostly exhibit high engagement
levels throughout, while those who drop out early vary greatly
in their engagement, some high and others low.

Figure 4 breaks down the learners into three different types
according to their engagement patterns, and plots their en-
gagement levels over time separately. The first type of learner
(a) finishes the course and consistently exhibits high engage-
ment levels throughout the duration. The second type (b)
also consistently exhibits high engagement levels, but drops
out of the course after up to three weeks. The third type of
learner (c) exhibits inconsistent engagement levels before an
early dropout. Equipped with temporal plots like these, an
instructor could determine which learners may be in need
of intervention, and could design different interventions for
different engagement clusters [8, 36].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new statistical model for learn-
ing, based on learner behavior while watching lecture videos
and their performance on in-video quiz questions. Our model
has two main parts: (i) a response model, which relates a
learner’s performance to latent concept knowledge, and (ii)
a learning model, which relates the learner’s concept knowl-
edge in turn to their latent engagement level while watching
videos. Through evaluation on a real-world MOOC dataset,
we showed that our model can predict unobserved question
responses with superior quality to two state-of-the-art base-
lines, and also that it can lead to engagement analytics: it
identifies key behavioral features driving high engagement,
and shows how each learner’s engagement evolves over time.

Our proposed model enables the measurement of engagement
solely from data that is logged within online learning plat-
forms: clickstream data and quiz responses. In this way, it
serves as a less invasive alternative to current approaches
for measuring engagement that require external devices, e.g.,
cameras and eye-trackers [6, 16, 35]. One avenue of future
work is to conduct an experiment that will correlate our
definition of latent engagement with these methods.

Additionally, one could test other, more sophisticated char-
acterizations of the latent engagement variable. One such
approach could seek to characterize engagement as a func-
tion of learners’ previous knowledge level. An alternative or
addition to this would be a generative modeling approach of
engagement to enable the prediction of future engagement
given each learner’s learning history.

One of the long-term, end-all goals of this work is the design
of a method for useful, real-time analytics to instructors. The
true test of this ability comes from incorporating the method
into a learning system, providing its outputs – namely, per-
formance prediction forecasts and engagement evolution – to
an instructor through the user interface, and measuring the
resulting improvement in learning outcomes.
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ABSTRACT
Gathering labeled data in educational data mining (EDM)
is a time and cost intensive task. However, the amount
of available training data directly influences the quality of
predictive models. Unlabeled data, on the other hand, is
readily available in high volumes from intelligent tutoring
systems and massive open online courses. In this paper, we
present a semi-supervised classification pipeline that makes
effective use of this unlabeled data to significantly improve
model quality. We employ deep variational auto-encoders
to learn efficient feature embeddings that improve the per-
formance for standard classifiers by up to 28% compared
to completely supervised training. Further, we demonstrate
on two independent data sets that our method outperforms
previous methods for finding efficient feature embeddings
and generalizes better to imbalanced data sets compared
to expert features. Our method is data independent and
classifier-agnostic, and hence provides the ability to improve
performance on a variety of classification tasks in EDM.

Keywords
semi-supervised classification, variational auto-encoder, deep
neural networks, dimensionality reduction

1. INTRODUCTION
Building predictive models of student characteristics such
as knowledge level, learning disabilities, personality traits
or engagement is one of the big challenges in educational
data mining (EDM). Such detailed student profiles allow
for a better adaptation of the curriculum to the individual
needs and is crucial for fostering optimal learning progress.
In order to build such predictive models, smaller-scale and
controlled user studies are typically conducted where de-
tailed information about student characteristics are at hand
(labeled data). The quality of the predictive models, how-
ever, inherently depends on the number of study partici-
pants, which is typically on the lower side due to time and
budget constraints. In contrast to such controlled user stud-
ies, digital learning environments such as intelligent tutoring
systems (ITS), educational games, learning simulations, and
massive open online courses (MOOCs) produce high volumes
of data. These data sets provide rich information about stu-
dent interactions with the system, but come with no or only
little additional information about the user (unlabeled data).

Semi-supervised learning bridges this gap by making use of
patterns in bigger unlabeled data sets to improve predictions
on smaller labeled data sets. This is also the focus of this
paper. These techniques are well explored in a variety of
domains and it has been shown that classifier performance
can be improved for, e.g., image classification [15], natu-
ral language processing [28] or acoustic modeling [21]. In
the education community, semi-supervised classification has
been used employing self-training, multi-view training and
problem-specific algorithms. Self-training has e.g. been ap-
plied for problem-solving performance [22]. In self-training,
a classifier is first trained on labeled data and is then itera-
tively retrained using its most confident predictions on un-
labeled data. Self-training has the disadvantage that incor-
rect predictions decrease the quality of the classifier. Multi-
view training uses different data views and has been explored
with co-training [27] and tri-training [18] for predicting pre-
requisite rules and student performance, respectively. The
performance of these methods, however, largely depends on
the properties of the different data views, which are not yet
fully understood [34]. Problem-specific semi-supervised al-
gorithms have been used to organize learning resources in
the web [19], with the disadvantage that they cannot be
directly applied for other classification tasks.

Recently, it has been shown (outside of the education con-
text) that variational auto-encoders (VAE) have the poten-
tial to outperform the commonly used semi-supervised clas-
sification techniques. VAE is a neural network that includes
an encoder that transforms a given input into a typically
lower-dimensional representation, and a decoder that recon-
structs the input based on the latent representation. Hence,
VAEs learn an efficient feature embedding (feature repre-
sentation) using unlabeled data that can be used to im-
prove the performance of any standard supervised learning
algorithm [15]. This property greatly reduces the need for
problem-specific algorithms. Moreover, VAEs feature the
advantage that the trained deep generative models are able
to produce realistic samples that allow for accurate data
imputation and simulations [23], which makes them an ap-
pealing choice for EDM. Inspired by these advantages, and
the demonstrated superior classifier performance in other
domains as in computer vision [16, 23], this paper explores
VAE for student classification in the educational context.
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We present a complete semi-supervised classification pipeline
that employs deep VAEs to extract efficient feature embed-
dings from unlabeled student data. We have optimized the
architecture of two different networks for educational data -
a simple variational auto-encoder and a convolutional varia-
tional auto-encoder. While our method is generic and hence
widely applicable, we apply the pipeline to the problem of
detecting students suffering from developmental dyscalculia
(DD), which is a learning disability in arithmetics. The large
and unlabeled data set at hand consists of student data of
more than 7K students and we evaluate the performance of
our pipeline on two independent small and labeled data sets
with 83 and 155 students. Our evaluation first compares the
performance of the two networks, where our results indicate
superiority of the convolutional VAE. We then apply dif-
ferent classifiers to both labeled data sets, and demonstrate
not only improvements in classification performance of up to
28% compared to other feature extraction algorithms, but
also improved robustness to class imbalance when using our
pipeline compared to other feature embeddings. The im-
proved robustness of our VAE is especially important for
predicting relatively rare student conditions - a challenge
that is often met in EDM applications.

2. BACKGROUND
In the semi-supervised classification setting we have access
to a large data set XB without labels and a much smaller
labeled data set XS with labels YS . The idea behind semi-
supervised classification is to make use of patterns in the
unlabeled data set to improve the quality of the classifier
beyond what would be possible with the small data set
XS alone. There are many different approaches to semi-
supervised classification including transductive SVMs, graph-
based methods, self-training or representation learning [35].
In this work we focus on learning an efficient encoding z =
E(x) for x ∈ XB of the data domain using the unlabeled
data XB only. This learnt data transformation E(·) - the
encoding - is then applied to the labeled data set XS . Well-
known encoders include principle component analysis (PCA)
or Kernel PCA (KPCA). PCA is a dimensionality reduction
method that finds the optimal linear transformation from
an N-dimensional to a K-dimensional space (given a mean-
squared error loss). Kernel PCA [24] extends PCA allowing
non-linear transformations into a K-dimensional space and
has, among others, been successfully used for novelty detec-
tion in non-linear domains [11]. Recently, variational auto-
encoders (VAE) have outperformed other semi-supervised
classification techniques on several data sets [15]. VAE com-
bine variational inference networks with generative models
parametrized by deep neural networks that exploit informa-
tion in the data density to find efficient lower dimensional
representations (feature embeddings) of the data.

Auto-encoder. An auto-encoder or autoassociator [2] is a
neural network that encodes a given input into a (typically
lower dimensional) representation such that the original in-
put can be reconstructed approximately. The auto-encoder
consists of two parts. The encoder part of the network takes
the N -dimensional input x ∈ RN and computes an encod-
ing z = E(x) while the decoder D reconstructs the input
based on the latent representation x̂ = D(z). If we train
a network using the mean squared error loss and the net-
work consists of a single linear hidden layer of size K, e.g.

E(x) = W1x + b1 and D(z) = W2z + b2 for weights
W1 ∈ RK×N and W2 ∈ RN×K and offsets b1 ∈ RK and
b2 ∈ RN , the autoencoder behaves similar to PCA in that
the network learns to project the input into the span of
the K first principle components [2]. For more complex net-
works with non-linear layers multi-modal aspects of the data
can be learnt. Auto-encoders can be used in semi-supervised
classification tasks because the encoder can compute a fea-
ture representation z of the original data x. These features
can then be used to train a classifier. The learnt feature
embedding facilitates classification by clustering related ob-
servations in the computed latent space.

Variational auto-encoder. Variational auto-encoders [15]
are generative models that combine Bayesian inference with
deep neural networks. They model the input data x as

pθ(x|z) = f(x; z, θ) p(z) = N (z|0, I) (1)

where f is a likelihood function that performs a non-linear
transformation with parameters θ of z by employing a deep
neural network. In this model the exact computation of
the posterior pθ(z|x) is not computationally tractable. In-
stead, the true posterior is approximated by a distribution
qφ(z|x) [16]. This inference network qφ(z|x) is parametrized
as a multivariate normal distribution as

qφ(z|x) = N (z|µφ(x), diag(σ2
φ(x))), (2)

where µφ(x) and σ2
φ(x) denote vectors of means and variance

respectively. Both functions µφ(·) and σ2
φ(·) are represented

as deep neural networks. Hence, variational autoencoders
essentially replace the deterministic encoder E(x) and de-
coder D(z) by a probabilistic encoder qφ(z|x) and decoder
pθ(x|z). Direct maximization of the likelihood is computa-
tionally not tractable, therefore a lower bound on the likeli-
hood has been derived [16]. The learning task then amounts
to maximizing this variational lower bound

Eqφ(z|x) [log pθ(x|z)]−KL [qφ(z|x)||p(z)] , (3)

where KL denotes the Kullback-Leibler divergence. The
lower bound consists of two intuitive terms. The first term
is the reconstruction quality while the second one regular-
izes the latent space towards the prior p(z). We perform
optimization of this lower bound by applying a stochastic
optimization method using gradient back-propagation [14].

3. METHOD
In the following we introduce two networks. First, a simple
variational auto-encoder consisting of fully connected lay-
ers to learn feature embeddings of student data. These en-
coders have shown to be powerful for semi-supervised clas-
sification [15], and are often applied due to their simplicity.
Second, an advanced auto-encoder that combines the advan-
tages of VAE with the superiority of asymmetric encoders.
This is motivated by the fact that asymmetric auto-encoders
have shown superior performance and more meaningful fea-
ture representations compared to simple VAE in other do-
mains such as image synthesis [29].

Student snapshots. There are many applications where
we want to predict a label yn for each student n within an
ITS based on behavioral data Xn. These labels typically
relate to external variables or properties of a student, such
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Figure 1: Network layouts for our simple student auto-encoder (left) using only fully connected layers and our
improved CNN student auto-encoder (right) using convolutions for the encoder and recurrent LSTM layers
for the decoder. In contrast to standard auto-encoders, the connections to the latent space z are sampled
(red dashed arrows) from a Gaussian distribution.

as age, learning disabilities, personality traits, learner types,
learning outcome etc. Similar to Knowledge Tracing (KT)
we propose to model the data Xn = {xn1, . . . ,xnT } as a
sequence of T observations. In contrast to KT we store F
different feature values xnt ∈ RF for each element in the
sequence, where t denotes the tth opportunity within a task.
This allows us to simultaneously store data from multiple
tasks in xnt, e.g. xn1 stores all features for student n that
were observed during the first task opportunities. For ev-
ery task in an ITS we can extract various different features
that characterize how a student n was approaching the task.
These features include performance, answer times, problem
solving strategies, etc. We combine this information into a
student snapshot Xn ∈ RT×F , where T is the number of task
opportunities and F is the number of extracted features.

Simple student auto-encoder (S-SAE). Our simple vari-
ational autoencoder is following the general design outlined
in Section 2 and is based on the student snapshot represen-
tation. For ease of notation we use x := vec(Xn), where
vec(·) is the matrix vectorization function to represent the
student snapshot of student n. The complete network lay-
out is depicted in Figure 1, left. The encoder and decoder
networks consist of L fully connected layers that are imple-
mented as an affine transformation of the input followed by
a non-linear activation function β(·) as xl = β(Wlxl−1+bl),
where l is the layer index and Wl and bl are a weight matrix
and offset vector of suitable dimensions. Typical choices for
β(·) include tanh, rectified linear units or sigmoid functions
[6]. To produce latent samples z we sample from the normal
distribution (see Equation (2)) using re-parametrization [16]

z = µφ(x) + σφ(x)ε, (4)

where ε ∼ N (0, 1), to allow for back-propagation of gra-
dients. For pθ(x|z) (see (1)) any suitable likelihood func-
tion can be used. We used a Gaussian distribution for all
presented examples. Note that the likelihood function is
parametrized by the entire (non-linear) decoder network.

The training of variational auto-encoders can be challenging
as stochastic optimization was found to set qφ(z|x) = p(z)
in all but vanishingly rare cases [3], which corresponds to a
local maximum that does not use any information from x.
We therefore add a warm-up phase that gradually gives the
regularization term in the target function more weight:

Eqφ(z|x) [log pθ(x|z)]− αKL [qφ(z|x)||p(z)] , (5)

where α ∈ [0, 1] is linearly increased with the number of
epochs. The warm-up phase has been successfully used
for training deep variational auto-encoders [25]. Further-
more, we initialize the weights of the dense layer computing
log(σ2

φ(x)) to 0 (yielding a variance of 1 at the beginning of
the training). This was motivated by our observations that if
we employ standard random weight initialization techniques
(glorot-norm, he-norm [9]) we can get relatively high initial
estimates for the variance σ2

φ(x), which due to the sampling
leads to very unreliable samples z in the latent space. The
large variance in sampled points in the latent space leads to
bad convergence properties of the network.

CNN student auto-encoder (CNN-SAE). Following
the recent findings in computer vision we present a second,
more advanced network that typically outperforms simpler
VAE. In [29], for example, these asymmetric auto-encoders
resulted in superior reconstruction of images as well as more
meaningful feature embeddings. A specific kind of convolu-
tional neural network was combined with an auto-encoder,
being able to directly capture low level pixel statistics and
hence to extract more high-level feature embeddings.

Inspired by this previous work, we combine an asymmetric
auto-encoder (and a decoder that is able to capture low level
statistics) with the advantages of variational auto-encoders.
Figure 1, right, shows our combined network. We employ
multiple layers of one-dimensional convolutions to parametrize
the encoder qφ(z|x) (again we assume a Gaussian distribu-
tion, see (2)). The distribution is parametrized as follows:

µφ(x) = Wµh + bµ

log(σ2
φ(x)) = Wσh + bσ

h = convl(x) = β(Wl ∗ convl−1(x)),

where ∗ is the convolution operator, Wl,Wµ,Wσ are weights
of suitable dimensions, β(·) is a non-linear activation func-
tion and l denotes the layer depth. Further, conv0(x) = x.
We keep the standard variational layer (see (4)) while chang-
ing the output layer to a recurrent layer using long term
short term units (LSTM). Recurrent layers have success-
fully been used in auto-encoders before, e.g. in [5]. LSTM
were very successful for modeling temporal sequences be-
cause they can model long and short term dependencies be-
tween time steps. Every LSTM unit receives a copy of the
sampled points in latent-space, which allows the LSTM net-
work to combine context information (point in the latent
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Figure 2: Pipeline overview. We train the variational auto-encoder on a large unlabeled data set. The trained
encoder of the auto-encoder can be used to transform other data sets into an expressive feature embedding.
Based on this feature embedding we train different classifiers to predict the student labels.

space) with the sequence information (memory unit in the
LSTM cell). Using LSTM cells the decoder pθ(x|z) assumes
a Gaussian distribution and is parametrized as follows:

µθt(z) = Wµz · lstmt(z) + bµz

log(σ2
θt(z)) = Wσz · lstmt(z) + bσz,

where µθt(z) and σ2
θt(z) are the tth components of µθ(z) and

σ2
θ(z), respectively, lstmt(·) denotes the tth LSTM cell and

W∗ and b∗ denote suitable weight and offset parameters.

Feature selection. VAE provide a natural way for per-
forming feature selection. The inference network qφ(z|x)
infers the mean and variance for every dimension zi. There-
fore, the most informative dimension zi has the highest KL
divergence from the prior distribution p(zi) = N (0, 1) while
uninformative dimensions will have a KL divergence close to
0 [10]. The KL divergence of zi to p(zi) is given by

KL [qφ(zi|x)||p(zi)] = − log(σi) +
σ2
i µ

2
i

2
− 1

2
, (6)

where µi and σi are the inferred parameter for the Gaussian
distribution qφ(zi|x). Feature selection proceeds by keeping
the K dimensions zi with the largest KL divergence.

Semi-supervised classification pipeline. The encoder
and the decoder of the variational auto-encoder can be used
independently of each other. This independence allows us
to take the trained encoder and map new data to the learnt
feature embedding. Figure 2 provides an overview of the
entire pipeline for semi-supervised classification. In a first
unsupervised step we train a VAE on unlabeled data. The
learnt encoder qφ(z|x) is then used to transform labeled data
sets to the feature embedding. We finally apply our feature
selection step that considers the relative importance of the
latent dimensions as previously described. We then train
standard classifiers (Logistic Regression, Naive Bayes and
Support Vector Machine) on the feature embeddings.

4. RESULTS
We evaluated our approach for the specific example of de-
tecting developmental dyscalculia (DD), which is a learning
disability affecting the acquisition of arithmetic skills [33].
Based on the learnt feature embedding on a large unlabeled
data set the classifier performance was measured on two in-
dependent, small and labeled data sets from controlled user
studies. We refer to them as balanced and imbalanced data

sets since their distribution of DD and non-DD children dif-
fers: the first study has approximately 50% DD, while the
second one includes 5% DD (typical prevalence of DD).

4.1 Experimental Setup
All three data sets were collected from Calcularis, which is
an intelligent tutoring system (ITS) targeted at elementary
school children suffering from DD or exhibiting difficulties
in learning mathematics [13]. Calcularis consists of different
games for training number representations and calculation.
Previous work identified a set of games that are predictive
of DD within Calcularis [17]. Since timing features were
found to be one of the most relevant indicators for detecting
DD [4] and to facilitate comparison to other feature embed-
ding techniques we limited our analysis to log-normalized
timing features, for which we can assume normal distribu-
tion [30]. Therefore, we evaluated our pipeline on the sub-
set of games from [17] for which meaningful timing features
could be extracted and sufficient samples were available in all
data sets (we used >7000 samples for training the VAEs).
Since our pipeline currently does not handle missing data
only students with complete data were included.

Timing features were extracted for the first 5 tasks in 5 dif-
ferent games. The selected games involve addition tasks
(adding a 2-digit number to a 1-digit number with ten-
crossing; adding two 2-digit numbers with ten-crossing), num-
ber conversion (spoken to written numbers in the ranges 0-
10 and 0-100) and subtraction tasks (subtracting a 1-digit
number from a 2-digit number with ten-crossing). For every
task we extracted the total answer time (time between the
task prompt until the answer was entered) and the response
time (time between the task prompt and the first input by
the student). Hence, each student is represented by a 50-
dimensional snapshot x (see Section 3).

Unlabeled data set. The unlabeled data set was extracted
using live interaction logs from the ITS Calcularis. In total,
we collected data from 7229 children. Note that we have
no additional information about the children such as DD or
grade. We excluded all teacher accounts as well as log files
that were < 20KB. Since every new game in Calcularis is
introduced by a short video during the very first task, we
excluded this particular task for all games.

Balanced data set. The first labeled data set is based
on log files from 83 participants of a multi-center user study
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conducted in Germany and Switzerland, where approximately
half of the participants were diagnosed with DD (47 DD, 36
control) [31]. During the study, children trained with Cal-
cularis at home for five times per week during six weeks and
solved on average 1551 tasks. There were 28 participants
in 2nd grade (9 DD, 19 control), 40 children in 3rd grade
(23 DD, 17 control), 12 children in 4th grade (12 DD) and
3 children in 5th grade (3 DD). The diagnosis of DD was
based on standardized neuropsychological tests [31].

Imbalanced data set. The second labeled data set is from
a user study conducted in the classroom of ten Swiss elemen-
tary school classes. In total, 155 children participated, and
a prevalence of DD of 5% could be detected (8 DD, 147 con-
trol). There were 97 children in 2nd grade (3 DD, 94 control)
and 58 children in 3rd grade (5 DD, 53 control). The DD di-
agnosis was computed based on standardized tests assessing
the mathematical abilities of the children [32, 7]. During the
study, children solved 85 tasks directly in the classroom. On
average, children needed 26 minutes to complete the tasks.

Implementation. The unlabeled data set was used to train
the unsupervised VAE for extracting compact feature em-
beddings of the data. Based on the learnt data transforma-
tions we evaluated two standard classifiers: Logistic Regres-
sion (LR) and Naive Bayes (NB). We restricted our evalu-
ation to simple classification models because we wanted to
assess the quality of the feature embedding and not the qual-
ity of the classifier. More advanced classifiers typically per-
form a (sometimes implicit) feature transformation as part
of their data fitting procedure. To represent at least one
model that performs such an embedding we included Sup-
port Vector Machine (SVM) in all our results. All classifier
parameters were chosen according to the default values in
scikit-learn. Note that we have additionally performed ran-
domized cross-validated hyper-parameter search for all clas-
sifiers, which, however, resulted in marginal improvements
only. Because of that, and to keep the model simple and es-
pecially easily reproducible, we use the default parameter set
in this work. For Logistic Regression we used L2 regulariza-
tion with C = 1, for Naive Bayes we used Gaussian distribu-
tions and for the SVM RBF kernels and data point weights
have been set inversely proportional to label frequencies. All
results are cross-validated using 30 randomized training-test
splits on the unlabeled data (test size 5%). The classification
part of the pipeline is additionally cross-validated using 300
label-stratified random training-test splits (test size 20%) to
ensure highly reproducible classification results.

Network hyper-parameters were defined using the approach
described in [1]. We increased the number of nodes per
layer, the number of layers and the number of epochs until
a good fit of the data was achieved. We then regularized
the network using dropout [26] with increasing dropout rate
until the network was no longer overfitting the data. Ac-
tivation and weight initialization have been chosen accord-
ing to common standards: We employ the most common
activation function, namely rectified linear activation units
(RELU) [20], for all activations. Weight initialization was
performed using the method by He et al. [9]. Following this
procedure, the following parameters were used for the S-
SAE model: encoder and decoders used 3 layers of size 320.
The CNN-SAE model was parametrized as follows: 3 convo-

lution layers with 64 convolution kernels and a filter length
of 3. We used a single layer of LSTM cells with 80 nodes.
We used a batch size of 500 samples and batch normaliza-
tion and dropout (r = 0.25) at every layer. The warm-up
phase (see Section 3) was set to 300 epochs. Training was
stopped after 1000 (S-SAE) and 500 (CNN-SAE) epochs.
The number of latent units was set to 8 in accordance to
previous work on detecting students with DD that used 17
features but found that about half of the features were suf-
ficient to detect DD with high accuracy [17]. When feature
selection was applied we set the number of features to K=4
and thus we kept exactly half of the latent space features.
All networks were implemented using the Keras framework
with TensorFlowTM and optimized using Adam stochastic
optimization with standard parameters according to [14].

4.2 Performance comparison
Our VAE models are trained to extract efficient feature em-
beddings of the data. To assess the quality of these com-
puted feature representations, we compare the classification
performance of our method to previous techniques for find-
ing efficient feature embeddings, as well as to feature sets
optimized specifically for the task of predicting DD.

Network comparison. In a first experiment we compared
the feature embeddings generated by our simple S-SAE and
our asymmetric CNN-SAE with and without feature selec-
tion. Figure 3 illustrates the average ROC curves of our
complete semi-supervised classification pipeline. Our fea-
ture embeddings based on asymmetric CNN-SAE clearly
outperform the ones from the simple S-SAE on both the
imbalanced and the balanced data set for Naive Bayes (NB)
and Logistic Regression (LR). For both models, feature se-
lection improves the area under the ROC curve (AUC) for
the imbalanced data set (CNN-SAE: LR 4.2%, NB 6.3%;
S-SAE: LR 6.8%, NB: 1.6%), but has no effect for the bal-
anced data set. We believe that this is due to the ability of
the classifiers to distinguish useful features from noisy ones
given enough samples. Since the performance of the clas-
sifiers with feature selection (FS) is better or equal to no
feature selection in each experiment, we used the CNN-SAE
FS model for all further evaluations.

Classification performance. In Figure 4 we compare the
classifier performance for different feature embeddings. We
compare our method based on VAE to two well-known meth-
ods for finding optimal feature embeddings, namely principle
component analysis (PCA, green) and Kernel PCA (KPCA,
red) [24]. For comparison and as a baseline for the perfor-
mance of the different methods, we include direct classifi-
cation results (gray), for which no feature embedding was
computed. We used K = 8 (dimensionality of feature em-
bedding) for all methods. The features extracted by our
pipeline compare favorably to PCA and Kernel PCA show-
ing improvements in terms of AUC of 28% for Logistic Re-
gression and 23% for Naive Bayes on the imbalanced data
set and an improvement of 3.75% for Logistic Regression
and 7.5% for Naive Bayes on the balanced data set. By
using simple classifiers, we demonstrated that our encoder
learns an effective feature embedding. More sophisticated
classifiers (such as SVM with non-linear kernels) typically
proceed by first embedding the input into a specific feature
space that is different from the original space.
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(a) Imbalanced data set
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(b) Balanced data set

Figure 3: ROC curves for the two proposed mod-
els with and without feature selection (FS). Our
asymmetric CNN-SAE outperforms the simple S-
SAE consistently with (blue) and without (purple)
feature selection. Feature selection improves perfor-
mance only on the imbalanced data set.

For the imbalanced data set the overall performance for
SVM is significantly lower for all embeddings. This is in line
with previous work [12] showing that for imbalanced data
sets, the decision boundaries of SVMs are heavily skewed
towards the minority class resulting in a preference for the
majority class and thus a high miss-classification rate for the
minority class. Indeed, we found that SVM predicted only
majority labels on the imbalanced data set. For the bal-
anced data set our feature embedding shows improvements
of 2.5% over alternative embeddings when using SVM.

Further, Table 1 shows the performance of all feature embed-
dings using three additional common classification metrics:
root mean squared error (RMSE), classification accuracy
(Acc.) and area under the precision recall curve (AUPR).
We statistically compared the classification metrics of our
feature embedding to the best alternative feature embed-
ding using an independent t-test and Bonferroni correction
for multiple tests (α = 0.05). Our feature embedding signif-
icantly outperformed alternative embeddings for all classi-
fiers on both the balanced and imbalanced data sets on most
metrics. The main exception was the performance of SVM
on the imbalanced data set, which exhibited large variance
for all feature embeddings and the worst overall classifica-
tion performance (compared to the other classifiers).

When comparing classification performance on the imbal-
anced and the balanced data sets we observed that our
pipeline using VAEs showed significant performance improve-
ments compared to other methods for finding feature embed-
dings. While the unlabeled and the balanced data sets stem
from an adaptive version of Calcularis the imbalanced data
was collected using a fixed task sequence. As our method
shows larger improvements on the imbalanced data, we be-

lieve CNN-SAE learned an embedding that is robust beyond
adaptive ITS. The relative improvements of our feature em-
beddings is smallest for SVM on the balanced data set. We
believe that this is due to ability of the SVM to learn com-
plex decision boundaries given sufficient data. However, the
ability for complex decision boundaries renders SVMs more
vulnerable to class imbalance, yielding performance at ran-
dom level on the imbalanced data set.

Comparison to specialized models. Recently, a spe-
cialized Naive Bayes classifier (S-NB) for the detection of
developmental dyscalculia (DD) was introduced presenting
a set of features optimized for the detection of DD [17].
The development of S-NB including the set of features was
based on the balanced data set used in this work. In com-
parison to S-NB, our approach relies on timing data only
and the extracted features are independent of the classifi-
cation task. We compared the performance of S-NB to our
CNN-SAE model on both data sets. For the balanced data
set we found an AUC of 0.94 for the specialized model (S-
NB) compared to an AUC of 0.86 for Naive Bayes using our
feature embedding. On the imbalanced data set we found
an AUC of 0.67 for S-NB compared to an AUC of 0.77 us-
ing Logistic Regression with our feature embedding. These
findings demonstrate that while our feature embedding per-
forms slightly worse on the balanced data set (for which the
S-NB was developed), we significantly outperform S-NB by
15% on the imbalanced data set, which suggests that our
VAE model automatically extracts feature embeddings that
are more robust than expert features.

Robustness on sample size. Ideally, a classifier’s perfor-
mance should gracefully decrease as fewer data is provided.
A good feature embedding allows a classifier to generalize
well based on few labeled examples because similar samples
are clustered together in the feature embedding. We there-
fore investigated the robustness of the different feature rep-
resentations with respect to the training set size. For this we
used the balanced data set where we varied the training set
size between 7 (10% of the data) and 62 (90% of the data)
by random label-stratified sub-sampling. Figure 5 compares
the AUC of the different feature embeddings over different
sizes of the training set. In case of Naive Bayes and Logis-
tic Regression our embedding provides superior performance
for all training set sizes. For large enough data sets SVM
using the raw feature data (Direct, grey) is performing as
well as using our embedding (CNN-SAE, blue). However,
for smaller data sets starting at 30 samples the performance
of SVM based on the raw features declines more rapidly
compared to the SVM based on our feature embedding.

5. CONCLUSION
We adapted the recently developed variational auto-encoders
to educational data for the task of semi-supervised clas-
sification of student characteristics. We presented a com-
plete pipeline for semi-supervised classification that can be
used with any standard classifier. We demonstrated that ex-
tracted structures from large scale unlabeled data sets can
significantly improve classification performance for different
labeled data sets. Our findings show that the improvements
are especially pronounced for small or imbalanced data sets.
Imbalanced data sets typically arise in EDM when detecting
relatively rare conditions such as learning disabilities. Im-
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Figure 4: Classification performance for different feature embeddings. Our variational auto-encoder (blue)
outperforms other embeddings by up to 28% (imbalanced data set) and by up to 7.5% (balanced data set).
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Figure 5: Comparison of classifier performance on the balanced data for different training set sizes (moving
average fitted to data points). The features automatically extracted by our variational auto-encoder (blue)
maintain a performance advantage even if the training size shrinks to 7 samples (10% of the original size).

Table 1: Comparison of our method to alternative embeddings. Our approach using a variational auto-encoder
(CNN-SAE) significantly outperforms other approaches for most cases. The best score for each metric and
classifier is shown in bold. *= statistically significant difference (t-test with Bonferroni correction, α = 0.05).

Direct PCA Kernel PCA CNN-SAE

AUC RMSE AUPR Acc. AUC RMSE AUPR Acc. AUC RMSE AUPR Acc. AUC RMSE AUPR Acc.

Imbalanced data set

Logistic Regression 0.53 0.27 0.18 0.91 0.54 0.25 0.17 0.93 0.61 0.25 0.16 0.93 0.78* 0.24* 0.28* 0.94*

Naive Bayes 0.51 0.29 0.23 0.91 0.50 0.29 0.10 0.90 0.57 0.28 0.20 0.91 0.70* 0.25* 0.24 0.93*

SVM 0.55 0.25 0.22* 0.94 0.40 0.25 0.08 0.94 0.42 0.25 0.09 0.93 0.59 0.25 0.16 0.94

Balanced data set

Logistic Regression 0.80 0.44 0.82 0.73 0.80 0.42 0.84 0.73 0.80 0.42 0.83 0.75 0.83* 0.40* 0.84 0.77

Naive Bayes 0.80 0.49 0.80 0.73 0.77 0.46 0.77 0.71 0.76 0.46 0.76 0.70 0.86* 0.38* 0.86* 0.80*

SVM 0.81 0.42 0.84* 0.75 0.79 0.43 0.81 0.73 0.80 0.43 0.83 0.73 0.83 0.40* 0.81 0.79*

proved classification results with simple classifiers such as
Logistic Regression might indicate that VAEs learn feature
embeddings that are interpretable by human experts. In
the future we want to explore the learnt representations and
compare it to traditional categorizations of students (skills,
performance, etc.). Additionally, we want to extend our
results to include additional feature types and data reliabil-
ity indicators to handle missing data. Although we trained
our networks on comparatively small sample sizes, the pre-
sented method scales (due to mini-batch learning) to much
larger data sets (>100K users ) allowing the training of more
complex VAE. Moreover, the generative model pθ(x|z) that
is part of any VAE can be used to produce realistic data
samples [29]. Up-sampling of the minority class provides a
potential way to improve the decision boundaries for classi-

fiers. In contrast to common up-sampling methods such as
ADASYN [8], VAE-based sampling does not require nearest
neighbor computations which makes them better applicable
to small data sets. Preliminary results for random subsets
of the balanced data set showed improvements in AUC by
up-sampling based on VAE of 2-3% compared to ADASYN.
While we applied our method to the specific case of detecting
developmental dyscalculia, the presented pipeline is generic
and thus can be applied to any educational data set and
used for the detection of any student characteristic.
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ABSTRACT
We show how the novel use of a semantic representation
based on Osgood’s semantic differential scales can lead to
effective features in predicting short- and long-term learning
in students using a vocabulary learning system. Previous
studies in students’ intermediate knowledge states during
vocabulary acquisition did not provide much information
on which semantic knowledge students gained during word
learning practice. Moreover, these studies relied on human
ratings to evaluate the students’ responses. To solve this
problem, we propose a semantic representation for words
based on Osgood’s semantic decomposition of vocabulary
[16]. To demonstrate our method can effectively represent
students’ knowledge in vocabulary acquisition, we build
models for predicting the student’s short-term vocabulary
acquisition and long-term retention. We compare the
effectiveness of our Osgood-based semantic representation to
that provided by Word2Vec neural word embedding [13], and
find that prediction models using features based on Osgood
scale-based scores (OSG) perform better than the baseline
and are comparable in accuracy to those using Word2Vec
score-based models (W2V). By using more interpretable
Osgood-based scales, our study results can help with better
understanding of students’ ongoing learning states and
designing personalized learning systems that can address an
individual’s weak points in vocabulary acquisition.

Keywords
Vocabulary learning, semantic similarity, prediction model,
intelligent tutoring system

1. INTRODUCTION
Studies of word learning have shown that knowledge of
individual words is typically not all-or-nothing. Rather,
people acquire varying degrees of knowledge of many words
incrementally over time, by exposure to them in context [9].
This is especially true for so-called“academic”words that are
less common and more abstract — e.g., pontificate, probity,
or assiduous [7]. Binary representations and measures model
word knowledge simply as correct or incorrect on a particular

item (word), but in reality, a student’s knowledge level may
reside between these two extremes. Thus, previous studies of
vocabulary acquisition have suggested that students’ partial
knowledge be modeled using a representation that adding an
additional label corresponding to an intermediate knowledge
state [6] or further, in terms of continuous metrics for
semantic similarity [3].

In addition, there are multiple dimensions to a word’s
meaning [16]. Measuring a student’s partial knowledge on
a single scale may only provide abstract information about
the student’s general answer quality and not give enough
information to specify which dimensions of word knowledge
a student already has learned or needs to improve. In order
to achieve detailed understanding of a student’s learning
state, online learning systems should be able to capture
a student’s “learning trajectory” that tracks their partial
knowledge on a particular item over time, over multiple
dimensions of meaning in a multidimensional semantic
representation.

Hence, multidimensional representations of word knowledge
can be an important element for building an effective
intelligent tutoring system (ITS) for reading and language.
Maintaining a fine-grained semantic representation of a
student’s degree of word knowledge can be helpful for
the ITS to design more engaging instructional content,
more helpful personalized feedback, and more sensitive
assessments [17, 19]. Selecting semantic representations
to model, understand, and predict learning outcomes is
important to designing a more effective and efficient ITS.

In this paper, we explore the use of multidimensional
semantic word representations for modeling and predicting
short- and long-term learning outcomes in a vocabulary
tutoring system. Our approach derives predictive
features using a novel application of existing methods in
cognitive psychology combined with methods from natural
language processing (NLP). First, we introduce a new
multidimensional representation of a word based on the
Osgood semantic differential [16], an empirically based,
cognitive framework that uses a small number of scales
to represent latent components of word meaning. We
compare the effectiveness of model features based on this
Osgood-based representation to features based on a different
representation, the widely-used Word2Vec word embedding
[13]. Second, we evaluate our prediction models using
data from a meaning-generation task that was conducted
during a computer-based intervention. Our study results
demonstrate how similarity-based metrics based on rich
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semantic representation can be used to automatically
evaluate specific components of word knowledge, track
changes in the student’s knowledge toward the correct
meaning, and compute a rich set of features for use in
predicting short- and long-term learning outcomes. Our
methods could support advances in real-time, adaptive
support for word semantic learning, resulting in more
effective personalized learning systems.

2. RELATED WORK
The present study is informed by three areas of research:
(1) studies of partial word knowledge; (2) the Osgood
framework for multiple dimensions of word meaning, and (3)
computational methods for estimating semantic similarity.

Partial Word Knowledge. The concept of partial word
knowledge has interested vocabulary researchers for several
decades, particularly in the learning and instruction of “Tier
2” words [20]. Tier 2 words are low-frequency and typically
have complex (multiple, nuanced) meanings. By nature,
they are rarely learned through “one-shot” learning or direct
definition. Instead, they are learned partially and gaps are
filled in over time.

Words in this intermediate state, neither novel nor fully
known, are sometimes called “frontier words” [5]. Durso
and Shore operationalized the frontier word as a word the
student had seen previously but was not actively using it [6].
Based on this definition, the student may have had implicit
memory of frontier words, such as general information like
whether the word indicates a good or bad situation or refers
a person or an action. They discovered that students are
more familiar with frontier words than other types of words
in terms of their sounds and orthographic characteristics [6].
This previous work suggested that the concept of frontier
words can be used to represent a student’s partial knowledge
states in a vocabulary acquisition task [5, 6].

In some studies, partial word knowledge has been
represented using simple, categorical labels, e.g., multiple-
choice tests that include“partially correct” response options,
as well as a single“best” (correct) response. In other studies,
the student is presented with a word and is asked to say
what it means [1]. The definition is given partial credit
if it reflects knowledge that is partial or incomplete. For
example, a student may recognize that the word probity
has a positive connotation, even if she cannot give a
complete definition. However, single categorical or score-
based indicators may not explain which specific aspects of
vocabulary knowledge the student is missing. Moreover,
these studies relied on human ratings to evaluate students’
responses for unknown words [6]. Although widely used
in psychometric and psycholinguistic studies [4, 16], hiring
human raters is expensive and may not be done in real time
during students’ interaction with the tutoring system.

To address these problems, we propose a data-driven method
that can automatically extract semantic characteristics of
a word based on a set of relatively simple, interpretable
scales. The method benefits from existing findings in
cognitive psychology and natural language processing. In
the following sections, we illustrate more details of related
findings and how they can be used in an intelligent tutoring
system setting.

Semantic Representation & the Osgood Framework.
To quantify the semantic characteristics of a student’s
intermediate knowledge of vocabulary, this paper uses a
“spatial analogue” for capturing semantic characteristics of
words. In [16], Osgood investigated how the meaning of
a word can be represented by a series of general semantic
scales. By using these scales, Osgood suggested that the
meanings of any word can be projected and explored in a
continuous semantic space.

Osgood asked human raters to evaluate a set of words using a
large number of scales (e.g., tall-short, fat-thin, heavy-light)
and captured the semantic representation of a word [16].
Respondents gave Likert ratings, which indicated whether
they thought that a word meaning was closer to one extreme
(-3) or the other (+3), or basically irrelevant (0). A principal
components analysis (PCA) was used to represent the latent
semantic features that can explain the patterns of response
to individual words within this task.

In our study, we suggest a method that can automatically
extract similar semantic information that can project a word
into a multidimensional semantic space. By using semantic
scales selected from [16], we verify if such representation of
semantic attributes of words is useful for predicting students’
short- and long-term learning.

Semantic Similarity Measures. Studies in NLP have
suggested methods to automatically evaluate the semantic
association between two words. For example, Markov
Estimation of Semantic Association (MESA) [3, 9] can
estimate the similarity between words from a random walk
model over a synonym network such as WordNet [14]. Other
methods like latent semantic analysis (LSA) are based on
co-occurrence of the word in a document corpus. In LSA,
semantic similarity between words is determined by using
a cosine similarity measure, derived from a sparse matrix
constructed from unique words and paragraphs containing
the words [10].

For this paper, we use Word2Vec [13], a widely used word
embedding method, to calculate the semantic similarity
between words. Word2Vec’s technique [11] transforms the
semantic context, such as proximity between words, into a
numeric vector space. In this way, linguistic regularities
and patterns are encoded into linear translations. For
example, using outputs from Word2Vec, relationships
between words can be estimated by simple operations on
their corresponding vectors, e.g., Madrid - Spain + France
= Paris, or Germany + capital = Berlin [13].

Measures from these computational semantic similarity tools
are powerful because they can provide an automated method
for evaluation of partial word knowledge. However, they
typically produce a single measure (e.g., cosine similarity or
Euclidean distance), representing semantic similarity as a
one-dimensional construct. With such a measure, it is not
possible to determine represent partial semantic knowledge
and changes in knowledge of latent semantic features as
word knowledge progresses from unknown to frontier to
fully known. In following sections, we describe how we
address this problem, using novel methods to to estimate
the contribution of Osgood semantic features to individual
word meanings.
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2.1 Overview of the Study
Based on findings from existing studies, this study will
suggest an automatized method for evaluating students’
partial knowledge of vocabulary that can be used to predict
students’ short-term vocabulary acquisition and long-term
retention. To investigate this problem, we will answer the
following research questions with this paper.

The first research question (RQ1): Can semantic similarity
scores from Word2Vec be used to predict students’ short-
term learning and long-term retention? Previous studies in
vocabulary tutoring systems tend to focus on how different
experimental conditions, such as different spacing between
question items [18], difficulty levels [17], and systematic
feedback [7], affect students’ short-term learning. This study
will answer how computationally estimated trial-by-trial
scores in a vocabulary tutoring system can be used to predict
students’ short-term learning and long-term retention.

RQ2: Compared to using regular Word2Vec scores, how does
the model using Osgood’s semantic scales [16] as features
perform for immediate and delayed learning prediction
tasks? As described in the previous section, the initial
outcome from Word2Vec returns hundreds of semantic
dimensions to represent the semantic characteristics of
a word. Summary statistics for comparing such high-
dimensional vectors, such as cosine similarity or Euclidean
distance, only provide the overall similarity between words.
If measures from Osgood scales work in a similar level
to models using regular Word2Vec scores for predicting
students’ learning outcomes, we can argue that it can
be an effective method for representing students’ partial
knowledge of vocabulary.

3. METHOD
3.1 Word Learning Study
This study used a vocabulary tutoring system called
Dynamic Support of Contextual Vocabulary Acquisition
for Reading (DSCoVAR) [8]). DSCoVAR aims to support
efficient and effective learning vocabulary in context. All
participants accessed DSCoVAR in a classroom-setting
environment by using Chromebook devices or the school’s
computer lab in the presence of other students.

3.1.1 Study Participants
Participants included 280 middle school students (6th to
8th grade) from multiple schools, including children from
diverse socio-economic and educational backgrounds. Table
1 provides a summary of student demographics, including
location (P1 or P2), age and grade level, sex. Location P1 is
a laboratory school affiliated with a large urban university in
the northeastern United States. Students from location P1
were generally of high socio-economic status (e.g., children
of University faculty and staff). Location P2 includes three
public middle schools in a southern metropolitan area of the
United States. All students from location P2 qualified for
free or reduced lunch. The study included a broad range of
students so that the results of this analysis were more likely
to generalize to future samples.

3.1.2 Study Materials
DSCoVAR presented students with 60 SAT-level English
words (also known as Tier 2 words). These “target words,”
lesser-known words that the students are going to learn,

Table 1: The number of participants by grade and
gender

6th grade 7th grade 8th grade
Group Girl Boy Girl Boy Girl Boy
P1 16 28 19 23 18 13
P2 53 51 12 6 21 20

were balanced between different parts of speech, including 20
adjectives, 20 nouns, and 20 verbs. Based on previous works,
we expected that students would have varying degrees of
familiarity with the words at pre-test, but that most words
would be either completely novel (“unknown”) or somewhat
familiar (“partially known”) [8, 15]. This selection of
materials ensured that there would be variability in word
knowledge across students for each word and across words
for each student.

In DSCoVAR, students learned how to infer the meaning
of an unknown word in a sentence by using surrounding
contextual information. Having more information in a
sentence (i.e., a sentence with a high degree of contextual
constraint) can decrease the uncertainty of inference. In
this study, the degree of sentence constraint was determined
using standard cloze testing methods: quantifying the
diversity of responses from 30 human judges when the target
word is left as a fill-in-the-blank question.

3.1.3 Study Protocol
The word learning study comprised four parts: (1) a pre-
test, which was used to estimate baseline knowledge of
words, (2) a training session, where learners were exposed to
words in meaningful contexts, (3) an immediate post-test,
and (4) a delayed post-test, which occurred approximately
one week after training.

Pre-test. The pre-test session was designed to measure
the students’ prior knowledge of the target words. For
each target word, students were asked to answer two types
of questions: familiarity-rating questions and synonym
selection questions. In familiarity rating questions, students
provided their self-rated familiarity levels (unknown, known,
and familiar) for presented target words. In synonym-
selection questions, students were asked to select a synonym
word for the given target word from five multiple choice
options. The outcome from synonym-selection questions
provided more objective measures for students’ prior domain
knowledge of target words.

Training. Approximately one week after the pre-test
session, students participated in the training. During
training, students learned strategies to infer the meaning
of an unknown word in a sentence by using surrounding
contextual information.

A training session consisted of two parts: an instruction
video and practice questions. In the instruction video,
students saw an animated movie clip about how to identify
and use contextual information from the sentence to infer
the meaning of an unknown word. In the practice question
part, students could exercise the skill that they learned from
the video. DSCoVAR provided sentences that included a
target word with different levels of surrounding contextual
information. The amount of contextual information for
each sentence was determined by external crowd workers
(details described in Section 3.1.2). In the practice question
part, each target word was presented four times within
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different sentences. Students were asked to type a synonym
of the target word, which was presented in the sentence as
underlined and bold. Over two weeks, students participated
in two training sessions with a week’s gap between them.
Each training session contained the instruction video and
practice questions for 30 target words. An immediate post-
test session followed right after each training session.

Figure 1: An example of a training session question.
In this example, the target word is “education” with
a feedback message for a high-accuracy response.

Students were randomly selected to experience different
instruction video conditions (full instruction video vs.
restricted instruction video). Additionally, various difficulty
level conditions and feedback conditions (e.g., DSCoVAR
provides a feedback message to the student based on answer
accuracy vs. no feedback) were tested within the same
student. However, in this study, we focused on data
from students who experienced a full instruction video
and repeating difficulty conditions. Repeating difficulty
conditions included questions with all high or medium
contextual constraint levels. By doing so, we wanted to
minimize the impact from various experimental conditions
for analyzing post-test outcomes. Moreover, we filtered out
response sequences that did not include all four responses
for the target word. As a result, we analyzed 818 response
sequences from 7,425 items in total.

Immediate and Delayed Post-test. The immediate
post-test occurred right after the students finished the
training; the delayed post-test was conducted one week later.
Data collected during the immediate and delayed post-
tests were used to estimate short-and long-term learning,
respectively. Test items were identical to those in the pretest
session, except for item order, which varied across tests. For
analysis of the delayed post-test data, we only used the data
from target words for which the student provided a correct
answer in the earlier, immediate post-test session. As a
result, 449 response sequences were analyzed for predicting
the long-term retention.

3.2 Semantic Score-Based Features
We now describe the semantic features tested in our
prediction models.

3.2.1 Semantic Scales
For this study, we used semantic scales from Osgood’s study
[16]. Ten scales were selected by a cognitive psychologist as
being considered semantic attributes that can be detected
during word learning (Figure 2). Each semantic scale
consists of pairs of semantic attributes. For example, the
bad–good scale can show how the meaning of a word can
be projected on a scale with bad and good located at either

Figure 2: Ten semantic scales used for projecting
target words and responses [16].

• bad – good

• passive – active

• powerful – helpless

• big – small

• helpful – harmful

• complex – simple

• fast – slow

• noisy – quiet

• new – old

• healthy – sick

end. The word’s relationship with each semantic anchor can
be automatically measured from its semantic similarity with
these exemplar semantic elements.

3.2.2 Basic Semantic Distance Scores
To extract meaningful semantic information, we have
applied the following measures that can be used to explain
various characteristics of student responses for different
target words. In this study, we used a pre-trained model
for Word2Vec,1 built based on the Google News corpus
(100 billion tokens with 3 million unique vocabularies,
using a negative sampling algorithm), to measure semantic
similarity between words. The output of the pre-trained
Word2Vec model contained a numeric vector with 300
hundred dimensions.

First, we calculated the relationship between word pairs (i.e.,
a single student response and the target word, or a pair of
responses) in both the regular Word2Vec (W2V) score and
the Osgood semantic scale (OSG) score. In the W2V score,
the semantic relationship between words was represented
with a cosine similarity between word vectors:

Dw2v(w1, w2) = 1− |sim(V (w1), V (w2))|. (1)

In this equation, the function V returned the vectorized
representation of the word (w1 or w2) from the pre-trained
Word2Vec model. By calculating the cosine similarity
between two vectors (a cosine similarity function is noted
as sim), we could extract a single numeric similarity score
between two words. This score was converted into a
distance-like score by taking the absolute value of the cosine
similarity score and subtracting from one.

For the OSG score, we extracted two different types of
scores: a non-normalized score and a normalized score. A
non-normalized score showed how a word is similar to a
single anchor word (e.g., bad or good) from the Osgood scale.

Snon
osg (w, ai,j) = sim(V (w), V (ai,j)) (2)

Dnon
osg (w1, w2; ai,j) = |Snon

osg (w1, ai,j)| − |Snon
osg (w2, ai,j)| (3)

In equation 2, ai,j represents a single anchor word (j) in
the i-th Osgood scale. The similarity between the anchor
word and the evaluating word w was calculated with cosine
similarity of Word2Vec outcomes for both words. In a non-
normalized setting, the distance between two words given
by a particular anchor word was calculated by the difference
of absolute cosine similarity scores (equation 3).

The second type of OSG score is a normalized score. By
using Word2Vec’s ability to do arithmetical calculation of

1API and pre-trained model for Word2Vec was downloaded
from this URL: https://github.com/3Top/word2vec-api
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multiple word vectors, the normalized OSG score provided
a relative location of the word from two anchor ends of the
Osgood scale.

Snrm
osg (w, ai) = sim(V (w), V (ai,1)− V (ai,2)) (4)

Dnrm
osg (w1, w2; ai) = |Snrm

osg (w1, ai)− Snrm
osg (w2, ai)| (5)

In equation 4, the output represents the cosine similarity
score between the word w and two anchor words (ai,1

and ai,2). For example, if the cosine similarity score of
Snrm
osg (w, ai) is close to -1, it means the word w is close to

the first anchor word ai,1. If the score is close to 1, it is vice
versa. In equation 5, the distance between two words was
calculated as the absolute value of the difference between
two cosine similarity measures.

3.2.3 Deriving Predictive Features
Based on semantic distance equations explained in the
previous section, this section explains examples of predictive
features that we used to predict students’ short-term
learning and long-term retention.

Distance Between the Target Word and the
Response. For regular Word2Vec score models and Osgood
scale score models, distance measures between the target
word and the response (by using equations 1 and 5) were
used to estimate the accuracy of the response to a question.
This feature represents the trial-by-trial answer accuracy of
a student response. Each response sequence for the target
word contained four distance scores.

Difference Between Responses. Another feature that
we used in both types of models was the difference between
responses. This feature could capture how a student’s
current answer is semantically different from the previous
response. From each response sequence, we could extract
three derivative scores from four responses.

Convex Hull Area of Responses. Alternative to
the difference between responses feature, Osgood scale
models were also tested with the area size of convex hull
that can be generated by responses calculated with non-
normalized Osgood scale scores (equation 3). For example,
for each Osgood scale, a non-normalized score provided
two-dimensional scores that can be used for geometric
representation. By putting the target word in an origin
position, a sequence of responses can create a polygon
that can represent the semantic area that the student
explored with responses. Since some response sequences
were unable to generate the polygon by including less than
three unique responses, we added a small, random noise
that uniformly distributed (between −10−4 and 10−4) to all
response points. Additionally, a value of 10−20 was added to
all convex hull area output to create a visible lower-bound
value.

Unlike the measure of difference between responses, this
feature also considers angles that can be created between
responses and the target word. This representation can
provide more information than just using difference between
responses.

3.3 Modeling
To predict students’ short-term learning and long-term
retention, we used a mixed-effect logistic regression model

(MLR). MLR is a general form of logistic regression model
that includes random effect factors to capture variations
from repeated measures.

3.3.1 Off-line Variables
Off-line variables capture item- or subject-level variances
that can be observed repeatedly from the data. In this study,
we used multiple off-line variables as random effect factors.

First, results from familiarity-rating and synonym-selection
questions from the pre-test session were used to include
item- and subject-level variances. Both variables include
information on the student’s prior domain knowledge level
for target words. Second, the question difficulty condition
was considered as an item group level factor. In the analysis,
sentences for the target word that were presented to the
student contained the same difficulty level, either high or
medium contextual constraint levels, over four trials. Third,
a different experiment group was used as a subject group
factor. As described in Section 3.1.1, this study contains
data from students in different institutions in separate
geographic locations. The inclusion of these participant
groups in the model can be used to explain different
short-term learning outcomes and long-term retention by
demographic groups.

3.3.2 Model Building
In this study, we compared the performance of MLR models
with four different feature types. First, the baseline model
was set to indicate the MLR model’s performance without
any fixed effect variables but only with random intercepts.
Second, the response time model was built to be compared
with semantic score-based models. Many previous studies
have used response time as an important predictor of student
engagement and learning [2, 12]. In this study, we used two
types of response time variables, the latency for initiating
the response and finishing typing the response, as predictive
features. Both variables were measured in milliseconds over
four trials and natural log transformed for the analysis.
Third, semantic features from regular Word2Vec scores were
used as predictors. This model was built to show how
semantic scores from Word2Vec can be useful for predicting
students’ short- and long-term performance in DSCoVAR.
Lastly, Osgood scale-based features were used as predictors.
This model was compared with the regular Word2Vec score
model to examine the effectiveness of using Osgood scales for
evaluating students’ performance in DSCoVAR. For these
semantic-score based models, we tested out different types
of predictive features that were described in Section 3.2.3.
All models shared the same random intercept structure
that treated each off-line variable as an individual random
intercept.

For Osgood scale models, we also derived reduced-scale
models. Reduced-scale models were compared with the full-
scale model, which uses all ten Osgood scales. In this case,
using fewer Osgood scales can provide easier interpretation
of semantic analysis for intelligent tutoring system users.

3.3.3 Model Evaluation
To compare performance between different models, this
study used various evaluation metrics, including AUC (an
area under the curve score from a response operating
characteristic (ROC) curve), F1 (a harmonic mean of
precision and recall), and error rate (a ratio of the number of
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misclassified items over total items). 95% confidence interval
of each evaluation metric was calculated from the outcome of
a ten-fold cross-validation process repeated over ten times.

To select the semantic score-based features for models based
on regular Word2Vec scores and Osgood scale scores, we
used rankings from each evaluation metric. The model with
the highest overall rank (i.e., sum the ranks from AUC, F1,
and error rate, and select the model with the lowest rank-
sum value) was considered the best-performing model for
the score type (i.e., models based on the regular Word2Vec
score or Osgood scale score). More details on this process
will be illustrated in the next section.

4. RESULTS
4.1 Selecting Models
In this section, we selected the best-performing model based
on the models’ overall ranks in each evaluation metric. All
model parameters were trained in each fold of repeated
cross-validation. We calculated 95% confidence intervals for
comparison. To calculate the confidence interval of F1 and
error rate measures, the maximum (F1) and minimum (error
rate) scores of each fold were extracted. These maximum
and minimum values were derived from applying multiple
cutoff points to the mixed-effect regression model.

4.1.1 Predicting Immediate Learning
First, we built models that predict the students’ immediate
learning from the immediate post-test session. From
models based on regular Word2Vec scores (W2V), the model
with the distance between the target and responses and
the difference between responses (Dist+Resp) provided the
highest rank from various evaluation metrics (Table 2).
From models based on Osgood scales (OSG), the model with
the difference between responses (Resp) provided the highest
rank.

The selected W2V model provided significantly better
performance than the baseline model. The selected OSG
model also showed significantly better performance than the
baseline model, except for the AUC score. The selected
W2V model was significantly better than the model using
response time features in the AUC score and error rates.

The selected W2V model showed significantly better
performance than the OSG model only with the AUC score.
Figure 3 shows that the W2V model has a slightly larger area
under the ROC curve than the OSG model. In the precision
and recall curve, the selected W2V model provides more
balanced trade-offs between precision and recall measures.
The selected OSG model outperforms the W2V model in
precision only in a very low recall measure range.

4.1.2 Predicting Long-Term Retention
We also built prediction models to predict the students’
long-term retention in the delayed post-test session. In
this analysis, a student response was included only when
the student provided correct answers to the immediate
post-test session questions. Among W2V score-based
models, the best-performing model contained the same
feature types as the immediate post-test results (Table 3).
By using the distance between the target and responses
and difference between responses (Dist+Resp), the model

achieved significantly better performance than the baseline
model, except for the AUC score.

For OSG models, the model with a convex hull area of
responses (Chull) provided the highest overall rank from
evaluation metrics (Table 3). The results were significantly
better than the baseline model, and marginally better than
the W2V model. Both selected W2V and OSG models were
marginally better than the response time model, except the
error rate of the OSG model was significantly better.

In Figure 3, the selected W2V model slightly outperforms
the OSG model in mid-range true positive rates, while
the OSG model performed slightly better in a higher true
positive area. Precision and recall curves show similar
patterns to those we observed from the immediate post-test
prediction models. The OSG model only outperforms the
W2V model in a very low recall value area.

4.1.3 Comparing Models
Compared to the selected W2V model in the immediate
post-test condition, the selected W2V model in the delayed
post-test retention condition showed a significantly lower
AUC score, marginally higher F1 score, and marginally
higher error rate. In terms of OSG models, the selected OSG
model for delayed post-test retention showed a significantly
better F1 score and error rates than the selected OSG model
in the immediate post-test condition. Based on these results,
we can argue that Osgood scale scores can be more useful for
predicting student retention in the delayed post-test session
than predicting the outcome from the immediate post-test.

In terms of selected feature types, the best-performing
OSG models used features based on the difference between
responses (Resp) or the convex hull area (Chull) that was
created from the relative location of the responses. On the
other hand, selected W2V models used both the distance
between the target word and responses and difference
between responses (Dist+Resp). When we compared
both W2V and OSG models using the difference between
responses feature, we found that performance is similar in
the immediate post-test data. However, the OSG model
was significantly better in the delayed post-test data. These
results show that Osgood scale scores can be more useful for
representing the relationship among response sequences.

4.2 Comparing the Osgood Scales
To identify which Osgood scales are more helpful than
others for predicting students’ performance, we conducted
a scale-wise importance analysis. The results from this
section reveal which Osgood scales are more important than
others, and how the performance of prediction models with
a reduced number of scales is comparable with the full-scale
model.

4.2.1 Identifying More Important Osgood Scales
In this section, based on the selected Osgood score model
from Section 4.1, we identified the level of contribution for
features based on each Osgood scale. For example, the
selected OSG model for predicting the immediate post-test
data uses the difference between responses in ten Osgood
scales as features. In order to diagnose the importance level
of the first scale (bad–good), we can retrain the model with
features based on the nine other scales and compare the
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Table 2: Ranks of predictive feature sets for regular Word2Vec models (W2V) and Osgood score models
(OSG) in the immediate post-test data. All models are significantly better than the baseline model. (Bold:
the selected model with highest overall rank.)

W2V models OSG models
Features AUC F1 Err AUC F1 Err
baseline 0.68 [0.67, 0.69] (5) 0.74 [0.73, 0.74] (5) 0.33 [0.33, 0.34] (5) 0.68 [0.67, 0.69] (5) 0.74 [0.73, 0.74] (5) 0.33 [0.33, 0.34] (7)
RT 0.69 [0.68, 0.70] (4) 0.75 [0.75, 0.76] (3) 0.31 [0.31, 0.32] (4) 0.69 [0.68, 0.70] (2) 0.75 [0.74, 0.76] (2) 0.31 [0.31, 0.32] (2)
Dist 0.72 [0.71, 0.74] (1) 0.76 [0.75, 0.76] (2) 0.29 [0.28, 0.30] (2) 0.67 [0.66, 0.68] (7) 0.73 [0.73, 0.74] (7) 0.33 [0.32, 0.34] (6)
Resp 0.70 [0.69, 0.71] (3) 0.75 [0.74, 0.76] (4) 0.31 [0.30, 0.32] (3) 0.69 [0.68, 0.70] (1) 0.75 [0.75, 0.76] (1) 0.31 [0.30, 0.32] (1)
Chull NA NA NA 0.69 [0.68, 0.70] (3) 0.74 [0.73, 0.75] (4) 0.32 [0.31, 0.33] (4)
Dist+Resp 0.72 [0.71, 0.73] (2) 0.76 [0.75, 0.77] (1) 0.29 [0.28, 0.30] (1) 0.68 [0.67, 0.69] (4) 0.74 [0.73, 0.75] (3) 0.31 [0.31, 0.32] (3)
Dist+Chull NA NA NA 0.67 [0.66, 0.68] (6) 0.74 [0.73, 0.74] (6) 0.33 [0.32, 0.34] (5)

Table 3: Ranks of predictive feature sets for W2V and OSG models in the delayed post-test data. All models
are significantly better than the baseline model. (Bold: the selected model with highest overall rank.)

W2V models OSG models
Features AUC F1 Err AUC F1 Err
baseline 0.65 [0.64, 0.67] (5) 0.75 [0.74, 0.76] (5) 0.33 [0.32, 0.34] (5) 0.65 [0.64, 0.67] (5) 0.75 [0.74, 0.76] (7) 0.33 [0.32, 0.34] (7)
RT 0.67 [0.65, 0.68] (3) 0.76 [0.76, 0.77] (4) 0.31 [0.30, 0.32] (3) 0.67 [0.65, 0.68] (3) 0.76 [0.76, 0.77] (5) 0.31 [0.30, 0.32] (5)
Dist 0.66 [0.64, 0.68] (4) 0.77 [0.76, 0.78] (3) 0.31 [0.30, 0.32] (4) 0.66 [0.64, 0.68] (4) 0.78 [0.77, 0.79] (3) 0.30 [0.29, 0.31] (3)
Resp 0.69 [0.67, 0.71] (1) 0.77 [0.76, 0.78] (2) 0.30 [0.29, 0.31] (2) 0.63 [0.61, 0.65] (7) 0.76 [0.75, 0.77] (6) 0.32 [0.31, 0.33] (6)
Chull NA NA NA 0.69 [0.68, 0.71] (1) 0.78 [0.77, 0.79] (2) 0.28 [0.27, 0.29] (1)
Dist+Resp 0.68 [0.66, 0.70] (2) 0.78 [0.77, 0.79] (1) 0.30 [0.29, 0.31] (1) 0.64 [0.62, 0.66] (6) 0.77 [0.76, 0.78] (4) 0.31 [0.29, 0.32] (4)
Dist+Chull NA NA NA 0.69 [0.67, 0.71] (2) 0.78 [0.78, 0.79] (1) 0.29 [0.27, 0.30] (2)

performance of the newly trained model with the existing
full-scale model.

In Table 4, we picked the top five scales that were
important in individual prediction tasks. We found that big-
small, helpful-harmful, complex-simple, and fast-slow were
commonly important Osgood scales for predicting students’
performance in immediate post-test and delayed post-test
sessions. Scales like bad-good and passive-active were only
important scales in the immediate post-test prediction.
Likewise, new-old was an important scale only in the delayed
post-test prediction.

Table 4: Scale-wise importance of each Osgood
scale. Scales were selected based on the sum of each
evaluation metric’s rank. (Bold: Osgood scales that
were commonly important in both prediction tasks;
*: top five scales in each prediction task including
tied ranks)

Imm. post-test Del. post-test
Scales AUC F1 Err All AUC F1 Err All
bad-good 1 1 1 1* 4 10 4 6
passive-active 2 4 3 2* 8 6 6 7
powerful-helpless 7 9 6 7.5 10 8 10 10
big-small 3 3 4 3* 1 3 2 2*
helpful-harmful 4 6 5 5.5* 2 1 1 1*
complex-simple 8 5 2 5.5* 3 5 7 4.5*
fast-slow 5 2 7 4* 6 4 3 3*
noisy-quiet 6 8 8 7.5 7 9 9 9
new-old 9 7 9 9 5 2 8 4.5*
healthy-sick 10 10 10 10 9 7 5 8

4.2.2 Performance of Reduced Models
Based on the scale-wise importance analysis results, we built
reduced-scale models that only contain features with more
important Osgood scales. The prediction performance of
reduced-scale models was similar or marginally better than
full-scale OSG models. For example, the OSG model for
predicting the immediate post-test outcome with the top
two scales (bad–good and passive–active) were marginally
better than the full-scale model (AUC: 0.71 [0.70, 0.72], F1:
0.76 [0.75, 0.77], error rate: 0.30 [0.29, 0.30]). Similar results
were observed for predicting retention in the delayed post-
test (selected scales: helpful–harmful, big–small) (AUC: 0.71
[0.69, 0.72], F1: 0.79 [0.78, 0.80], error rate: 0.28 [0.27,

0.29]). Although differences were small, the results indicate
that using a small number of Osgood scales can be similarly
effective to the full-scale model.

5. DISCUSSION AND CONCLUSIONS
In this paper, we introduced a novel semantic similarity
scoring method that uses predefined semantic scales to
represent the relationship between words. By combining
Osgood’s semantic scales [16] and Word2Vec [13], we could
automatically extract the semantic relationship between
two words in a more interpretable manner. To show this
method can effectively represent students’ knowledge in
vocabulary acquisition, we built prediction models that can
be used to predict the student’s immediate learning and
long-term retention. We found that our models performed
significantly better than the baseline and the response-
time-based models. In the future, we believe results from
using an Osgood scale-based student model could be used
to provide a more personalized learning experience, such
as generating questions that can improve an individual
student’s understanding for specific semantic attributes.

Based on our findings, we have identified the following
points for further discussion. First, in Section 4.1, we
found that models using Osgood scale scores perform
similarly with models using regular Word2Vec scores
for predicting students’ long-term retention of acquired
vocabulary. However, we think our models can be further
improved by incorporating additional features. For example,
non-semantic score-based features like response time and
orthographic similarity among responses can be useful
features for capturing different patterns of false predictions
of current models. Moreover, some general measures to
capture a student’s meta-cognitive or linguistic skills could
be helpful to explain different retention results found even if
students provided the same response sequences. Similarly, in
Section 4.1.3, we found that Osgood scores can be a better
metric to characterize the relationship between responses
in terms of predicting students’ retention. A composite
model that uses both regular Word2Vec score-based feature
(target-response distance) and Osgood scale score-based
feature (response-response distance) may also provide better
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Figure 3: ROC curves and precision and recall curves for selected immediate post-test prediction models
(left) and delayed post-test prediction models (right). Curves are smoothed out with a local polynomial
regression method based on repeated cross-validation results.

prediction performance.

Second, we found that models with a reduced number of
Osgood scales performed marginally better than the full-
scale model. However, differences were very small. Since
this study only used some of the semantic scales from
Osgood’s study [16], further investigation would be required
to examine the validity of these scales, including other scales
not used for this study, for capturing the semantic attributes
of student responses during vocabulary learning.

Also, there were some limitations in the current study
and areas for future work. First, expanding the scope
of analysis to the full set of experimental conditions
used in the study may reveal more complex interactions
between these conditions and students’ short- and long-
term learning. Second, this study used a fixed threshold
of 0.5 for investigating false prediction results. However, an
optimal threshold for each participant group or prediction
model could be selected, especially if there are different false
positive or negative patterns observed for different groups
of students. Lastly, this study collected data from a single
vocabulary tutoring system that was used in a classroom
setting. Applying the proposed method to data that was
collected from a non-classroom setting or other vocabulary
learning system would be useful to show the generalization
of our suggested method.
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ABSTRACT 
We investigate generalizability of face-based detectors of mind 
wandering across task contexts. We leveraged data from two lab 
studies: one where 152 college students read a scientific text and 
another where 109 college students watched a narrative film. We 
automatically extracted facial expressions and body motion 
features, which were used to train supervised machine learning 
models on each dataset, as well as a concatenated dataset. We 
applied models from each task context (scientific text or narrative 
film) to the alternate context to study generalizability. We found 
that models trained on the narrative film dataset generalized to the 
scientific text dataset with no modifications, but the predicted mind 
wandering rate needed to be adjusted before models trained on the 
scientific text dataset would generalize to the narrative film dataset. 
Additionally, we analyzed generalizability of individual features 
and found that the lip tightener and jaw drop action units had the 
greatest potential to generalize across task contexts. We discuss 
findings and applications of our work to attention-aware learning 
technologies.   

Keywords 

Mind Wandering, Mental States, Attention Aware Interfaces, 
Cross-Corpus training. 

1. INTRODUCTION 
Consider a typical day when you were an undergraduate college 
student. Your first class is your favorite, so you are engaged in the 
lecture content and processing new information. In your next class, 
you watch a documentary about a subject that does not interest you, 
causing your attention to focus on unrelated thoughts of your social 
life, rather than processing the information in the video. Later, you 
work on a homework assignment that you find frustrating, leading 
to waning motivation. Towards the end of your day, you attend a 
chemistry lab, where you interact with a new educational game that 
teaches you the basics of chemical bonds. At some points you are 
enjoying the game, and thus engaged in deeply learning the content. 
However, you later become bored during a long period of repetitive 
gameplay, causing you to become distracted and miss important 
information. Throughout the day, your mental states (engagement, 
frustration, boredom) influenced your learning. Your learning 

experience could have been augmented with technology that 
responded to your changing mental state, thus assisting you in 
achieving the most effective learning experience. 

Educational interfaces that detect and respond to student mental 
states are driven by work on cognitive and affective state modeling, 
which has been investigated for many years. For example, attention 
and affect has been modeled in educational tasks such as reading 
comprehension [6, 16, 28] and computerized tutoring [3, 19], 
among others. In general, there has been a plethora of work that has 
modeled a variety of mental states within specific educational tasks 
(e.g., [2, 15, 19]) to better understand these states and use that 
knowledge to facilitate student learning. 

However, prior research has overwhelmingly investigated single 
task contexts, and has overlooked generalizability to different 
contexts. For example, models that track attention during reading 
might not generalize to lecture viewing, educational gaming, and 
so on. This makes it difficult to decouple task-specific effects from 
more fundamental patterns. In contrast, models that successfully 
generalize across multiple contexts should reveal observable 
signals (i.e. eye gaze, facial features, and physiology data) that are 
general, rather than task-specific. Models using such indicators will 
be key to developing adaptive technologies that are sensitive to 
student mental states and that can operate across a range of 
educational activities. 

We report results on modeling mental states in a generalized way 
using mind wandering (MW) as a case study. MW is a ubiquitous 
phenomenon where thoughts shift from task-related processing to 
task-unrelated thoughts [15]. MW is estimated to occur anywhere 
from 20% - 50% of the time, depending on the person, task, and 
environmental context [23]. It is has also been associated with 
lower performance on a variety of educational tasks, such as 
reading comprehension [16] and retention of lecture content [29], 
thus impacting student learning. 

As with work on other mental states, research on MW has largely 
failed to address models that generalize across contexts [6, 15]. 
MW detection has been investigated in reading comprehension [6, 
16], narrative and instructional film comprehension [25, 26], and 
student interaction with an intelligent tutoring system (ITS) [19]. 
To our knowledge, no work has investigated MW detection with 
the goal of generalizability across task contexts.  

We specifically investigate the generalizability of MW models 
across two task contexts - reading a scientific text and viewing a 
narrative film. These contexts were chosen because of their broad 
applicability to education in the classroom and online. For example, 
a documentary film could be shown in a sociology course or 
distance learning students could read instructional texts prior to 
engaging in an online discussion.  
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1.1 Related Work 
Cross corpus training has been researched in a variety of 
classification problems, such as sentiment analysis [31] and 
acoustic-based emotion recognition [35]. Cross corpus training 
seeks to improve robustness of machine-learned models by 
leveraging multiple datasets in classifier training and testing. For 
example, Webb and Ferguson [32] applied cross corpus training 
techniques to characterize the function of segments of dialogue 
using automatically extracted lexical and syntactic features called 
cue phrases. Each extracted cue phrase was used to classify a 
segment of dialogue. They trained separate classifiers on two 
different datasets, and applied the classifier to the dataset on which 
it was not trained. They found the cross-training results were 
comparable to the results of training and testing on the same dataset 
(e.g. the best cross-trained classifier achieved and accuracy of 71%, 
compared to an accuracy of 81% when trained and tested on the 
same dataset). Additionally, they examined generalizability of the 
cue phrases across datasets by reducing the feature set to contain 
only cues present in both datasets. They found that reducing the 
feature set yielded slight improvements, and demonstrated the 
discriminative nature of a small number of features.  

Zhang et. al. [35] similarly explored the use of multiple datasets for 
creating context-generalizable models. They built classifiers for 
valence and arousal on highly varied emotional speech datasets 
using a leave-one-corpora-out cross-validation technique. 
Additionally, they explored methods for data normalization (within 
each dataset and between datasets) and agglomeration of both 
labeled and unlabeled data. They found that, of their six emotional 
speech corpora, training on some subsets yielded higher accuracy 
than others. Their work suggested that careful selection of corpora 
best suited for training might yield better emotional speech 
recognition performance than an all-or-nothing approach to cross-
corpus training.  

Our work approaches cross-corpus modeling through detection of 
MW. A variety of studies have investigated MW detection during 
educational tasks, such a reading [15], interacting with an 
intelligent tutoring system (ITS) [19], or watching an educational 
video [26]. No work has focused on MW from a cross-corpus 
modeling perspective, to our knowledge, so we review the 
individual studies below.  

Detection of MW from eye gaze features while reading has been 
amply investigated. For example, Bixler and D’Mello [4] built 
models to detect MW while students read texts about scientific 
research methods. This work made use of probe-caught reports 
(students respond yes or no to auditory thought probes of whether 
they were MW), instead of self-caught reports (students report 
whenever they catch themselves MW). Their analysis of eye gaze 
features showed that certain types of fixations were longer during 
MW. Specifically, they found that longer gaze fixations 
(consecutive fixations on a single word), first-pass fixations 
(fixations on a word during the first pass through a text), and single 
fixations (fixations on a word only fixated on once) were predictive 
of MW. In other work, Bixler and D’Mello [5] similarly used eye 
gaze features, but used self-caught reports of MW. They found that 
a greater number of fixations, longer saccade length, and line cross 
saccades were indicative of MW. Across studies on MW detection 
during reading, longer fixations were found to be indicative of MW 
[4, 15, 28], suggesting these features might generalize well. 

Pham and Wang [26] similarly used consumer-grade equipment to 
detect MW while students watched videos from massively open 
online courses (MOOCs). They made use of heart rate, detected by 

monitoring fingertip blood flow, using the back camera of a 
smartphone (i.e., photoplethysmography). Their models achieved a 
22% improvement over chance. Although their method for 
detecting MW could be implemented across a variety of tasks, the 
question of whether heart rate is indicative of MW across task 
contexts has not yet been investigated. 

Hutt et. al. provided limited evidence of generalizability of MW 
detection across different learning tasks during student interaction 
with an ITS [19]. They employed a genetic algorithm to train a 
neural network using context-independent eye-gaze features and 
context-dependent interaction features (e.g., current progress 
within the ITS). They achieved an F1 value of .490 (chance = .190). 
This work provided some evidence of generalizability because the 
visual stimuli and interaction patterns varied throughout. For 
example, students interacted with an animated pedagogical agent in 
a scaffolded dialogue phase and completed concept maps without 
the tutoring agent in another interaction phase. However, it is still 
unclear if their model would generalize to a broader range of tasks, 
particularly less interactive ones like reading or film viewing. 
Furthermore, their best-performing models used context-dependent 
features, which could prevent the detector from generalizing to a 
task where those features could not be used.  

1.2 Novelty 
Our contribution is novel in a variety of ways. First, we demonstrate 
the feasibility of building cross-context detectors of mental states, 
specifically MW. Further, previous work on MW detection has 
sometimes made use of context-specific features (e.g., reading 
times) that are not expected to generalize to other contexts [19, 25]. 
In contrast, our work detects MW using only facial features and 
upper body movement, recorded using commercial-off-the-shelf 
(COTS) webcams that are expected to generalize more broadly. 
Additionally, the use of COTS webcams support a broader 
implementation of MW detectors as webcams are ubiquitous in 
modern technology. This is in contrast to prior research that has 
used specialized equipment, like eye trackers [15, 19, 25] or 
physiology sensors [7], which students would likely not have 
access to. 

2. DATASETS 
This study makes use of narrative film [23] and scientific reading 
comprehension [22] datasets collected as part of a larger project. 
Here, we include details pertaining to video-based detection of 
MW. 

2.1 Narrative Film Comprehension 
Participants were 68 undergraduate students from a medium-sized 
private Midwestern university and 41 undergraduate students from 
a large public university in the Southern United States. Of the 109 
students, 66% were female and their average age was 20.1 years. 
Students were compensated with course credit. Data from four 
students were discarded due to equipment failure. 

Students viewed the narrative film The Red Balloon (1956), a 32.5-
minute French-language film with English subtitles (Figure 1). The 
film has a musical score but only sparse dialogue. This short fantasy 
film depicts the story of a young Parisian boy who finds a red 
helium balloon and quickly discovers it has a mind of its own as it 
follows him wherever he goes. This film was selected because of 
the low likelihood that participants have previously seen it and 
because it has been used in other film comprehension studies [34]. 
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Students’ faces and upper bodies were recorded with a low-cost 
($30) consumer-grade webcam (Logitech C270). 

Students were instructed to report MW throughout the film by 
pressing labeled keys on the keyboard. Specifically, students were 
asked to report a task-unrelated thought if they were “thinking 
about anything else besides the movie” and a task-related 
interference if they were “thinking about the task itself but not the 
actual content of the movie.” A small beep sounded to register their 
report, but film play was not paused. After viewing the film, 
students took a short test about the content and completed 
additional measures not discussed further. 

We recorded a total of 1,368 MW reports from the 105 participants 
with valid video recordings. In this work, we do not distinguish 
between the two types of MW, instead merging the task-unrelated 
thoughts and the task-related interferences, both of which represent 
thoughts independent of the content of the film. 

2.2 Scientific Reading Comprehension 
Participants were 104 undergraduate students from a medium-sized 
private Midwestern university and 48 undergraduate students from 
a large public university in the Southern United States. Of the 152 
participants, 61% were female and their average age was 20.1 
years. Participants were compensated with course credit. Data from 
eight participants were discarded due to equipment failure. 

Students read an excerpt from Soap-Bubbles and the Forces which 
Mould Them [8]. Like The Red Balloon (Figure 1), we chose this 
text because its content would likely be unfamiliar to a majority of 
readers. The text contained around 6,500 words from the first 
chapter of the book. In all, 57 pages (screens of text) with an 
average of 115 words each were displayed on a computer screen in 
36-pt Courier New typeface. The only modification to the text was 
the removal of images and references to them after verifying that 
these were not needed for comprehension. 

Students who read the scientific text were instructed to report MW 
in the same way as those who watched the narrative film. They were 
instructed to report a task-unrelated thought if they were “thinking 
about anything else besides the task” and a task-related interference 
if they were “thinking about the task itself but not the actual content 
of the text.” Participants completed a comprehension assessment 
after reading the text. We recorded a total of 3,168 MW reports 
from the 144 students with valid video recordings. 

2.3 Self Reports of MW 
MW was measured via self-reports in both studies, so it is prudent 
to discuss the validity of self-reports. We used self-reports because 

this is currently the most common approach to measure an 
inherently internal (but conscious) phenomenon [5, 15]. Self-
reported MW has been linked to predictable patterns in physiology 
[30], pupillometry [17], eye-gaze [28] and task performance [27], 
providing evidence for the convergent and predictive validity for 
this approach. To improve the quality of self-reports, we 
encouraged students to report honestly and assured them that 
reporting MW would not in any way effect the credit they received 
for participation.  
The alternative to using self-caught reports is using probe-caught 
reports, which require a student response to a thought-probe (e.g., 
a beep). We chose self-caught reports over the probe-caught 
because the probe-caught method can potentially interrupt the 
comprehension process (i.e., when participants report “no” to the 
probes). Interruptions are particularly problematic in the film 
comprehension task, as participants did not have control over the 
media presentation (i.e., no pausing or rewinding of the film). 
Furthermore, it is also unclear if a probe-caught report takes place 
at the beginning or end of MW, or somewhere in between. 
Conversely, self-caught reports are likely to occur at the end of a 
MW episode when the student became aware that they were not 
attending to the task at hand. 

3. MACHINE LEARNING 
We explored a variety of machine learning techniques for cross-
context MW detection using the same approach to segmenting 
instances and constructing features for both datasets. 

3.1 Segmenting Instances 
Reports of MW were distributed throughout the course of the film 
viewing or text reading session. We created instances that 
corresponded to reports of MW by first adding a 4-second offset 
prior to the report. This was done to ensure that we captured 
participants’ faces while MW vs. in the act of reporting MW itself 
(i.e., the preparation and execution of the key press). This 4-second 
offset was chosen based on four raters judgements of whether or 
not movement related to the key-press could be seen within offsets 
ranging from 0 to 6 seconds. Data was then extracted from the 20 
seconds prior to the MW report. A window size of 20 seconds was 
chosen based on prior experimentation that sought to balance 
creating as many instances as possible (shorter window sizes) and 
having sufficient data in each window (longer window sizes) to 
detect MW. 

We extracted “not MW” instances from windows of data between 
MW reports. The entire session (reading or video watching) was 
divided into 24-second segments (20 second windows of data and 
a 4 second offset as with the MW segments). Any segments 

                  
Figure 1. A screenshot of the narrative film (left) and scientific text (right) are shown. 
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overlapping the 30 seconds prior to a MW report were discarded. 
We do not know precisely when MW starts, so we chose to discard 
instances overlapping the 30 seconds prior to MW reports, to 
separate students when they were actually MW from when they 
were not. We also discarded any segments overlapping a page turn 
(discussed in Section 3.2). All remaining segments were labeled 
Not MW. Our approach to segmenting instances is shown in Figure 
2. 

 
Figure 2. Illustration of the instance extraction method. 

3.2 Instance Selection 
A full accounting of the instance selection process is shown in 
Table 1. Our goal was to make the two data sets as similar as 
possible so that task-specific effects could be studied without 
additional confounds. 
We first discarded any instances where there was less than one 
second of usable data in that time window. Data was not usable 
when the student’s face was occluded due to extreme head pose or 
position, hand-to-face gestures, and rapid movements. 
Additionally, for the scientific reading dataset, we discarded 
instances that overlapped with page turn events. In prior 
experimentation, we trained a model to detect MW using only a 
binary feature of whether or not that instance overlapped a page 
turn boundary. MW was detected at rates above chance in this 
experimental model. Therefore, we concluded that including 
instances that overlapped page turn boundaries would inflate 
performance as the detector could simply be picking up on the act 
of pressing the key to advance to the next page. 
After discarding instances using the method above, we matched the 
scientific reading and narrative film datasets on school (medium-
sized Midwestern private university or large Southern public 
university), reported ethnicity, and reported gender. The scientific 
reading dataset was randomly downsampled to contain 
approximately the same number of students in each gender, race, or 
school category, as the film dataset. This participant-level matching 
on school, ethnicity, and gender was done to eliminate external 
sources of variance that could influence MW detection, potentially 
obfuscating task effects from population effects. 
Finally, the datasets were downsampled to contain equal numbers 
of instances because the size of the training set is known to bias 
classifier performance [13]. We also downsampled the data to 
achieve a 25% MW rate in order to be consistent with research that 
suggests that MW occurs between 20% and 30% of the time during 
reading and film comprehension [6, 23]. Further, the MW rates of 
30% and 14% obtained in these data are more artefacts of the 
instance segmentation approach rather than the objective rate, so 
resampling ensures a dataset that is more reflective of expected 
MW rates.  
 
 

Table 1. An accounting of instance selection process  

 Reading  
(% MW) 

Film  
(% MW) 

Base 7,267 (30%) 7,313 (14%) 

Face Detected 7,266 (30%) 7,238 (14%) 

Page Boundary 1,400 (36%) N/A 

Participant Matching 1,273 (35%) N/A 

Downsampling 1,100 (25%) 1,100 (25%) 

3.3 Feature Extraction and Selection 
We used commercial software, the Emotient SDK [36] to extract 
facial features. The Emotient SDK, a version of the CERT 
computer vision software [24] (Figure 3) provides likelihood 
estimates of the presence of 20 facial action units (AUs; specifically 
1, 2, 4, 5, 6 ,7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, and 
43 [14]) as well as head pose (orientation), face position (horizontal 
and vertical within the frame), and face size (a proxy for distance 
to camera). Additionally, we used a validated motion estimation 
algorithm to compute gross body movements [33]. Body movement 
was calculated by measuring the proportion of pixels in each video 
frame that differed by a threshold from a continuously updated 
estimate of the background image generated from the four previous 
frames. 

 
Figure 3. Interface demonstrating AU estimates detected from 

a face video. 
Features were created by aggregating Emotient estimates in a 
window of time leading up to each MW or Not MW instance using 
minimum, maximum, median, mean, range, and standard deviation 
for aggregation. In all, there were 162 facial features (6 aggregation 
functions × [20 AUs + 3 head pose orientation axes + 2 face 
position coordinates + face size + Motion]). Outliers (values greater 
than three standard deviations from the mean) were replaced by the 
closest non-outlier value in a process called Winsorization [11].  

We used tolerance analysis to eliminate features with high 
multicollinearity (variance inflation factor > 5) [1], after which, 37 
features remained. This was followed by RELIEF-F [21] feature 
selection (on the training data only) to rank features. We retained a 
proportion of the highest ranked features for use in the models 
(proportions ranging from .05 to 1.0 were tested). Feature selection 
was performed using nested cross-validation on training data only. 
We ran 5 iterations of feature selection within each cross-validation 
fold (discussed below), using data from a randomly chosen 67% of 
students within the training set in each iteration.  

3.4 Supervised Classification and Validation 
Informed by preliminary experiments, we selected seven classifiers 
for more extensive tests (Naïve Bayes, Simple Logistic Regression, 
LogitBoost, Random Forest, C4.5, Stochastic Gradient Descent, 
and Classification via Regression) using the WEKA data mining 
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toolkit [18]. For each classifier, we applied SMOTE [9] to the 
training set only. SMOTE, a common machine learning technique 
for dealing with data imbalance, creates synthetic interpolated 
instances of the minority class to increase classification 
performance. 
We evaluated the performance of our classifiers using leave-one-
participant-out cross-validation. This process runs multiple 
iterations of each classifier in which, for each fold, the instances 
pertaining to a single participant are added to the test set and the 
training set is comprised of the instances for the other participants. 
Feature selection was performed on a subset of participants in the 
training set. The leave-one-out process was repeated for each 
participant, and the classifications of all folds were weighted 
equally to produce the overall result. This cross-validation 
approach ensured that in each fold, data from the same participant 
was in the training set or testing set but never both, thereby 
improving generalization to new participants. 
Accuracy (recognition rate) is a common measure to evaluate 
performance in machine learning tasks. However, any classifier 
that defaults to predicting the majority class label of an imbalanced 
dataset can appear to have high accuracy despite incorrect 
predictions of all instances of the minority class label [20]. This is 
particularly detrimental in applications where detecting the 
minority class is of upmost importance. In our task, we prioritized 
the detection of MW despite the large imbalance in our dataset. 
Therefore, we considered the F1 score for the MW label as our key 
measure of detection accuracy since F1 attempts to strike a balance 
between precision and recall. 

4. RESULTS 
4.1 Cross-dataset Training and Testing 
We trained three classifiers: one on the scientific text dataset, one 
on the narrative film dataset, and one on a concatenated dataset 
comprised of the first two. For each of the three training sets, the 
classifier that yielded the highest MW F1 is shown in Table 2. We 
used leave-one-student-out cross validation for within-dataset 
evaluations. Conversely, to measure generalizability of the models 
across contexts we applied the classifier trained on scientific text 
data to the narrative film data, and vice versa. We compared our 
model to a chance model that classified a random 25% (MW prior 
proportion) of the instances as MW. This chance-level method 
yielded a precision and recall of .250 (equal to the MW base rate).  

Table 2. Results for the models with highest MW F1 for the 
within-data set validation (cross-training results in 

parentheses).  

Training Set Classifier MW F1 Precision Recall 

Scientific Text Logitboost .441 (.267) .376 (.252) .553 (.284) 

Narrative Film C4.5 .436 (.407) .303 (.278) .775 (.760) 

Both Logistic .424 .314 .655 
 
We calculated improvement over chance as (actual performance – 
chance)/(perfect performance – chance). All three models showed 
improvement over chance (25% for scientific text, 25% for 
narrative film, and 23% for the concatenated dataset) when trained 
and tested on the same dataset. When tested on the alternative 
dataset, the narrative film classifier generalized well to the 
scientific text dataset (21% improvement over chance). However, 
the scientific text model showed chance-level performance on the 
narrative film corpus (2% improvement over chance). The MW F1 

of the concatenated dataset model was simply an average of the 
MW F1 score of the individual datasets when the instance 
predictions of the individual datasets are separated (.413 for the 
scientific reading dataset and .436 on the narrative film dataset). 
These results showed that the concatenated classifier does not skew 
towards predicting one dataset better than the other, but rather 
predicts both models with comparable accuracy. 
Table 2 also shows precision and recall for each of the models. 
Across all models, recall was higher than precision, indicating a lot 
false positives. It is important to note the near chance-level recall 
and precision of the model trained on scientific reading data when 
applied to the narrative film data. The lack of improvement over 
chance for both recall and precision demonstrated the need to 
improve generalizability in both dimensions. Conversely, the cross-
trained narrative film model had lower precision, but good recall, 
resulting in an improved MW F1 score. 

4.2 Classifier Generalizability 
To address the negligible improvement over chance of the scientific 
text model when tested on the narrative film dataset, we repeated 
the training and testing using C4.5 as the classifier. The C4.5 
classifier was chosen because it generalized better when trained on 
the narrative film dataset than the Logitboost classifier generalized 
when trained on the scientific text dataset. The results are shown in 
Table 3, where we note no notable improvement over the previous 
Logitboost classifier in Table 2 (change from .267 to .287 when 
tested on the narrative film dataset). Therefore, the lack of evidence 
for generalizability for the scientific text model could be due to 
overfitting to the training set, rather than classifier selection. 

Table 3. Results (MW F1) for the C4.5 classifier for within- 
and cross- validation. 

Training Set Within  Cross 

Scientific Text 0.425 0.287 

Narrative Film 0.436 0.407 

Both 0.415 N/A 

4.3 Prediction Threshold Adjustment 
We further investigated the lack of generalizability of the scientific 
text model by considering the MW prediction rate. We compared 
the performance of both models on the narrative film dataset. Recall 
dropped considerably more than precision (Table 2; recall dropped 
from .775 to .284; precision decreased from .303 to .252). We 
hypothesized that recall decreased because of a difference in 
predicted MW rates (Table 4). In fact, the predicted MW rate in the 
narrative film data dropped from 64% to 28% when applying the 
scientific text model to the same data. This supported our 
hypothesis that the low recall was linked to lower predicted MW 
rates. Furthermore, 39% of the correctly classified instances (true 
positives and true negatives) were MW when applying the narrative 
film model to the narrative film data compared to 12% for the 
scientific text model applied to the same data. This demonstrated 
that the scientific text model was much more prone to missing MW 
instances, further supporting our hypothesis. 
To address this, we adjusted the predicted MW rate of the scientific 
text model when applied to the narrative film dataset. The classifier 
outputs a likelihood of MW and we previously considered instances 
with likelihoods greater than .5 as MW. We adjusted that prediction 
threshold from .1 to 1 in increments of .1 (Figure 4) to investigate 
how changes in predicted MW rate (higher for lower thresholds) 
effected recall, and thus MW F1. 
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Table 4. Predicted MW Rates. 

Training Set Within Cross 

Scientific Text 38% 28% 

Narrative Film 64% 68% 

Both 52% N/A 
 

 
Figure 4. MW precision, recall, and F1 as the prediction 

threshold varies for the scientific text model applied to the 
narrative film dataset. 

We note that MW F1 score degrades at a threshold of .5. We 
adjusted the threshold to .3 and yielded the results shown in Table 
5. After adjusting the MW prediction threshold, both precision and 
recall of the narrative film data applied to the scientific text model 
showed comparable performance to the cross-trained narrative film 
model. It is important to note that the adjusted MW prediction 
threshold yielded a predicted MW rate of 76%, much higher than 
the MW rate of the dataset (25%). As with the generalized narrative 
film model, this reduced precision because the high predicted MW 
rate produced a large number of false positives. 

Table 5. Results for models with highest MW F1 (cross-
training results in parentheses). Cross-training results for the 
scientific text model reflect a MW prediction threshold of .3. 

Training Set Classifier MW F1 Precision Recall 

Scientific Text Logitboost .441 (.416) .376 (.276) .553 (.836) 

Narrative Film C4.5 .436 (.407) .303 (.278) .775 (.760) 

Both Logistic .424 .314 .655 

4.4 Feature Analysis 
We analyzed the facial features to further study generalizability by 
predicting MW with different subsets of the entire feature set. The 
C4.5 classifier was chosen for this feature analysis because of its 
consistency on both the scientific text model and concatenated 
dataset. Each subset consisted of the features (e.g., median, 
standard deviation) from one AU, or from face position, size, 
orientation, or motion. Since tolerance analysis was not used here, 
we only considered the minimum, maximum, median, and standard 
deviation aggregated features to prevent redundancy (e.g., between 
median and mean). For example, we used the minimum, maximum, 
median, and standard deviation feature values for AU5 (upper lid 
raiser) to predict MW. This approach was applied to the 20 AU 
subsets, as well as face position, size, orientation, and motion 
subsets. We generated the same cross-training configurations of in 
Section 4.1 (i.e., train on scientific text, test on narrative film, etc.). 

To rank the subsets of features on generalizability, we examined 
MW F1 scores when testing on the alternative dataset only. For 
example, using the AU9 (nose wrinkle) subset, we investigated 
MW F1 value of scientific text model applied to the narrative film 
dataset and the narrative film model applied to the scientific text 
dataset. Table 4 shows these results only for features that achieved 
a MW F1 of greater than .250 (chance) on all dimensions (within 
dataset validation and cross-training). We selected features for 
further analysis if their MW F1 was greater than .300 for both cross-
training results. This value of .300 was used to filter out features 
that performed well on the within-dataset validation, but fell short 
on cross training. It also ensured that a feature performed better 
than chance on both cross-trained results (i.e., train on narrative 
film and test on scientific text, and vice versa), rather than only 
generalizing to one dataset. Using this criterion, only AU23 and 
AU26 showed notable improvement over chance. 

We used the C4.5 classifier to generate the same models in Table 2 
(train/test scientific text, train scientific text/test narrative film, etc.) 
using only the features from AU23 and AU26 (Table 7). None of 
these models (scientific text, narrative film, or concatenated) 
achieved a MW F1 as high as those in Table 2, which used a 
combination of tolerance analysis and RELIEF-F to select features. 
This suggested that, while AU23 and AU26 might individually 
predict MW, when used together, their prediction power might be 
limited, compared to other feature selection techniques.  

Table 6. MW F1 score for within-data set validation with 
cross-data set scores (in parentheses). 

 Training Set 
Facial Feature Scientific Text Narrative Film 
AU4 (brow lowerer) .378 (.278) .398 (.395) 
AU6 (cheek raiser) .369 (.259) .361 (.321) 
AU9 (nose wrinkler) .300 (.268) .392 (.303) 
AU14 (dimpler) .303 (.267) .383 (.376) 
AU23 (lip tightener) .334 (.333) .363 (.317) 
AU26 (jaw drop) .414 (.321) .365 (.357) 
Face Height (size) .322 (.256) .339 (.289) 
Face X (position) .404 (.316) .382 (.282) 

  
Table 7. Results for models when only using the C4.5 classifier 

on AU23 and AU26. 

Training Set Classifier MW F1 Precision Recall 

Scientific Text C4.5 .383 (.272) .255 (.206) .764 (.404) 

Narrative Film C4.5 .397 (.257) .333 (.235) .491 (.284) 

Both C4.5 .368 .271 .575 

5. ANALYSIS 
We developed automated detectors of MW using video-based 
features in the contexts of narrative film viewing and scientific 
reading. The generalizability of these models was dependent on 
corpora on which the model was trained and the rate at which the 
model predicts MW. In this section, we discuss our main findings 
and applications of this work. We also discuss limitations and 
future work. 

5.1 Main Findings 
We expanded on previous MW detection work through cross-
context modeling. We trained three models on three datasets 
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(scientific text, narrative film, and a dataset concatenated from the 
two). We found each of these models (trained and tested on the 
same corpus) performed at a notable 23% to 25% improvement 
over chance. This demonstrated the feasibility of detecting MW on 
individual corpora. However, recall was greater than precision, 
indicating prediction of false positives. This should be considered 
when implementing MW detectors in educational environments 
where excessive prediction of student MW could be demotivating. 
We investigated generalizability of the single-dataset models (i.e. 
scientific text or narrative film) by applying the model to the dataset 
on which it was not trained. The model trained on the narrative film 
dataset maintained performance when applied to the scientific text 
dataset (Table 2), providing some evidence for generalizability, but 
this performance was boosted by high recall (and comparatively 
low precision). Precision and recall (and thus MW F1) were near 
chance-level when the model trained on the scientific text dataset 
was applied to the narrative film dataset, suggesting that the model 
might overfit to the scientific text training set.   
We attempted to address this problem by applying the C4.5 
classifier, as it comparatively generalized well when trained on the 
narrative film dataset. MW F1 score for the scientific text classifier 
applied to the narrative film data again negligibly increased. This 
suggested that the training data (only scientific text) used was not 
appropriate for model generalization. This idea is supported by the 
performance of the narrative film model on the scientific text data 
(although detection of false positives is a limitation) and the notable 
improvement over chance (22% to 23%) for the concatenated 
dataset. The performance of both models suggested that there were 
discernable similarities between MW instances across the two 
datasets, which can be detected using our techniques. 
In addition to training data, we also found that predicted MW rate 
effected model generalizability. We adjusted MW predictions 
according to a sliding threshold for the narrative film predictions 
obtained from the scientific text model. We found that relaxing the 
criteria for classifying an instance as MW (i.e. adjusting the 
likelihood prediction threshold from .5 to .3) yielded results 
comparable to the cross-trained narrative film model. However, this 
approach to increasing recall should be used with caution as it leads 
to increased likelihood of false positives. Perhaps in a real-time 
MW intervention scenario, a more balanced approach could be 
taken where the MW likelihood prediction is used to determine if a 
MW intervention is triggered (e.g., if the detector determines there 
is a 40% likelihood the student is MW, then there is a 40% chance 
a MW intervention is triggered). 
We detected MW using individual feature subsets to ascertain 
whether certain face-based features (i.e. AUs, head orientation, 
position, size, and motion) generalize. We found two feature 
subsets (AU23 – lip tightener and AU26 – jaw drop) that showed a 
MW F1 of at least .300 on both cross-trained models. It is notable 
that when looking at the generalizability of these features, they did 
not individually achieve MW F1 scores as high as the best 
performing models in Table 2. This demonstrated the need for 
multiple features to work together to detect MW, rather than relying 
on a single feature. Furthermore, this showed that our method of 
feature selection (tolerance analysis and selecting a proportion of 
features using RELIEFF) was important to model performance. 

5.2 Applications 
The present findings are applicable to educational user interfaces 
that involve reading or film comprehension. Monitoring and 
responding to MW could greatly improve student performance on 
these tasks. Films and instructional texts play a major role in 

learning (both in the classroom and online). For example, films can 
give historical background on a time period being discussed in 
literature classes and instructional texts can supplement lecture 
content through textbooks or technical articles. Due to the 
relationship between MW and low task performance, user 
interfaces that detect and respond to MW in contexts where 
attention is key (i.e. education) would help students remain focused 
on their learning. 
These findings are particularly promising for implementation in 
massively open online courses (MOOCs). Our method for detecting 
MW exclusively uses COTS webcams. These webcams are 
ubiquitous in today’s computers and mobile devices; thus our work 
would integrate into a variety of learning environments without 
extra cost. Such a video-based detector of MW could feasibly 
respond to student MW through suggesting a student revisit text or 
video content, asking a reengaging question, or advising the student 
to take a break. 

5.3 Limitations and Future Work 
While we demonstrated techniques for modeling generalizability 
across task contexts, our work has a few limitations. First, precision 
is moderate, even on our best models. High predicted MW rates 
lead to high recall, but also more false positives. In this work, we 
chose to accept this tradeoff, with the goal of generalizability in 
mind. However, raising precision, while maintaining recall is key 
to task-generalizable MW detectors being successful in educational 
environments. Since MW is the minority class (25% of all 
instances), investigating skew-insensitive classifiers, such as 
Hellinger Distance Decision Trees [10], could improve precision.  
Additionally, this work focuses exclusively on generalizability 
from the perspective of task context (viewing a narrative film vs. 
reading a scientific text). Claims of generalizability could be 
strengthened through MW detection across environments. Both the 
narrative film and scientific reading datasets were collected in a 
controlled lab setting. MW detection in the field, such as computer-
enabled classrooms or the personal workstations of MOOC users, 
should be considered prior to implementation in such 
environments. Furthermore, student generalizability should be 
further examined. In this work, we detect MW in a student-
independent way. However, participants were all of similar age and 
enrolled in college. Future work could examine the generalizability 
of our method for detecting MW in non-college-aged students, such 
as elementary students in a computer-enabled classroom or non-
traditional students enrolled in distance learning courses. 

5.4 Concluding Remarks 
In this work, we showed evidence that generalizable detectors of 
MW can be created using video-based features. The corpora used 
to train models of MW and predicted MW rates both play a role in 
the model’s ability to generalize and should be considered as work 
on cross-context MW generalization advances. This work advances 
the field of attention-aware interfaces [12] by demonstrating the 
feasibility of modeling MW across the educational contexts of 
reading a scientific text and viewing a narrative film. Our approach 
to detecting MW is the first step towards building interfaces that 
detect MW across multiple educational activities. 
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ABSTRACT
We present results of a randomized controlled study that
compared different types of affective messages delivered by
pedagogical agents. We used animated characters that were
empathic and emphasized the malleability of intelligence and
the importance of effort. Results showed significant corre-
lations between students who received more empathic mes-
sages and those who were more confident, more patient, ex-
hibited higher levels of interest, and valued math knowledge
more. Students who received more growth mindset mes-
sages, tended to get more problems correct on their first
attempt but valued math knowledge less and had lower
posttest scores. Students who received more success/failure
messages tended to make more mistakes, to be less learning-
oriented, and stated that they were more confused. We con-
clude that these affective messages are powerful media to
influence students’ perceptions of themselves as learners, as
well as their perceptions of the domain being taught. We
have reported significant results that support the use of em-
pathy to improve student affect and attitudes in a math
tutor.

Keywords
student affect, empathy messages, growth mindset, peda-
gogical agents, intelligent tutor, confidence

1. INTRODUCTION
Students experience many emotions while studying and tak-
ing tests [16]. Students’ emotions (such as confidence, bore-
dom, and anxiety) can influence achievement outcomes [10,
18] and predispositions (such as low self-concept and pes-
simism) can diminish academic success [5, 14].

Pekrun’s Control-Value Theory of emotion has been experi-
mentally validated by classroom experiments that used stu-
dent self-reports (answers to 5-point scale survey questions).
These experiments provide evidence that educational inter-
ventions can reduce students’ anxiety [16, 19].

Dweck’s Growth Mindset Theory suggests that students who
believe that intelligence can be increased through effort and
persistence tend to seek out academic challenges, compared
to those who view their intelligence as immutable [8, 9].
Students who are praised for their effort (as opposed to per-
formance) are more likely to view intelligence as being mal-
leable, and their self-esteem remains stable regardless of how
hard they have to work to succeed at a task.

Hattie and Timperley [13] studied which types of feedback
and conditions enable learning to flourish and which cases
stifle growth. According to their study feedback is intended
to help a student get from where they are to where they need
to be. Graesser et al., [12] reported that there are significant
relationships between the content of feedback dialogue and
the emotions experienced during learning. They found sig-
nificant correlations between dialog and the affective states
of confusion, eureka (delight) and frustration.

Pekrun et al., [17] tested a theoretical model positing that
a student’s anticipated achievement feedback in a classroom
setting influences his/her achievement goals and emotions.
For example, self-referential feedback, in which a student’s
competence is defined in terms of self-improvement, had a
positive influence on a student’s mastery goal adoption. On
the other hand, normative feedback, in which student compe-
tence is defined relative to other students’ mastery goals and
performance goals, had a positive influence on performance-
approach and performance-avoidance goal adoption. Fur-
thermore, feedback condition and achievement goals pre-
dicted test-related emotions (i.e., enjoyment, hope, pride,
relief, anger, anxiety, hopelessness, and shame).

Teachers have limited opportunities to recognize and re-
spond to individual student’s affect in typical classrooms.
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Ideally, digital learning environments can manage the deli-
cate balance between motivation and cognition, promoting
both interest and deep learning. The overwhelming majority
of work on affect-aware virtual tutors has focused on mod-
eling affect, i.e., designing computational models capable of
detecting how students feel while they interact with intelli-
gent tutoring systems [2]. While modeling affect is a critical
first step, very little research exists on systematically explor-
ing the impact of interventions on students’ performance,
learning, and attitudes, i.e., how an environment might re-
spond to students emotions (e.g., frustration, anxiety, and
boredom) as they arise. D’Mello and Graesser carried out
close research work on empathic characters in AutoTutor,
a conversational tutor that uses 3D companions to conduct
dialogs in natural language with students [6, 7, 11].

1.1 MathSpring
The testbed for this research is MathSpring, an intelligent
tutor that personalizes mathematics problems, provides help
using multimedia, and effectively teaches students to im-
prove in standardized test scores [4]. Learning companions
(Figure 1) in MathSpring suggest to students that their ef-
fort contributes to success, and that making mistakes only
means more effort is needed. Companions use about 20 dif-
ferent messages focused on effort and growth mindset (Ta-
ble 2).

To date, MathSpring learning companions have provided
positive significant effects for the overall population of stu-
dents and were more effective for lower achieving students
and for female students in general [2]. However, charac-
ters seemed to have been harmful to some students (e.g.,
high-achieving males), who had higher affective baselines at
pretest time and seem to have been distracted by the charac-
ters. These results suggest that affective characters should
probably be different for students who are not presently frus-
trated or anxious (often high achieving males). One possi-
bility is that the behavior of the characters be adaptive to
the affective state of the student.

1.2 Recognize and Respond to Affect
Previously, we evaluated the hypothesis that tailored af-
fective messages delivered by digital animated char-
acters may positively impact students emotions, at-
titude, and learning performance. Specifically, we iden-
tified concrete prescriptive principles about how to respond
to student emotion as it occurs during online learning [1, 3].
With models of student emotion, we explored mechanisms to
address negative emotions. Our models predict confidence,
interest, frustration, and excitement in real-time, based on
data from hundreds of students. The gold standard was
students’ self-reported responses to questions, such as “How
confident do you feel right now?”

We found that growth mindset messages based on Dweck’s
theory [9] provide an apparent boost in student math
learning [3], resulted in less performance-oriented goals
(e.g., beating classmates, instead of a self-referenced focus),
and less boredom reported on the posttest. Typically
online educational systems only report correctness: “Your
answer is correct/incorrect.” We discovered that such suc-
cess/failure messages are correlated to higher reported anx-
iety and boredom, and appear to increase performance-

oriented goals[3]. Other results indicate that empathic
characters can help decrease students’ anxiety and boredom.
Our results showed that: a) student anxiety and boredom
can be reduced using simple 2D characters, as did D’Mello et
al., (2007); b) these benefits are due primarily to empathy,
and secondarily to growth mindset messages; and c) indicat-
ing only success or failure is actively harmful to students,
in comparison to emphasizing the learning process and the
importance of effort.

Figure 1: Learning companions respond to student
actions with gestures and messages shown both as
text and audio. Above: Companion shows high in-
terest while the student views an example problem
with solution steps shown. Below: Companion pro-
vides a growth mindset message, encouraging the
student to put in effort to become good at math.

1.3 Research Goals
The research questions in this paper focus on identifying
messages that support students’ motivation to persist work-
ing on a task. Which messages (see Table 2) should a tutor-
ing system send to students to encourage them to persist?
How should agents respond to negative emotions? Should
students be praised when they do well? Are the benefits to
student learning and emotion due to empathic or motiva-
tional aspects of the companion? What are the results on
learning and emotion of using an empathic or less empathic
companion in comparison to a companion that indicates only
success or failure?
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Table 1: Outcomes variables measured in the experiment. The questions on the pre- and posttest were
answered in a 5-point scale, going from “not at all” to “very much”.

Interest - Students’ interest in math. “Are you interested when solving math problems?”
Excitement - How exciting students find math. “Do you feel that solving math is exciting?”
Confusion - How confused students feel while solving math problems. “Do you feel confident that you will
eventually be able to understand the Mathematics material?”
Frustration - How frustrating students find math. Average of “Do you get frustrated when solving math prob-
lems?” and “Does solving math problems make your feel frustrated?”
Learning Orientation - How much students focus on learning as opposed to performance. Average of “When
you are doing math exercises, is your goal to learn as much as you can?” and “Do you prefer learning about things
that make you curious even if that means you have to work harder?”
Performance Approach Goals - “Do you want to show that you are better at math than your classmates?”
Math Value - How important do students think math is. “Compared to most other activities, how important is
it or you to be good at math?”
Math Liking - Measure of how much students like math. “Do you like your math class?”
Math Test Performance - Student’s score on math questions that are representative of the content covered in
MathSpring.

2. METHOD
We conducted a randomized controlled study to evaluate
three different types of affective messages delivered by ped-
agogical agents (Table 2). The study took place in an ur-
ban school district in Southern California with sixty-four 6th
grade students in three math classes for four class sessions,
during December 2016. On part of the first and last day,
students completed a pretest and posttest including ques-
tions related to various affective states, and questions about
mathematics. Outcome variables measured from these ques-
tions are provided in Table 1.

Three conditions of learning companion messages were ran-
domly assigned to students and delivered in both audio and
written form in order to increase the likelihood of expo-
sure: 1) Empathy Condition for 24 students, 2) Growth
Mindset Condition for 20 students and 3) Success/Failure
Condition for 20 students; see Table 2 for examples of the
different types of messages. For all conditions, students were
asked to self-report their frustration or confidence in a five-
point scale every five minutes or every eight problems, which
ever came first, but only after a problem was completed.
The prompts were shown on a separate screen and invited
students to report on their frustration or confidence.

The Empathy condition was set to visually reflect positive
emotion with a certain probability for each math problem
if the last student emotion report had a positive valence.
When the most recent emotion report had a negative va-
lence, and with a certain probability, the character first vi-
sually reflected the negative emotion; then it reported an
empathy message such as “Sometimes these problems make
me feel [frustrated]”, and finally a connector such as “on the
other hand”, connected with a growth mindset message such
as“I know that putting effort into problem solving and learn-
ing from hints will make our intelligence grow.” Note that
only students experiencing negative emotions were exposed
to growth mindset messages, as opposed to the following
condition.

The Growth Mindset condition emphasized messages that
accentuate the importance of effort and perseverance in achiev-
ing success. The growth mindset condition was set to pro-

vide one of many growth mindset messages after a second in-
correct attempt was made (the first incorrect attempt caused
the hint button to flash), regardless of students’ emotions.
This condition also provided occasional growth mindset mes-
sages at the beginning of a new problem.

The Success/Failure condition provided both traditional
success/failure messages and some more basic meta-cognitive
support for when students made mistakes (e.g., acknowledg-
ing that their answer was not correct while encouraging them
to use a hint). The success/failure condition provided stu-
dents with a response if they answered a problem correctly
and also after they made a second mistake.

3. RESULTS
Out of the 64, three students’ data were discarded due to
minimal interaction with MathSpring. Across the N =
61 students, 21066 event log rows were recorded for three
classes over four separate days, from which several behav-
ioral features were derived and used throughout the analysis;
our data and processing scripts can be found on GitHub [15].
All the students completed a pretest and posttest. Students
in empathy, growth mindset and success/failure conditions
received a total of 978, 763, and 882 messages respectively.
Means, standard deviations and percentage shares for each
type of message are given in Table 3. It is important to
note that students received messages from all categories but
their condition emphasized the corresponding message type.
For example, a student in growth mindset condition received
significantly more growth mindset messages than a student
in empathy condition. This distribution of messages means
that different students saw different amounts of each type
of message, which allows us to perform partial correlations
with respect to the counts of each message type, separating
their effects.
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Table 2: Examples of messages spoken by characters.

Condition Message

Empathy
“Don’t you sometimes get frustrated trying to solve math problems? I do. But guess what.
Keep in mind that when you are struggling with are new idea or skill you are learning
something and becoming smarter.”

Growth
Mindset

“Hey, congratulations! Your effort paid off, you got it right!”
“Did you know that when we practice to learn new math skills our brain grows and gets
stronger?”
“Let’s click on help, and I am sure we will learn something.”

Success/
Failure

“Very good, we got another one right!”
“Hmm. Wrong. Shall we work it out on paper?”

Figure 2: Time spent on a problem immediately before and after receiving the different categories of messages.

3.1 Partial Correlations
First, we attempted to replicate the results of our previous
exploratory work [3]. For the three message types, partial
correlations of the total number of each messages were mea-
sured for the nine posttest measures, controlling for the cor-
responding pretest measure, time spent in the tutor, and
message frequency (total messages heard / time spent).

Table 4 shows the result of this analysis. We observe that
with exposure to more empathic messages, students exhib-
ited higher levels of interest and valued math knowl-
edge more (rows 1 and 7). Increased interest can be viewed
as analogous to the high negative correlation with boredom
reported in our earlier work. With growth mindset mes-
sages, students valued math knowledge less and had
lower post test performance scores (rows 7 and 9).
With success/failure messages, students were less learning-
oriented and claimed to be more confused (rows 6 and 3).

To further understand the dynamics, we derived some in-
tutor variables and performed partial correlations shown in
Table 5. The data for this analysis was derived as per stu-
dent metrics based on their interaction with MathSpring.
We observed that students tend to answer significantly more
questions when in the success/failure condition and end up
making more mistakes as well (rows 4 and 5). It is important
to note that they also avoid asking for hints (row 6). It
seems like these students tend to rush through the problems
while being more careless. They also make more mistakes
when they receive more growth mindset messages (row 5).
This leads to simpler questions which they tend to get right
in the first attempt (row 1). It appears that the students
in empathy condition continue to invest more time on
solving problems than rushing through the problem set. The
number of problems seen by these students is significantly
less (row 4).

As we see in Figure 2, students tend to spend less time
on problems immediately after they receive growth mindset
or success/failure messages. In contrast, the time spent on
a problem increases slightly after receiving empathic mes-
sages. Students who received more empathic and growth
mindset messages tend to answer fewer questions than do
students who received mostly success/failure message (Fig-
ure 3). Combined with the last plot, it looks like the students
in the empathy condition continue to invest more time on
solving problems than rushing through the problem set.

Figure 3: Problems seen per minute across different
pedagogies
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Table 3: The distribution of messages seen by students in each pedagogical conditions.

Condition
Empathy Messages Growth Mindset Messages Success/Failure Messages

N mean std % mean std % mean std %
Empathy 21 7.48 7.0 16% 9.95 7.2 21% 29.1 22 62%
Growth
Mindset

20 0.2 0.5 0.5% 10 5 26% 27.9 19.2 73%

Success/
Failure

20 1.2 1.7 2.7% 4.6 4.8 10% 38.3 26.6 86%

Table 4: Partial correlations between different types of messages seen and posttest variables (Table 1),
accounting for the corresponding pretest value, time spent in tutor and message frequency.

Variable
Empathy Messages Growth Mindset Messages Success/Failure Messages

corr p corr p corr p
(1) Interest 0.28* 0.03 0.19 0.15 -0.20 0.14
(2) Excitement 0.00 1.00 -0.07 0.60 -0.08 0.54
(3) Confusion -0.05 0.74 -0.05 0.74 0.32* 0.02
(4) Frustration 0.10 0.43 -0.08 0.54 -0.18 0.18

(5)
Performance

Approach
-0.19 0.14 -0.05 0.70 0.20 0.12

(6)
Learning

Orientation
0.02 0.85 0.02 0.88 -0.24+ 0.06

(7) Math Value 0.25* 0.05 -0.22+ 0.09 -0.10 0.45
(8) Math Liking 0.01 0.96 0.01 0.96 0.05 0.72
(9) Performance -0.01 0.93 -0.23+ 0.07 -0.13 0.33

+ p ≤ 0.10, * p ≤ 0.05

Table 5: Partial correlations between different types of messages seen and within-tutor variables, accounting
for time spent in the tutor and message frequency.

Variable
Empathy Messages Growth Mindset Messages Success/Failure Messages

corr p corr p corr p

(1)
% Problems Solved on

First Attempt
0.06 0.62 0.34** 0.007 -0.01 0.94

(2)
Avg Problem

Difficulty
0.07 0.61 -0.05 0.69 0.19 0.14

(3) Learning Gain -0.10 0.50 -0.07 0.63 -0.14 0.34
(4) Problems Seen -0.23+ 0.07 -0.04 0.78 0.77** 4e-13
(5) Mistakes Made -0.01 0.91 0.59** 6e-7 0.30* 0.02
(6) Hints Per Problem 0.10 0.43 0.16 0.22 -0.22+ 0.10

+ p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01
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3.2 Markov Chain Analysis
As students solve problems in the tutoring system, the learn-
ing companion comments on their attempts; the effect of
these messages on student affect is sequential, but the par-
tial correlations do not capture this. To analyze this effect,
we built Markov Chain models using in-tutor student self-
reports of confidence and frustration. Each model describes
transitions in affective states, from one self-report to the
next, where students received a particular type of charac-
ter messages (empathy, growth mindset, and success/failure)
between self-reports. To reduce the state space, the 5-point
scale used in the self-reports was simplified to two values -
confident (≥ 3), not confident (< 3); similarly for frustra-
tion.

The goal of the Markov models was not to predict emotional
changes, but rather to examine whether different messages
had significant effects on affect. Markov models can show
the probability of transitioning between affective states, but
also have a stationary distribution, which represents the
amount of students that would be in each state after un-
dergoing many transitions. For example, a group of stu-
dents were to use the system for many hours and receive
only empathic messages, our model suggests that 99.5% of
them would be confident about learning math (Figure 4).

Figure 4: State transitions between the Confident
(C) and Not Confident (N) affective states. The sta-
tionary distribution is shown below each state. Only
the empathy model was significant in the likelihood
ratio test (p ≤ 0.05)
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We used a likelihood ratio test to analyze the significance
of these models: the probability of the null model (ignoring
message type) generating the data divided by the probability
of the alternate model (for a particular message type) gener-
ating the data gives a p-value. Figure 4 shows the state tran-
sitions for confidence in the null model and the model for
confidence after receiving empathic messages, which was
significant with p = 0.0149 (the other models were not sig-
nificant). We also examined the stationary distributions for
each model (Table 6).

Table 6: Stationary distributions in the Markov
models of confidence and frustration.

Message
Type

Confidence Frustration
Conf Not Frust Not

Empathy 99.5%* 0.05%* 35% 65%
Growth
Mindset

74% 26% 30% 70%

Success/
Failure

80% 20% 25% 75%

*p ≤ 0.05

4. DISCUSSION
Some of our results support the hypothesis that affective
messages delivered by characters can positively impact stu-
dents’ emotions and affective predispositions for math prob-
lem solving. This is particularly evident for empathy, as
the more empathic messages a student saw the higher their
interest in mathematics problem solving, as well as their be-
liefs that mathematics is valuable to learn (Table 4). An
analysis of student behavior suggests that students who saw
a high frequency of empathic messages also tended to be
more patient and cautious with problem solving, suggesting
that empathic messages may encourage students to persist
through adversity. Exposure to empathic messages was sig-
nificantly correlated to investing time in each math prob-
lem activity, leading also to fewer problems seen per ses-
sion. A positive trend is exhibited between high frequency
of empathic messages and hints requested, even if not signif-
icant (Table 5). Empirical temporal models generated from
students’ changes in self-reports of affect, within the tutor,
revealed that students receiving empathic messages have a
higher likelihood to become more confident and to remain
confident.

The response to growth mindset messages delivered by char-
acters yielded mixed results. As students saw more of these
kinds of messages they also succeeded more often at solving
problems correctly (on the first attempt); interestingly, at
the same time, they also made more mistakes. This is also
desirable, as growth mindset messages emphasize that mak-
ing mistakes is okay and can even help learning, legitimizing
a high frequency of errors. It is possible that students were
using those mistakes and hints to learn and succeed later on;
a (not significant) positive trend suggests that students re-
ceiving more of these kinds of messages also asked for more
hints per problem. In contrast, marginally significant effects
suggest that a high frequency of growth mindset messages
might be detrimental to students’ perception of math value,
and that their posttest performance is worse when they re-
ceive more of this kind of messages. It is hard to conclude
the meaning of these marginally significant effects, especially
because a previous study suggested that these messages were
beneficial in general [3]. Note that empathic messages used
’growth mindset’ messages also, in order to resolve the nega-
tive emotion (see Table 2). One possible explanation is that
the empathic condition was so positive because it was also
very selective at showing growth mindset messages for only
those who experienced negative emotions. It is likely that
high achieving students, or those who “felt OK”, rejected
growth mindset messages that they might have perceived to
be unnecessary.
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An important comment is that we did not expect that suc-
cess/failure messages could be so harmful to students. Re-
gardless of whether messages indicated success or failure, as
students received more of these messages they also exhibited
lower levels of mastery/learning orientation at posttest time.
They also reported higher levels of confusion at posttest time
(note that the confusion can be positive for learning within
the learning experience, but not after the learning experi-
ence has concluded). Regarding behavior within the tutor,
the more students were exposed to success/failure messages,
the more they appeared to rush through problems, make
mistakes, and request fewer hints per problem.

To summarize, empathy messages were associated with vari-
ables consistent with methodical work and an increased in-
terest/value of mathematics. However, both growth mindset
and success/failure messages appeared to be associated with
a greater number of mistakes. Finally, success/failure mes-
sages themselves were associated with a whole host of con-
cerning behaviors such as confusion with the material follow-
ing posttest, reduced learning orientation, hurried work, and
a reduced likelihood of requesting hints. This is consistent
with Dweck’s findings that growth mindset messages are su-
perior to success/failure messages [8, 9]. Whether empathic
messages in fact result in improved student performance pre
to posttest will likely require larger samples than this small
study (N = 61). However, students in non-empathic condi-
tions have demonstrated significantly more mistakes in their
work.

5. CONCLUSIONS
This research emphasizes the importance of understanding
an intervention’s effect on a student’s affective state, which
in turn is connected to engagement, performance, and learn-
ing. Although many researchers have focused on modeling
affect, very little research effort has been put into systemat-
ically measuring the impact of the intervention on the stu-
dent behavior in an adaptive learning environment. Em-
pathic messages that respond to students’ recent emotions
have resulted in superior results both in improving the stu-
dent interaction with the system and in the overall learning
experience. Growth Mindset follows next with some pos-
itive impact on in-tutor performance but its overall effect
in the short-term is questionable. Success/Failure messages
are generally harmful to students: reducing learning ori-
entation, increasing confusion, and making students more
careless during the learning experience.

We conclude that affective messages delivered by charac-
ters in online tutoring environments are a very important
medium for building student-tutor rapport in a virtual envi-
ronment, powerful signals that influence perceptions of stu-
dents themselves as learners, as well as perceptions of the
domain being taught. We have reported significant results
that support the use of empathy to improve student affect
and attitudes in a math tutor. The long-term effect of these
messages needs to be studied when the novelty of this in-
tervention wears off. In the future, we hope to study the
impact of the frequency and content of these messages. To
evaluate the generalizability of these results, student popu-
lations across different demographics needs to be studied as
well as the applicability of the messages to domains beyond
mathematics.

6. ACKNOWLEDGMENTS
This research is supported by the National Science Founda-
tion (NSF) 1324385 IIS/Cyberlearning DIP: Collaborative
Research: Impact of Adaptive Interventions on Student Af-
fect, Performance, and Learning. Any opinions, findings,
and conclusions, or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect
the views of NSF.

7. ADDITIONAL AUTHORS
Additional authors: Winslow Burleson (New York Univer-
sity, 70 Washington Square South New York, New York,
10012; email: wb50@nyu.edu).

8. REFERENCES
[1] I. Arroyo, W. Burleson, M. Tai, K. Muldner, and B. P.

Woolf. Gender differences in the use and benefit of
advanced learning technologies for mathematics.
Journal of Educational Psychology, 105(4):957, 2013.

[2] I. Arroyo, D. G. Cooper, W. Burleson, B. P. Woolf,
K. Muldner, and R. Christopherson. Emotion sensors
go to school. In AIED, volume 200, pages 17–24, 2009.

[3] I. Arroyo, S. Schultz, N. Wixon, K. Muldner,
W. Burleson, and B. P. Woolf. Addressing affective
states with empathy and growth mindset. 6th
International Workshop on Personalization
Approaches in Learning Environments, 2016.

[4] I. Arroyo, B. P. Woolf, W. Burelson, K. Muldner,
D. Rai, and M. Tai. A multimedia adaptive tutoring
system for mathematics that addresses cognition,
metacognition and affect. International Journal of
Artificial Intelligence in Education, 24(4):387–426,
2014.

[5] L. Corno and R. E. Snow. Adapting teaching to
individual differences among learners. Handbook of
research on teaching, 3(605-629), 1986.

[6] S. D’Mello and A. Graesser. Automatic detection of
learner’s affect from gross body language. Applied
Artificial Intelligence, 23(2):123–150, 2009.

[7] S. D’Mello and A. Graesser. Autotutor and affective
autotutor: Learning by talking with cognitively and
emotionally intelligent computers that talk back.
ACM Transactions on Interactive Intelligent Systems
(TiiS), 2(4):23, 2012.

[8] C. S. Dweck. Self-theories: Their role in motivation,
personality, and development. Psychology Press, 2000.

[9] C. S. Dweck. Beliefs that make smart people dumb.
Why smart people can be so stupid, 24:41, 2002.

[10] D. Goleman. Emotional intelligence. why it can
matter more than fq. Learning, 24(6):49–50, 1996.

[11] A. C. Graesser, P. Chipman, B. C. Haynes, and
A. Olney. Autotutor: An intelligent tutoring system
with mixed-initiative dialogue. IEEE Transactions on
Education, 48(4):612–618, 2005.

[12] A. C. Graesser, S. K. D’Mello, S. D. Craig,
A. Witherspoon, J. Sullins, B. McDaniel, and
B. Gholson. The relationship between affective states
and dialog patterns during interactions with
autotutor. Journal of Interactive Learning Research,
19(2):293, 2008.

[13] J. Hattie and H. Timperley. The power of feedback.
Review of educational research, 77(1):81–112, 2007.

Proceedings of the 10th International Conference on Educational Data Mining 102



[14] A. N. Kluger and A. DeNisi. Feedback interventions:
Toward the understanding of a double-edged sword.
Current directions in psychological science, 7(3):67–72,
1998.

[15] R. Lizarralde and S. Karumbaiah. A collection of
scripts for processing mathspring data. https:
//github.com/rezecib/MathspringDataProcessing,
2017.

[16] R. Pekrun. Emotions and learning. International
Academy of Education. Australia: International
Bureau of Education, 2014.

[17] R. Pekrun, A. Cusack, K. Murayama, A. J. Elliot, and
K. Thomas. The power of anticipated feedback:
Effects on students’ achievement goals and
achievement emotions. Learning and Instruction,
29:115–124, 2014.

[18] R. Pekrun, T. Goetz, L. M. Daniels, R. H. Stupnisky,
and R. P. Perry. Boredom in achievement settings:
Exploring control-value antecedents and performance
outcomes of a neglected emotion. Journal of
Educational Psychology, 102(3):531, 2010.

[19] R. Pekrun, E. Vogl, K. R. Muis, and G. M. Sinatra.
Measuring emotions during epistemic activities: the
epistemically-related emotion scales. Cognition and
Emotion, pages 1–9, 2016.

Proceedings of the 10th International Conference on Educational Data Mining 103



Epistemic Network Analysis and Topic Modeling for Chat 
Data from Collaborative Learning Environment 
Zhiqiang Cai 

The University of Memphis 
365 Innovation Drive, Suite 410 

Memphis, TN, USA 

zcai@memphis.edu 

James W. Pennebaker 
University of Texas-Austin 

116 Inner Campus Dr Stop G6000 
Austin, TX, USA 

pennebaker@utexas.edu 

 

Brendan Eagan 
University of Wisconsin-Madison 

1025 West Johnson Street 
Madison, WI, USA 

eaganb@gmail.com 

David W. Shaffer 
University of Wisconsin-Madison 

1025 West Johnson Street 
Madison, WI, USA 

dws@education.wisc.edu  

 

Nia M. Dowell 
The University of Memphis 

365 Innovation Drive, Suite 410 
Memphis, TN, USA 

niadowell@gmail.com 

Arthur C. Graesser 
The University of Memphis 

365 Innovation Drive, Suite 403 
Memphis, TN, USA 

art.graesser@gmail.com 

ABSTRACT 

This study investigates a possible way to analyze chat data from 

collaborative learning environments using epistemic network 

analysis and topic modeling. A 300-topic general topic model 

built from TASA (Touchstone Applied Science Associates) cor-

pus was used in this study. 300 topic scores for each of the 15,670 

utterances in our chat data were computed. Seven relevant topics 

were selected based on the total document scores. While the ag-

gregated topic scores had some power in predicting students’ 

learning, using epistemic network analysis enables assessing the 

data from a different angle. The results showed that the topic 

score based epistemic networks between low gain students and 

high gain students were significantly different (𝑡 = 2.00). Overall, 

the results suggest these two analytical approaches provide com-

plementary information and afford new insights into the processes 

related to successful collaborative interactions. 

Keywords 

chat; collaborative learning; topic modeling; epistemic network 

analysis 

1. INTRODUCTION 
Collaborative learning is a special form of learning and interaction 

that affords opportunities for groups of students to combine cogni-

tive resources and synchronously or asynchronously participate in 

tasks to accomplish shared learning goals [15; 20]. Collaborative 

learning groups can range from a pair of learners (called a dyad), 

to small groups (3-5 learners), to classroom learning (25-35 learn-

ers), and more recently large-scale online learning environments 

with hundreds or even thousands of students [5; 22]. The collabo-

rative process provides learners with a more efficient learning 

experience and improves learners’ collaborative learning skills, 

which are critical competencies for students [14]. Members in a 

team are different in many ways. They have their own experience, 

knowledge, skills, and approaches to learning. A student in a col-

laborative learning environment can take other students’ views 

and ideas about the information provided in the learning material. 

The ideas coming out of the team can then be integrated as a 

deeper understanding of the material, or a better solution to a 

problem.  

Traditional collaborative learning occurred in the form of face to 

face group discussion or problem solving. As the internet and 

learning technologies develop, online collaborative learning envi-

ronments come out and are playing more and more important 

roles. For example, MOOCs (Massive Open Online Courses) have 

drawn massive number of learners. Learners in MOOCs are con-

nected by the internet and can easily interact with each other using 

various types of tools, such as forums, blogs and social networks 

[23]. These digitized environments make it possible to track the 

learning processes in collaborative learning environments in 

greater detail.  

Communication is one of the main factors that differentiates col-

laborative learning from individual learning [4; 6; 9]. As such, 

chats from collaborative learning environments provide rich data 

that contains information about the dynamics in a learning pro-

cess. Understanding massive chat data from collaborative learning 

environments is interesting and challenging. Many tools have 

been invented and used in chat data analysis, such as LIWC (lin-

guistic inquiry and word count) [12], Coh-Metrix [10], and topic 

modeling, just to name a few. Epistemic network analysis (ENA) 

has been playing a unique role in analyzing chat data from epis-

temic games [18]. ENA is rooted in a specific theory of learning: 

the epistemic frame theory, in which the collection of skill, 

knowledge, identity, value and epistemology (SKIVE) forms an 

epistemic frame. A critical theoretical assumption of ENA is that 

the connections between the elements of epistemic frames are 

critical for learning, not their presence in isolation. The online 

ENA toolkit allows users to analyze chat data by comparing the 

connections within the epistemic networks derived from chats. 

ENA visualization displays the clustering of learners and groups 

and the network connections of individual learners and groups. 

ENA requires coded data which has traditionally relied on hand 

coded data sets or classifiers that rely on regular expression map-

ping.  Combining topic modeling with ENA will provide a new 

mode of preparing data sets for analysis using ENA.  

In this study, we used a combination of topic modeling and ENA 

to analyze chat data to see if we could detect differences between 

the connections made by students with high learning gains versus 

students with low learning gains.  Incorporating topic modeling 
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with ENA will make the analytic tool more fully automated and of 

greater use to the research community.  

2. RELATED WORK 
Chats have two obvious features. First, they appear in the form of 

text. Therefore, any text analysis tool may have a role in chat 

analysis. Second, chats come from individuals’ interaction, which 

reflects social dynamics between participants. Therefore, a com-

bination of text analysis and social network analysis should be 

helpful in understanding underlying chat dynamics. For instance, 
Tuulos et al. [21] combined topic modeling with social network 

analysis in chat data analysis. They found that topic modeling can 

help identify the receiver of chats (the person who a chat is given 

to). 

In a similar effort, Scholand et al. [16] combined LIWC and social 

network analysis to form a method called “social language net-

work analysis” (SLNA). The social networks were formed by 

counting the number of times chat occurred between any two 

participants. Based on the counts, participants were clustered into 

a tree structure, representing the level of subgroups the partici-

pants belong to. LIWC was then used to get the text features of 

chats. It was found that, some LIWC features were significantly 

different between in group conversations and out of group conver-

sations.  

Researchers have also recently explored the advantages of com-

bining SNA (social network analysis) with deeper level computa-

tional linguistic tools, like Coh-Metrix. Coh-Metrix computes 

over 100 text features. The five most important Coh-Metrix fea-

tures are: narrativity, syntax simplicity, word concreteness, refer-

ential cohesion and deep cohesion. Dowell and colleagues [8] 

explored the extent to which characteristics of discourse diagnos-

tically reveals learners’ performance and social position in 

MOOCs. They found that learners who performed significantly 

better engaged in more expository style discourse, with surface 

and deep level cohesive integration, abstract language, and simple 

syntactic structures. However, linguistic profiles of the centrally 

positioned learners differed from the high performers. Learners 

with a more significant and central position in their social network 

engaged using a more narrative style discourse with less overlap 

between words and ideas, simpler syntactic structures and abstract 

words. An increasing methodological contribution of this work 

highlights how automated linguistic analysis of student interac-

tions can complement social network analysis (SNA) techniques 

by adding rich contextual information to the structural patterns of 

learner interactions. 

In another study, Dowell et al. [7] showed that students’ linguistic 

characteristics, namely higher degrees of narrativity and deep 

cohesion, are predictive of their learning. That is, students en-

gaged in deep cohesive interactions performed better.  

In the present research, we explore collaborative interaction chat 

data using the combination of topic modeling and epistemic net-

work analysis. While previous studies focused on the relationship 

between language features and social network connections, our 

study focuses on prediction learning performance by semantic 

network connections students make in chats.  

3. METHODS 
Participants. Participants were enrolled in an introductory-level 

psychology course taught in the Fall semester of 2011 at a large 

university in the USA. While 854 students participated in this 

course, some minor data loss occurred after removing outliers and 

those who failed to complete the outcome measures. The final 

sample consisted of 844 students. Females made up 64.3% of this 

final sample. Within the population, 50.5% of the sample identi-

fied as Caucasian, 22.2% as Hispanic/Latino, 15.4% as Asian 

American, 4.4% as African American, and less than 1% identified 

as either Native American or Pacific Islander. 

Course Details and Procedure. Students were told that they 

would be participating in an assignment that involved a collabora-

tive discussion on personality disorders and taking quizzes. Stu-

dents were told that their assignment was to log into an online 

educational platform specific to the University at a specified time, 

where they would take quizzes and interact via web chat with one 

to four random group members. Students were also instructed 

that, prior to logging onto the educational platform, they would 

have to read material on personality disorders. After logging into 

the system, students took a 10 item, multiple choice pretest quiz. 

This quiz asked students to apply their knowledge of personality 

disorders to various scenarios and to draw conclusions based on 

the nature of the disorders. The following is an example of the 

types of quiz questions students were exposed to: 

 Jacob was diagnosed with narcissistic personality dis-

order. Why might Dr. Simon think this was the wrong 

diagnosis? 

 Dr. Level has measured and described his 10 mice of 

varying ages in terms of their length (cm) and weight 

(g). How might he describe them on these characteris-

tics using a dimensional approach? 

 Danielle checks her facebook page every hour. Does 

Danielle have narcissistic personality disorder? 

After completing the quiz, they were randomly assigned to other 

students who were waiting to engage in the chatroom portion of 

the task. When there were at least 2 students and no more than 5 

students (M = 4.59), individuals were directed to an instant mes-

saging platform that was built into the educational platform. The 

group chat began as soon as someone typed the first message and 

lasted for 20 minutes. The chat window closed automatically after 

20 minutes, at which time students took a second 10 multiple-

choice question quiz. Each student contributed 154.0 words on 

average (SD = 104.9) in 19.5 sentences (SD = 12.5). As a group, 

discussions were about 714.8 words long (SD = 235.7) and 90.6 

sentences long (SD = 33.5).  

An excerpt of a collaborative interaction chat in a chat room is 

shown below in Table 1. (student names have been changed): 

Table 1. An excerpt of a collaborative interaction chat   

Student Chat Text 

Art ok cool, everyone's here. sooo first question 

Art ok so the certain characteristics to be considered to 

have a personality disorder? 

Shaffer Alright sooo first question: Based on these criteria de-

scribe several reasons why a psychologist might not 

label someone with grandiose thoughts as having nar-

cissistic personality disorder? 

Shaffer hahaha never mind 

Shaffer that was the second question. 

Art lol its all good 

Shaffer okay so certain characteristics: doesn't it have to be like 

a stable thing? 

Carl i think the main thing about having a disorder is that its 

disruptive socially and/or makes the person a danger to 

himself or others 
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Vasile yes, stable over time 

Shaffer yeah, and it also mentioned it can't be because of drugs 

Art also they have to have like unrealistic fantasies 

Nia yeah and not normal in their culture 

Carl no drugs or physical injury 

Vasile begins in early adulthood or adolescence 

Shaffer i think that covers them? haha 

Art ok, so arrogance doesn't just define it, they have to have 

most of these characteristics 

Art yeah i think we got them 

Shaffer is it most or is it like 6? 

 

From the above excerpt, we can see several obvious things. First, 

the lengths of the utterances varied from one single word to mul-

tiple sentences. This needs to be considered in text analysis be-

cause some methods work only for longer texts. For example, 

Coh-Metrix usually works well for texts with more than 200 

words. Topic modeling also needs enough length to reliably infer 

topic scores. Second, the number of utterances each participant 

gave were different. From how much and what a member said, we 

can see each member played a different role in that chat. Third, 

the ordered sequence of the utterances forms a time series. Under-

standing and visualizing the underlying discourse dynamics are 

important for meaning making with this type of data. 

The data set contained 15,670 utterances, pretest scores (the first 

quiz) and post test scores (the second quiz) for 844 students, 

grouped in 182 chat rooms. Each chat room had 2 to 5 students, 

4.73 by average. The average speech turns each student gave was 

18.2 and the average speech turns in each room was 86.1.   

The average pretest score was 36.01% correct and the average 

post-test scores 45.73% correct. Paired sample test shows that the 

post-test is significantly higher (𝑡 = 14.13, 𝑁 = 844). We com-

puted the learning gain of each student, using the formula  

𝑔𝑎𝑖𝑛 =
 𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒

1−𝑝𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒
. 

For all students (𝑁 = 844), the average learning gain is 0.11, 

59.5%  had positive learning gains above 0.1. 16.5% had the same 

scores and 23% had negative learning gains. Not surprisingly, 

students who had lower pretest scores had higher learning gains 

because they had greater potential to learn. Figure 1 shows the 

average learning gain as function of pretest score.  

 

Figure 1. Average learning gain as a function of pretest score. 

For students with pretest scores less than 50% correct (N=624), 

the average learning gain is 0.88, 69.7% had positive learning 

gains, 15.7% had the same scores and 14.6% had negative learn-

ing gains.  

This data set has been analyzed in multiple studies. Cade et al. [3] 

analyzed the cohesion of the chats and found that deep cohesion 

of the chats predicts the students feeling of power and connected-

ness to the group. Dowell et al. [7] found that some Coh-Metrix 

measures  predicts learning. Coh-Metrix measures describe com-

mon textual features that are not content specific. For example, 

cohesion is about how text segments are semantically linked to 

each other, which has nothing to do with what the text content is 

about. In this study, we use topic modeling to provide content 

dependent features and use epistemic network analysis to explore 

how the topics were associated in the chats.  

4. TOPIC MODELING 
Topic modeling has been widely used in text analysis to find what 

topics are in a text and what proportion/amount of each topic is 

contained. Latent Dirichlet Allocation (LDA) [2; 24] is one of the 

most popular methods for topic modeling. LDA uses a generative 

process to find topic representations. LDA starts from a large 

document set 𝐷 = {𝑑1 , 𝑑2, ⋯ , 𝑑𝑚}. A word list 𝑊 =
{𝑤1, 𝑤2, ⋯ , 𝑤𝑛} is then extracted from the document set. LDA 

assumes that the document set contains a certain number of topics, 

say, K topics. Each document has a probability distribution over 

the K topics and each topic has a probability distribution over the 

given list of words. When a document was composed, each word 

that occurred in a document was assumed to be drawn based on 

the document-topic probability and the topic-word probability. 

For a given corpus (document set) and a given number of topics 

K, LDA can compute the topic assignment of each word in each 

document.  

For a given topic, the word probability distribution can be easily 

computed from the number of times each word was assigned to 

the given topic. The beauty of topic modeling is that the “top 

words” (words with highest probabilities in a topic) usually give a 

meaningful interpretation of a topic. The distributions are the 

underlying representation of the topics. The top words are usually 

used to show what topics are contained in the corpus. 

By counting the number of words assigned to each topic, a topic 

proportion score can be computed for each document on each 

topic. The topic proportion scores then become a document fea-

ture that can be used in further analysis. However, the proportion 

scores are based on the statistical topic assignment of words. 

When documents are very short, such as most utterances in our 

chat data, the topic proportion scores won’t be reliable. Cai et al. 

[4] argued that alternative ways to compute document topic scores 

are possible.  

4.1 TASA Topic Model 
Although our chat data set contained 15,670 utterances, the utter-

ances were short and the corpus is not large enough to build a 

reliable topic model.  To get a reliable model, we used a well 

known corpus provided by TASA (Touchstone Applied Science 

Associates). This corpus contained documents on seven known 

categories, including business, health, home economics, industrial 

arts, language arts, science and social studies. Our content topic, 

personality disorders, is obviously in the health category. Of 

course, not all topics in TASA are relevant to our study. There-

fore, after building up the model, we need to select relevant top-

ics. We will cover that in the next sub-section. 
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There are a total of 37,651 documents in TASA corpus, each of 

which is about 250 words long. Before we ran LDA, we filtered 

out very high frequency words and very low frequency words. 

High frequency words, such as “the”, “of”, “in”, etc., won’t con-

tain much topic information. Rare words won’t contribute to 

meaningful statistics. 28,483 words (it might be better to say 

“terms”) were left after filtering. A model with 300 topics was 

constructed by LDA.   

4.2 Topic score computation and topic selec-

tion  
From the TASA topic model, we computed the word-topic proba-

bilities based on the number of times a word was assigned to each 

of the 300 topics. Thus, each word is represented by a 300 dimen-

sional probability distribution vector. For each chat in our chat 

corpus, we simply summed up the word probability vectors for the 

words appeared in each chat. That gave us 300 topic scores for 

each chat. Recall that, the chats were associated with a reading 

material and two quizzes. While the students were free to talk 

about anything, the content of the reading material and the quizzes 

set up the main chat topics, that is, personality disorders. 

 
Figure 2. Sorted topic scores for topic selection. 

The first thing we needed to do then was to investigate whether or 

not the “hot” topics from the computation made sense. To find 

that out, we computed the sum of all topic scores over all chats. 

The topics were sorted according the total topic score. The hottest 

topic had a total score higher than 1300, much higher than the 

second highest (less than 900). By examining the top words, this 

topic is about “illness”, which is highly relevant to personality 

disorders. Six hot topics scored in the range from 600 to 900. 

They are about “outdoors”, “biology”, “people/social”, “educa-

tion” and “healthcare”. The top words are listed below. 

 Illness: health, disease, patient, body, diseases, medical, 

stress, mental, physical, heart, doctor, problems, cause, 

person, patients, exercise, illness, problem, nurse, 

healthy 

 Outdoors: dog, energy, plants, earth, car, light, food, 

heat, words, animals, music, rock, language, children, 

air, uncle, city, sun, women, plant 

 Biology: cells, cell, genes, chromosomes, traits, color, 

organisms, sex, egg, species, gene, body, male, female, 

parents, nucleus, eggs, sperm, organism, sexual 

 Psychology: behavior, learning, theory, environment, 

feelings, sexual, physical, social, sex, human, research, 

person, animal, mental, response, positive, stress, per-

sonality, subject, reaction 

 People/Social: joe, pete, mr, charlie, dad, frank, billy, 

tony, jerry, 'll, mom, 'd, going, 're, got, boys, looked, 

asked, paper, go 

 Education: students, teacher, teachers, child, children, 

student, school, education, schools, learning, parents, 

tests, test, program, teaching, behavior, skills, reading, 

team, information 

 Healthcare: patient, doctor, health, hospital, medical, 

dr, patients, nurse, disease, doctors, team, care, office, 

nursing, drugs, medicine, services, dental, diseases, help 

“Illness”, “biology”, “psychology” and “healthcare” are the topics 

the learning materials involved. “Education” topic is about the 

education environment where the chat happened. “Outdoor” and 

“people/social” are off-task topics.  

To get an idea about whether or not the topic scores were related 

to the learning gain, we aggregated the scores by person and com-

puted the correlation between the total topic score and the learning 

gain for each topic. We were only interested in looking at the 

students with larger potential to learn, so we removed the data 

with pretest score greater than or equal to 0.5, leaving 624 stu-

dents out of 844. The results (Table 1) showed that all topics were 

significantly correlated to learning gain. It doesn’t seem to be 

great, because that seems to suggest that, whatever topic a student 

talked about, more a student talked, larger gain the student ob-

tained. The real reason is that in the aggregation, all topic scores 

were summed up. Therefore, all topic scores were influenced by 

the chat length. So the correlation in Table 2 basically showed the 

chat length effect.  

Table 2. Correlation between total topic scores and learning 

gain (N=624, pretest<0.5) 

Topic Post-test Pretest Gain 

Illness .183** .116** .132** 

Outdoors .216** .133** .154** 

Biology .159** .125** .105** 

Psychology .182** .096* .140** 

People/Social .115** .022 .107** 

Education .175** .118** .121** 

Healthcare .157** .130** .097* 

 

To remove the chat length effect, the simplest way is to divide all 

scores by the number of words (terms) in each chat. However, in 

this study, to be consistent with subsequent analysis, we normal-

ized the topic scores to topic proportion scores by dividing each 

topic score for each utterance by the sum of all seven topic scores 

of the same utterance.    

The results (Table 3) showed that the topic “people/social” had a 

significant negative correlation to learning gain. Others were not 

significant but were in the direction we would expect. “Illness”, 

“biology”, “psychology” and “healthcare” were positively corre-

lated with gain scores, while “outdoors” and “people/social” top-

ics were negatively correlated with gains scores. We observed 

almost no correlation for the “Education” topic. This seems to 

indicate that the aggregated topic scores have limited power in 

predicting learning. Therefore, we used ENA to examine the con-

nections or association of these topics in the students discourse to 
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develop a predictive model of learning gains based on the use of 

these topics.  

Table 3. Correlation between normalized topic proportion 

scores and learning gain (N=624, pretest<0.5) 

Topic Post-test Pretest Gain 

Illness .099* 0.077 0.067 

Outdoors -0.063 -0.043 -0.044 

Biology .085* 0.054 0.063 

Psychology 0.067 0.019 0.058 

People/Social -.127** -0.076 -.083* 

Education 0.027 0.056 -0.002 

Healthcare 0.073 .096* 0.027 

 

5. EPISTEMIC NETWORK ANALYSIS 
ENA measures the connections between elements in data and 

represents them in dynamic network models.  ENA creates these 

network models in a metric space that enables the comparison of 

networks in terms of (a) difference graph that highlights how the 

weighted connections of one network differ from another; and (b) 

statistics that summarize the weighted structure of network con-

nections, enabling comparisons of many networks at once. 

ENA was originally developed to model cognitive networks in-

volved in complex thinking. These cognitive networks represent 

associations between knowledge, skills, habits of mind of individ-

ual learners or groups of learners. In this study, we used ENA to 

construct network models. For each individual student, we con-

structed an ENA network using the selected seven topic scores for 

each utterance the student contributed to the group. 

5.1 Process 
While the process of creating ENA models is described in more 

detail elsewhere (e.g. [11; 17-19]), we will briefly describe how 

ENA models are created based on topic modeling.  Here we de-

fined network nodes as the seven topics identified from the topic 

model.  We defined the connections between nodes, or edges, as 

the strength of the co-occurrence of topics within a moving stanza 

window (MSW) of size 5 [19]. To model connections between 

topics we used the products of the topic scores summed across all 

chats in the MSW.  That is, for each topic, the topic scores are 

summed across all 5 chats in the MSW.  Then ENA computed the 

product of the summed topic loadings for each pair topics to 

measure the strength of their co-occurrence. For example, if the 

sum of the topics scores across five chats was 0.5 for “illness”, 0.3 

for “psychology”, and 0.2 for “healthcare”, these scores would 

result in three co-occurrences, “illness-psychology”, “illness-

healthcare”, and “psychology-healthcare”, with scores of 0.15, 

0.1, and 0.06, respectively.  

Next ENA created adjacency matrices for each student that quan-

tified the co-occurrences of topics within the students’ discourse 

in the context of their chat group. Subsequently, the adjacency 

matrices were then treated as vectors in a high dimensional space, 

where each dimension corresponds to co-occurrence of a pair of 

topics. The vectors were then normalized to unit vectors. Notice 

that the normalization removed the effect of chat length embedded 

in the topic scores. A singular value decomposition (SVD) was 

then performed for dimensional reduction.  ENA then projected a 

vector for each student into a low dimensional space that maxim-

izes the variance explained in the data. Finally, the nodes of the 

networks, which in this case correspond to the seven selected 

topics generated from TASA corpus, were placed in the low di-

mensional space. The topic nodes were placed using an optimiza-

tion algorithm such that the overall distances between centroids 

(centers of the mass of the networks) and the corresponding pro-

jected student locations was minimized. A critical feature of ENA 

is that these node placements are fixed, that is, the nodes of each 

network are in the same place for all units in the analysis. This 

fixing of the location of the nodes allows for meaningful compari-

sons between networks in terms of their connection patterns 

which allow us to interpret the metric space.  As a result, ENA 

produced two coordinated representations: (1) the location of each 

student in a projected metric space, in which all units of analysis 

included in the model were located, and (2) weighted network 

graphs for each student, which explained why the student was 

positioned where it was in the space. 

ENA also allows us to compare the mean network graphs and 

mean position in ENA space between different groups of stu-

dents.  In this study, we only considered the students with high 

potential to learn, i.e., the 624 students with pretest score < 0.5 

(50% correct). Among these students, we compared the networks 

of low learning gain students (gain<-0.1, 𝑁=194) with the net-

works of high learning gain students (gain>0.43, 𝑁=105). We 

compared these groups using difference network graph, which 

was formed by subtracting the edge weights of the mean discourse 

network for the low gain group students from the mean discourse 

network from the high gain group. This difference network graph 

shows us which topic connections are stronger for each group.  In 

addition, we conducted a t-test to test the difference between 

group means. 

5.2 Results 
Figure 3 shows mean discourse networks for students with low 

gain scores (left, red), students with high gain scores (right, blue), 

and a difference network graph (center) that shows how the dis-

course patterns of each group differs. Students with low gains had 

stronger connections between the “people/social” topic and all 

other topics except for “illness”.  More importantly, the connec-

tion that was the strongest for low gain students compared to high 

gain students was between “people/social” and “outdoors”. Stu-

dents with high gain scores made stronger connections between 

the topics of “illness”, “psychology”, “healthcare”, “biology”, and 

“education”. 

Table 4. Comparison of centroids between low gain and high 

gain students, 𝒑 = 𝟎. 𝟎𝟒𝟕, 𝒕 = 𝟐. 𝟎𝟎 

 N Mean SD 

High gain 105 0.033 0.220 

Low gain 194 -0.048 0.322 

 

Figure 4 shows centroids, or the centers of mass, of individual 

students’ discourse networks and their means with low gain score 

students in red and high gain score students in blue. The differ-

ences between these two groups were significant on the x dimen-

sions (see table 4). This means that the differences we saw in 

figure 2 and described above are statistically significant. In other 

words, the high learning gain students’ discourse was more to-

wards the right side of the ENA space and the low learning gain 

students’ discourse was more towards the left side. That indicates 

that the discourse of students with high learning gains made more 

connections between on-task topics (“illness”, “psychology”, 

“healthcare”, “biology”, and “education”), while the discourse of 
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low gain students made more connections between off-task topics 

(“people/social” and “outdoors”).   

6. DISCUSSION 
ENA makes it possible to visualize the chat dynamics to help 

researchers gain deeper understanding of what is going on in a 

collaborative learning environment. Differences in what topics 

students connect in discourse can predict learning outcomes.  Pre-

vious use of ENA has relied on human coded data or use of regu-

lar expressions to classify data.  Utilizing topic modeling can lead 

to fully automated ENA, making it more accessible to a wider 

group of researchers and allows ENA to be used with more and 

larger data sets.  

The fact that the epistemic network predicts learning validates 

further application of ENA. For example, the turn by turn chat 

dynamics can be plotted as trajectories in the 2-D space, where the 

topics are placed. Investigating the trajectory patterns and their 

relationship to learning or socio-affective components are interest-

ing future research directions. 

We used a general topic model in this study. Many studies in the 

literature used LDA for topic modeling on relatively small corpo-

ra. This causes two problems. 1) LDA topic models built upon 

small corpora are not reliable, because LDA requires large num-

ber documents with relatively large size for each document. Inad-

equate corpus can result in misleading results. 2) Using a topic 

model that is not common would result in arbitrary interpretation. 

For example, the representation of “illness” from different corpus 

could be very different. Therefore, it is hard to compare the claims 

made to “illness” across different studies. Using a reliable, com-

mon topic models will set up a common language for different 

studies. 

 

Figure 3: Mean discourse networks for students with low gain scores (left, red), students with high gain scores (right, blue), and a 

difference network graph (center). 

 

 
Figure 4: Discourse network centroids low gain score students 

red, high gain score students blue. 

Topic scores for documents are usually inferred from topic mod-

els. While for longer documents, the topic scores can be used in 

many applications (e.g., text clustering [1]), the inferred topic 

proportion scores won’t be useful for analyzing chats if we need 

to treat each utterance as a unit of analysis. It is not useful because 

chat utterances are too short. The statistical inference algorithm 

contains a high degree of randomness for short documents. As an 

extreme example, an utterance with a single word, would result in 

inferred topic proportion scores with “1” on one topic and “0” on 

others. The problem is that, this “1” was assigned to a topic with 

certain degree of uncertainty. That is, the topic this “1” was as-

signed to could be any topic. While aggregated analysis may not 

be sensitive to such uncertainty, detailed utterance by utterance 

analysis would suffer from it. 

Our method of computing topic scores is based on the topic prob-

ability distribution over each word. We treat the topic distribution 

of each word as a vector. When computing the topic score, the 

simple sum of all word vectors gives scores to all topics. As we 

have pointed out, the summation algorithm will have a length 

effect. Therefore, when such topic scores are used, removing 

length effects through normalization is necessary. In this article, 

we did not use weighted sum as suggested in Cai et al. [4]. Com-

paring the effect of different weighting is beyond the scope of this 

paper. 

When a general topic model is used, selecting topics relevant to 

the specific analysis becomes important. Our approach was to 

look at the total scores of utterances and find the “hot” topics by 

sorting the total topic scores. In our study, we had a quickly de-

creasing curve that helped us to select topics. We believe this 

would be the case for most studies using a model containing far 

more topics than the topics contained in the target data. 

Proceedings of the 10th International Conference on Educational Data Mining 109



Although our study started with topic modeling to capture the 

“what” in the chats, the association networks constructed in the 

epistemic network analysis actually turned the “what” into a 

“how”: how the topics in the chats associated with each other. 

This is conceptually similar to the cohesion features Dowell [7] 

and Cade [3] used.     

Topic modeling emphasizes content words. When a topic model is 

built, stop words are usually removed. An interesting question is, 

what if we do the opposite: keep stop words and remove content 

words? Pennebaker (e.g., [13]) laid foundational work in this di-

rection. The LIWC tool Pennebaker and his colleagues created 

provides over a hundred text measures by counting non-content 

words. LIWC measures could provide different features to epis-

temic network analysis and reveal different aspects of the chat 

dynamics. 
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ABSTRACT
In this study, we applied decision trees (DT) to extract
a compact set of pedagogical decision-making rules from
an original full set of 3,702 Reinforcement Learning (RL)-
induced rules, referred to as the DT-RL rules and Full-RL
rules respectively. We then evaluated the effectiveness of
the two rule sets against a baseline Random condition in
which the tutor made random yet reasonable decisions. We
explored two types of trees (weighted and unweighted) as
well as two pruning strategies (pre- and post-pruning). We
found that post-pruned weighted trees produced the best re-
sults with 529 DT-RL rules. The empirical evaluation was
conducted in a classroom study using an existing Intelligent
Tutoring System (ITS) named Pyrenees. 153 students were
randomly assigned to three conditions. The procedure was
the same for all students with domain content and required
steps strictly controlled. The only substantive differences
between the three conditions were the policy: (Full-RL vs.
DT-RL vs. Random). Our result showed that as expected
the machine induced policies (Full-RL and DT-RL) are sig-
nificantly more effective than the random policy; more im-
portantly, no significant difference was found between the
Full-RL and DT-RL policies though the number of DT-RL
rules is less than 15% of the number of the Full-RL rules
and the former group also took significantly less time than
the latter.

1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) are interactive e-learning
environments that support students’ learning by providing
instruction, scaffolded practice, and on-demand help. The
system’s behaviors can be viewed as a sequential decision-
making process where at each step the system chooses an
appropriate action from a set of options. Pedagogical strate-
gies are the policies used to decide what action to take next
in the face of alternatives. Each system decision will affect
the user’s subsequent actions and performance. Its impact
on outcomes cannot always be immediately observed and the
effectiveness of each decision depends upon the effectiveness

of subsequent actions. Ideally, an effective learning environ-
ment will adapt its decisions to users’ specific needs [1, 11].
However, there is no existing well-established theory on how
to make these system decisions effectively. Generally speak-
ing, prior research on pedagogical policies can be divided
into two general categories: top-down or theory-driven, and
bottom-up or data-driven.

In theory-driven approaches, ITSs employ hand-coded ped-
agogical rules that seek to implement existing cognitive or
learning theories [1, 10, 17]. While existing learning liter-
ature gives helpful guidance on the design of pedagogical
rules, such guidance is often too general to implement as
effective immediate decisions. For example, the aptitude-
treatment interaction (ATI) theory states that instructors
should match their interventions to the aptitude of the learner
[5]. While the principle behind this theory is understand-
able, it is not clear how to implement that rule for each
decision. How do we represent learner’s aptitude for each
equation, how exact should be the system’s adaptation, and
so on.

Data-driven approaches, on the other hand, derive peda-
gogical policies directly from prior data. Here the policies
specify the pedagogical decisions at a detailed level. Rein-
forcement Learning (RL), which we use here, is one popular
approach that is able to derive pedagogical policies directly
from student-system interaction logs. These policies are de-
fined as a set of state-action mapping rules, which give the
best decision to take in each state. The states are typically
represented as sets of features and the actions are pedagog-
ical actions such as presenting a worked example (WE) or
requiring the student to solve problems (PS). When the sys-
tem presents a worked example, the students will be given a
detailed example showing a complete expert solution for the
problem or the best step to take given their current solution
state. In Problem Solving, by contrast, students are tasked
with solving a problem using the ITS or with completing an
individual problem-solving step.

For this project, our original complete RL-induced policy in-
volves the following seven features representing the students’
learning process from different perspectives1.

1In the format of: [Feature-Name] (Discretization Proce-
dure): Explanation of the feature.
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1. [nWESincePS] (0 → 0; (0, 1] → 1; (1,+∞) → 2):
The number of worked example (WE) steps received
since the last problem solving (PS) step.

2. [timeInSession] ([0, 2290]→ 0; (2290, 4775]→ 1;
(4775, 7939] → 2; (7939,+∞) → 3): The total time
spent in the current session.

3. [avgTimeOnStepPS] ([0, 29.01]→ 0; (29.01,
48.71]→ 1; (48.71,+∞)→ 2): The average amount of
time spent on each PS step.

4. [avgTimeOnStepSessionPS] ([0, 23.51]→ 0;
(23.51, 36.56] → 1; (36.56, 55] → 2; (55,+∞) → 3):
The average amount of time spent on each PS step in
the current session.

5. [nStepSinceLastWrongKC] ([0, 1]→ 0; (1, 7]
→ 1; (7, 25]→ 2; (25,+∞)→ 3): The number of steps
received since the last wrong PS step on the current
knowledge component (KC).

6. [nWEStepSinceLastWrong] ([0, 1]→ 0; (1, 4]
→ 1; (4, 10] → 2; (10,+∞) → 3): The number of WE
steps since the last wrong PS step.

7. [nCorrectPSStepSinceLastWrongKCSession]
(0 → 0; (0, 3] → 1; (3, 10] → 2; (10,+∞) → 3): The
number of correct PS steps since the last wrong PS
step on the current KC in the current session.

With this feature set, a state can be represented as a 7-
dimensional vector where each element denotes a discretized
feature value. Then, the rules can then be represented as:
(0:0:0:0:0:0:0) -> PS
(0:0:0:0:0:0:1) -> PS
(0:0:0:0:0:1:0) -> PS
(0:0:0:0:0:1:1) -> WE
In this study we discretized the features into three-four val-
ues producing a seven-feature state. This results in a state
space of 32 ∗45 = 9216, that is 9216 rules in one RL-induced
policy. While these types of polices can specify the exact
action to take in each case, they are usually too narrow to
be aligned to existing learning theories. Each of the rules
covers only a very specific case and the relationship between
rules is unknown. Thus it is impossible to explain the power
of those rules from the perspective of learning theory. The
opacity of those induced rules not only hinders us in improv-
ing data-driven methodologies when they go wrong, it also
prevents us from advancing learning science research more
generally. Moreover, it is possible that some of the decisions
are environment-specific and may not generalize to other
contexts. This in turn prevents translating these induced
policies to environments other than the one from which they
are induced. Therefore, a general method is needed to shed
some light on the extracted detailed data-driven policies.

Decision tree (DT) induction is a robust data mining ap-
proach which can be used to extract a compact set of rules
from a set of specific examples. It builds a tree-like hierar-
chical decision-making pattern which represents the knowl-
edge it learned. Each path from root to leaf represents a
single rule which may be dealt with separately. Prior stud-
ies have shown that DTs can match training examples in
most cases, even with relatively small trees. Davidson et

al., for example, built a DT for predicting the extinction
risk of mammals [6]. Each of the species was described by
11 ecological features (e.g body mass, geographic range and
population density) and were labeled with their extinction
risk (threatened vs. non-threatened). Their tree contained
20 general rules which covered 4500 training examples, with
a decision accuracy over 80%. Additionally, Reinchard et al.
built a DT for predicting the invasiveness of woody plants
[13]. The resulting DT encoded 15 rules from 235 examples,
with a decision accuracy over 76%. Therefore, in our study,
we will apply DT to extract general pedagogical decision-
making rules from the detailed RL-induced policies.

In short, our primary research question is: is DT an ef-
fective methodology for extracting more general pedagogical
rules from the detailed RL-induced pedagogical rules? In or-
der to investigate this question, we will build DTs using the
rules in a RL-induced policy as training examples and em-
pirically evaluate the effectiveness of the extracted set of DT
rules by comparing it to the full set of RL-induced rules in a
classroom study. The state features in the RL-induced poli-
cies are the input features for the DT and the pedagogical
actions are the output labels. In our empirical evaluation,
we separate the pedagogical decisions from the instructional
content, strictly controlling the content so that it is equiva-
lent for all participants by 1) using an ITS which provides
equal support for all learners; and 2) focusing on tutorial
decisions that cover the same domain content, in this case
WE versus PS.

2. BACKGROUND
2.1 Applying RL to ITSs
Beck et al. applied RL to induce pedagogical policies that
would minimize the time students take to complete prob-
lems on AnimalWatch, an ITS for grade school arithmetic
[2]. They trained the model with simulated students. The
low cost of generated data allowed them to apply a model-
free RL method, Temporal Difference learning. During the
test phase, the induced policies were added to AnimalWatch
and the new system was empirically compared with the orig-
inal system. Their results showed that the policy group
spent significantly less time per problem than their no-policy
peers. Note that their primary goal was to reduce the amount
of time per problem, however faster problem-solving does
not always result in better learning performance. Nonethe-
less, their results showed that RL can be successfully applied
to induce pedagogical policies for ITSs.

Iglesias et al., on the other hand, focused on applying RL to
improve the effectiveness of an Intelligent Educational Sys-
tem that teaches students DataBase Design [8, 9]. They
applied another model-free RL algorithm, Q-learning to in-
duce policies that provide students with direct navigation
support through the system’s content. They used simulated
students to induce the policy and empirically evaluated its
effectiveness on real students. Their results showed that
while the policy led to more effective system usage behav-
iors from students, the policy students did not outperform
the no-policy peers in terms of learning outcomes.

Shen investigated the impact of both immediate and de-
layed reward functions on RL-induced policies and empiri-
cally evaluated the effectiveness of the induced policies within
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an Intelligent Tutoring System called Deep Thought [15].
The induced pedagogical policies are used to decide whether
the next task should be WE or PS. They found that some
learners benefited significantly more from effective pedagog-
ical policies than others.

Finally, Chi et al. applied model-based RL to induce peda-
gogical policies to improve the effectiveness of an Intelligent
Natural Language Tutoring System for college-level physics
called Cordillera [4]. The authors collected an exploratory
corpus by training human students on an ITS that makes
random decisions and then applied RL to induce pedagogi-
cal policies from the corpus. They showed that the induced
policies were significantly more effective than the prior ones.

In short, prior studies have shown that RL-induced ped-
agogical policies can improve students’ learning or reduce
training time. However, all of these studies focused on the
effectiveness of the RL-induced policies. None of them con-
sidered extracting more general rules from the induced poli-
cies.

2.2 Extracting General Rules
In addition to the work of Davidson et al. [6] and Reinchard
et al. [13], DTs have been used for other tasks. Vayssiers
et al., for example, applied Classification And Regression
Trees to predict the presence of 3 species of oak in Califor-
nia [18]. Their training examples were Vegetation Type Map
records for 2085 unique locations. Each record consisted of
25 climatic and geographic features as well as 3 labels show-
ing the presence of the species (Quercus agrifolia, Quercus
douglasii and Quercus lobata). One DT was induced for
each type. The DTs were tested on another dataset which
contains the same type of records for 2016 locations. For
Quercus agrifolia, the induced tree had 10 leaf nodes and
94.9% of its predictions are correct for the locations that
have the presence of this oak (sensitivity) while 86.7% of
its predictions are correct for cases without the oak (speci-
ficity). For Quercus douglasii, the induced tree had 22 leaf
nodes and a sensitivity and specificity of 87% and 79.9%
respectively. For Quercus lobata, the tree had 6 leaves but
reached a sensitivity of 77% and a specificity of 73.3%.

Thus, prior studies have shown that DT can effectively ex-
tract a small set of general decision-making rules from a
large set of specific examples. However, all the examples
used by these studies were observations of existing phenom-
ena. So far as we know, this work is the only relevant re-
search on the application of DT to extract a compact set
of decision-making rules directly from full RL-induced rules
and empirically evaluated the two sets of the rules.

2.3 Applying DT to RL
Prior research on incorporating DT with RL has largely
focused on seeking a better representation of state space
or policy for RL. Boutilier et al [3]. proposed representa-
tional and computational techniques for Markov Decision
Processes (MDPs) to reduce the size of the state space.
They used dynamic Bayesian networks and DTs to repre-
sent stochastic actions as well as DTs to represent rewards.
Based upon this representation, they then developed algo-
rithms to find conditional optimal policies. Their method
was empirically evaluated on several planning problems and

they showed significant savings in both time and space for
some types of problems. Gupta et al. proposed the Policy
Tree algorithm for RL. This algorithm is designed to directly
induce a functional representation of the conditional optimal
policies as a DT. They evaluated it on a variety of domains
and showed that it was able to make splits properly [7].

In short, prior researchers have shown that properly com-
bining DT with RL can result in a large amount of savings
in time and space for finding good policies. However, none
of these studies directly applied DT on RL-induced policies.

3. INDUCE FULL SET OF RL-POLICY
Previously, researchers have typically used the Markov De-
cision Process (MDP) [16] framework to model user-system
interactions. The central idea behind this approach is to
transform the problem of inducing effective pedagogical poli-
cies on what action the agent should take to the problem of
computing an optimal policy for an MDP.

3.1 Markov Decision Process
An MDP is a mathematical framework for representing an
RL task. It is defined by: a tuple 〈S ,A,T ,R〉. Where S =
{S1, S2, ..., Sn} denotes the state space; A = {A1, A2, ..., Am}
represents a set of agent’s possible actions; and T : S ×A×
S → [0, 1] is a transition probability table, where each el-
ement is T a

SiSj
= p(Sj |Si, a). This in turn indicates the

probability of transiting from state Si to state Sj by tak-
ing an action a while R : S × A × S → R assigns rewards
to state transitions given actions. The policy is defined as
π : S → A, mapping state S into action A with the goal of
maximizing the expected reward.

After defining an MDP, we can transfer the student-system
interaction dialog into the trajectory which can then be rep-
resented as follows:

S1
A1,R1−−−−→ S2

A2,R2−−−−→ S3
A3,R3−−−−→ ...→ SN

Where Si
Ai,Ri−−−−→ Si+1 means that the tutor executed action

Ai and received reward Ri in state Si, and then transferred
to the next state Si+1. In general, the reward can be divided
into two categories, immediate and delayed, where immedi-
ate rewards are received during the state transition, and
delayed are available after reaching to goal state.

3.2 Training Datasets
Our training dataset was collected from three exploratory
studies in which students were trained on an ITS which made
random yet reasonable pedagogical decisions. The studies
were given as homework assignments during CSC226: Dis-
crete Mathematics, a core CS course offered at NCSU dur-
ing the Fall 2014, Spring 2015 and Fall 2015 semesters. The
dataset contains a total of 149 students’ interaction logs.
All students used the same ITS, followed the same general
procedure, studied the same training materials, and worked
through the same training problems. In order to model the
students’ learning process, we extracted a total of 142 state
feature variables, which can be grouped into five categories:

1. Autonomy (AM): the amount of work done by the stu-
dent: such as the number of problems solved so far PSCount
or the number of hints requested hintCount.
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2. Temporal Situation (TS): the time related informa-
tion about the work process: such as the average time taken
per problem avgTime, or the total time spent solving a prob-
lem TotalPSTime.
3. Problem Solving (PS): information about the current
problem solving context, such as the difficulty of the current
problem probDiff, or whether the student changes the diffi-
culty level NewLevel.
4. Performance (PM): information about the student’s
performance during problem solving: such as the number of
right application of rules RightApp.
5. Student Action (SA): the statistical measurement of
student’s behavior: such as the number of non-empty-click
actions that students take actionCount, or the number of
clicks for derivation AppCount.

3.3 Inducing RL Policies
In order to apply RL to induce pedagogical policies, we
first defined the pedagogical decision-making problem as an
MDP. The state representation includes all of the relevant
features available at the beginning of each step. The ac-
tions are WE and PS at the step level. The transition ta-
bles were calculated on our training dataset, and our reward
function includes two types of reward: delayed and imme-
diate. Our most important reward is based on normalized
learning gain (NLG) ( posttest−pretest

1−pretest
), which measures the

students’ learning gains irrespective of their incoming com-
petence. This reward was given as a delayed reward as NLG
scores can only be calculated after students finish the entire
training process. However, Shen et al. [15] showed that giv-
ing immediate rewards can lead to the production of more
effective policies when compared to delayed rewards. This
is known as the credit-assignment problem. The more that
we delay success measures from a series of sequential deci-
sions, the more difficult it becomes to identify which of the
decision(s) in the sequence are responsible for our final suc-
cess or failure. Therefore, for the purposes of this study we
also assigned immediate rewards based upon the students’
performance during training on the system.

The value iteration algorithm was applied to find the optimal
policy. This algorithm operates by finding the optimal value
for each state V ∗(s). The optimal value for a given state is
the expected discounted reward that the agent will gain if
it starts in s and follows the optimal policy to the goal.
Generally speaking, V ∗(s) can be obtained by the optimal
value function for each state-action pair Q∗(s, a) which is
defined as the expected discounted reward the agent will
gain if it takes an action a in a state s and follows the optimal
policy to the end. The optimal state value V ∗(s) and value
function Q∗(s, a) can be obtained by iteratively updating
V (s) and Q(s, a) via equations 1 and 2 until they converge:

Q(s, a) := R(s, a) + γ
∑

s′∈S
p(Sj |Si, a)V (s′) (1)

V (s) := max
a

Q(s, a) (2)

Here, p(Sj |Si, a) is the estimated transition model T , R(s, a)
is the estimated reward model and 0 ≤ γ ≤ 1 is a discount
factor.

To induce effective pedagogical policies, we combined RL
with various feature selections including 10 types of correlation-

based methods and an ensemble method and capped the
maximum number of state feature size to be eight. More
details of our feature selection methods are described in [14].
The final resulting RL policy involves seven state features
and 3706 rules.

4. EXTRACTING COMPACT DT-RL SETS
In order to extract a more compact set of decision-making
rules from the full set of RL-induced rules, we implemented
the ID3 algorithm to build DTs [12]. Each rule in the final
RL-induced policy was used as a training example. Two
types of decision trees were built: unweighted and weighted,
as well as two types of pruning strategies were implemented:
pre- and post-pruning. Next, we will discuss each of them
in turn.

4.1 Unweighted vs. Weighted Tree
The decision to give a WE vs. PS may impact students’
learning differently in different situations. We therefore built
two types of decision trees: unweighted and weighted. Un-
weighted trees treated each decision equally while weighted
trees take account of the relative importance of each peda-
gogical rule. When applying the value iteration algorithm
to induce the optimal policy, we generate the optimal value
function Q∗(s, a), which gives the expected discounted re-
ward each agent will gain if it takes an action a in a state s
and follows the optimal policy to the end. For a given state
s, a large difference between the values of Q(s, “PS”) and
Q(s, “WE”) indicates that it is more important for the ITS
to follow the optimal decision in the state s. We therefore
used the absolute difference between the Q values for each
state s to weight each RL pedagogical rule.

The ID3 algorithm builds a tree recursively from root to
leaves. On each iteration of the construction process the
algorithm will check the state of the dataset for the current
branch. It will then select a test feature for the current
node based upon the weighted information gain. The current
node will then be expanded by adding branches to it, each
of which represents a possible value for the selected feature.
The data will be partitioned over the branches according to
the value of the test feature. The selected feature cannot
be used again by its children. Weighted information gain is
defined by the difference between the weighted entropy of the
examples before it is selected and after they are separated
by feature value. The weighted entropy of a node can be
calculated by equation 3

H(G) = −
J∑

i=1

p(i|G)log2p(i|G) (3)

J is the total number of output label classes. In our case,
it is the number of pedagogical actions (WE or PS) which
is 2 . p(i|G) is the weighted frequency defined by the equa-

tion: p(i|G) =
∑

x∈i wx∑
y∈G wy

.
∑

x∈i wx is the total weight of the

examples which are in node G and which belong to class i.
And

∑
y∈G wy is the total weights of examples in node G.

The information gain of spliting the current set of training
examples using feature F can be calculated by equation 4:

IG(F,G) = H(G)−
k∑

j=1

p(tj |G)H(tj) (4)
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p(tj |G) is the weighted frequency of the examples in node G:

p(tj |G) =
∑

xF =t,x∈G wx∑
y∈G wy

.
∑

xF=t,x∈G wx is the total weights

of examples in nodes G whose value of feature F is j and∑
y∈G wy is the total weight of examples in nodes G.

4.2 Pre-Pruning and Post-Pruning
To control the size of rules induced by DT, we examined
two types of pruning strategy: pre- and post-pruning. The
pre-pruning is conducted during the process of building the
tree and it used the information gain to determine whether
to expand or to terminate. Only nodes with an information
gain greater than a threshold times its depth: IG(F,G) ≥
θ ×DG will be expanded and others will be made as a leaf.
θ is a fixed threshold and DG is the depth of node G.

Post-Pruning is conducted after the whole decision tree is
built and it used the error rate as the pruning measure. The
error rate before a node is expanded is defined as: eG =∑

i∈I wi

|G| . I is the set of the decisions incorrectly classified

by node G and |G| is the total number of examples in the
node G. The error rate after a node is expanded is defined

as: eC =
∑

c∈C

∑
j∈Ic

wi

|G| . C is the set of children nodes

of G after it is expanded and Ic is the set of the decisions
incorrectly classified by the node c. In post-pruning, if the
difference of a node’s error rate from before to after split is
less than a threshold, the node will be pruned by removing
all of its branches to make it a leaf node.

4.3 The Compact Set of DT-RL Rules
In order to induce a compact set of DT-RL rules, we ap-
plied the DTs to the full set of 3706 RL-induced rules. The
induced unweighted and weighted DTs without pruning has
2527 and 2456 rules (leaf nodes) respectively. Thus, with-
out pruning, DTs are already able to extract a smaller set
of rules: it reduced the total number of rules by over 1000.

Figure 1 shows the relationship between the number of leaf
nodes (x-axis) and the inverted weighted accuracy (y-axis).
Weighted accuracy(WA) is the weighted percentage of deci-
sions correctly made, which can be calculated by the equa-

tion: WA =
∑

di∈T wi∑
di

wi
. T is the set of correct predictions

made by a DT and wi is the weight of decision i. The in-
verted weighted accuracy (IWA) is IWA = WA−10, the
lower the better. Since our goal is to find a good balance
point between the IWA and the number of leaf nodes, we
applied a widely used strategy called the Elbow Method,
to select the best tree. As we can see in the figure, the
elbows for the two unweighted tree approaches are around
800 and 1700 rules (x-axis) for the pre and post pruning
respectively while the elbows for the two weighted tree ap-
proaches are around 250 and 500 for the pre and post prun-
ing respectively. So it seems that weighted tree can extract
more compact set of rules than the unweighted trees. While
the weighted pre-pruning approach has around 250 rules,
its IWA is much higher than the weighted post-pruning ap-
proach. Therefore, we chose the weighted tree with post-
pruning strategy which has the an elbow at about 500 leaf
nodes and reasonable IWA.

To further justify our DT choice, Table 1 shows the relation-
ship between the pruning thresholds, WA and the number

Figure 1: Leaf Nodes - Accuracy

of leaf nodes for the weighted tree with post-pruning. Ta-
ble 1 shows that the tree with the closest number of leaves
to 500 is the 529 one. It can be obtained by apply a pruning
threshold of 0.8 and the result tree has a weighted accuracy
of 0.76. The rules in the resulted tree will be the rules used
in the DT-RL condition.

In short, we applied DT on RL-induced pedagogical policies
to extract a more compact set of decision-making rules. The
effectiveness of the original full set and the compact set of
policies were empirically compared against a baseline policy
which makes random yet reasonable decisions: PS vs. WE.
Thus, we have three conditions:

1. Full-RL: the full set of 3706 RL-induced rules.
2. DT-RL: the compact set of 529 DT-induced RL rules.
3. Random: the random yet reasonable policy.

5. EMPIRICAL EXPERIMENT
Participants: This study was conducted in the under-
graduate Discrete Mathematics course at the Department
of Computer Science at NC State University in the Fall of
2016. 153 students participated in this study, which was
given as their final homework assignment.

Conditions: Students in the study were assigned to three
conditions via balanced random assignment based upon their
course section and performance on the class mid-term exam.
Since the primary goal of this work is to examine the ef-
fectiveness of the two RL based policies, we assigned more
students to the Full-RL and DT-RL conditions than in the
random condition. The final group sizes were: N = 61 (Full-
RL), N = 51 (DT-RL), and N = 41 (Random).

Due to preparations for exams and length of the experiment,
126 students completed the experiment. 5 students were
excluded from the subsequent analysis due to perfect pretest
scores, working in group or gaming the system during the
training. The remaining 121 students were distributed as
follows: N = 45 for Full-RL; N = 41 for RL-DT; N = 35
for Random. We performed a χ2 test of the relationship
between students’ condition and their rate of completion
and found no significant difference among the conditions:
χ2 (2) = 0.955, p = 0.620.

Probability Tutor: Pyrenees is a web-based ITS for prob-
ability. It covers 10 major principles of probability, such
as the Complement Theorem and Bayes’ Rule. Pyrenees
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Table 1: Weighted DT with Post-pruning
Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

WA 1.00 0.99 0.98 0.96 0.93 0.89 0.85 0.79 0.76 0.68
leaves 2456 2217 2029 1809 1608 1383 1043 758 529 231

provides step-by-step instruction and immediate feedback.
Pyrenees can also provide on-demand hints prompting the
student with what they should do next. As with other sys-
tems, help in Pyrenees is provided via a sequence of in-
creasingly specific hints. The last hint in the sequence, the
bottom-out hint, tells the student exactly what to do. For
the purposes of this study we incorporated three distinct
pedagogical decision modes into Pyrenees to match the three
conditions.

Procedure: In this experiment, students were required to
complete 4 phases: 1) pre-training, 2) pre-test, 3) training on
Pyrenees, and 4) post-test. During the pre-training phase,
all students studied the domain principles through a proba-
bility textbook, reviewed some examples, and solved certain
training problems. The students then took a pre-test which
contained 14 problems. The textbook was not available at
this phase and students were not given feedback on their an-
swers, nor were they allowed to go back to earlier questions.
This was also true of the post-test.

During phase 3, students in all three conditions received
the same 12 rather complicated problems in the same order
on Pyrenees. Each main domain principle was applied at
least twice. The minimal number of steps needed to solve
each training problem ranged from 20 to 50. These steps
included defining variables, applying principles, and solv-
ing equations. The number of domain principles required to
solve each problem ranged from 3 to 11. All of the students
could access the corresponding pre-training textbook dur-
ing this phase. Each step in the problems could have been
provided as either a WE or PS based upon the condition
policy. Finally, all of the students completed a post-test
with 20 problems. 14 of the problems were isomorphic to
the pre-test given in phase 2. The remaining six were non-
isomorphic complicated problems.

Grading Criteria: The test problems required students to
derive an answer by writing and solving one or more equa-
tions. We used three scoring rubrics: binary, partial credit,
and one-point-per-principle. Under the binary rubric, a so-
lution was worth 1 point if it was completely correct or 0
if not. Under the partial credit rubric, each problem score
was defined by the proportion of correct principle applica-
tions evident in the solution. A student who correctly ap-
plied 4 of 5 possible principles would get a score of 0.8. The
one-point-per-principle rubric in turn gave a point for each
correct principle application. All of the tests were graded in
a double-blind manner by a single experienced grader. The
results presented below are based upon the partial-credit
rubric but the same results hold for the other two. For
comparison purposes, all test scores were normalized to the
range of [0,1].

6. EMPIRICAL RESULTS
Since both the Full-RL and DT-RL policies are based on an
RL-induced policy, we combined the two conditions together
as the Induced group to evaluate the effectiveness the RL-
induced policy. The evaluation was conducted by comparing
the Induced group with the baseline Random condition on
learning performance and training time. Moreover, in or-
der to further discover to what extent the compact policy
retained the power of the full policy, we compared the Full-
RL and DT-RL conditions on the same measures. Next, we
will discuss each of the comparisons in turn.

6.1 Induced vs. Random
We measured Students’ incoming competence via the pre-
test scores collected before training took place. Table 2
shows a comparison between the Induced group and the
Random group in terms of learning performance. The paren-
thesized values following the group names in row 1 denote
the number of students in each group. The second row in this
table shows the pre-test scores. The last column shows the
pairwise t-test results. Pairwise t-tests on students’ pre-test
scores show that there is no significant difference between
the two groups: t(119) = −0.346, p = 0.730, d = 0.069.
Thus, despite attrition, the two groups remained balanced
in terms of incoming competence. Next, we will compare the
two groups in terms of learning performance in the post-test
and training time.

Rows 2 - 4 in Table 2 show a comparison of the pre-test, iso-
morphic post-test (14 isomorphic questions), and adjusted
post-test scores between the two groups along with the mean
and SD for each. In order to examine the students’ im-
provement through training on Pyrenees, we compared their
scores on the pre-test and isomorphic post-test questions.
A repeated measures analysis using test type (pre-test and
isomorphic post-test) as factors and test score as the depen-
dent measure showed a main effect for test type: F (1, 119) =
98.75, p < 0.0001. Further comparisons on group by group
basis showed that on the isomorphic questions, both groups
scored significantly higher in the post-test than in the pre-
test: F (1, 85) = 81.30, p < 0.0001 for Induced and F (1, 34) =
18.30, p = 0.0001 for Random respectively. This suggests
that the basic practice and problems, domain exposure, and
interactivity of our ITS might help students to learn even
when pedagogical decisions are made randomly.

In order to investigate the effectiveness of the induced poli-
cies, we compared students’ overall learning performance,
which was evaluated by their adjusted post-test scores, be-
tween the two groups. A one-way ANCOVA analysis was
conducted on their overall post-test scores (20 questions),
using the pretest scores as a covariate to factor out the in-
fluence of their incoming competence. The result shows a
significant main effect: F (1, 118) = 4.628, p = 0.033. That
is, the Induced group significantly outperformed the Ran-
dom group on adjusted post-test scores, which is shown in
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Table 2: Induced vs. Random
Cond Induced(86) Random(35) T-test Result
Pre .686(.194) .699(.171) t(119) = −0.346, p = 0.730, d = 0.069

Iso Post .851(.155) .812(.195) t(119) = 1.141, p = 0.256, d = 0.229
Adjusted Post .751(.144) .689(.138) t(119) = 2.162, p = 0.033, d = 0.433

Time 105.87(34.30) 111.18(27.33) t(119) = −0.815, p = 0.417, d = 0.163
WE steps 205.74(62.73) 189.46(11.39) t(119) = 1.522, p = 0.131, d = 0.305
PS steps 173.69(61.14) 190.26(10.28) t(119) = −1.591, p = 0.114, d = 0.319

WE pct(%) 54.16(16.35) 49.89(2.78) t(119) = 1.532, p = 0.128, d = 0.307

the fourth row of Table 2. Therefore, the results showed that
the induced policies are significantly more effective than the
random policy.

The fifth row in Table 2 shows the average amount of total
training time (in minutes) students spent on our ITS for each
group. Pairwise t-test showed no significant difference in
training time between the two groups: t(119) = −0.815, p =
0.417, d = 0.163. The results suggest that when compared
to the random policy, the induced policies generally do not
have a significant different impact on students’ training time.

The last three rows in Table 2 show the number of WE
and PS steps given as well as the percentage of WE steps
received by the Induced and the Random group. Pairwise
t-tests showed that there is no significant difference between
the two groups on these three measures.

6.2 Full-RL vs. DT-RL
We then performed the same comparison between the Full-
RL and DT-RL conditions in order to examine the effective-
ness of the DT-extracted compact policy. The second row
in Table 3 shows the pre-test scores for each condition. A
pairwise t-test on the scores shows no significant difference
between the two conditions: t(84) = −0.168, p = 0.867,
d = 0.036. Thus the two conditions were balanced in terms
of incoming competence.

The pre-test, isomorphic post-test and adjusted post-test
scores are shown in rows 2 - 4 of Table 3. A repeated mea-
sures analysis using test type (pre-test and isomorphic post-
test) as factors and test score as dependent measure showed
a main effect for test type: F (1, 85) = 81.30, p < 0.0001.
Further comparisons on group by group basis showed that
both conditions scored significantly higher in isomorphic
post-test than in pre-test: F (1, 44) = 42.16, p < 0.0001
for Full-RL and F (1, 40) = 39.16, p < 0.0001 for DT-RL.
These results suggest that the students can effectively learn
from Pyrenees with the full and compact policies.

In order to discover to what degree the compact policy re-
tained the effectiveness of the full policy, we compared the
post-test scores between the two conditions. The results
of a pairwise t-test showed no significant different between
them on isomorphic post-test: t(84) = 0.505, p = 0.615,
d = 0.109. We also conducted an ANCOVA analysis on the
overall post-test scores using the pretest scores as a covari-
ate and still found no significant different between the two
conditions: F (1, 83) = 0.348, p = 0.557. In short, while on
post-test scores, the DT-RL condition scored slightly lower
than the Full-RL condition, the difference is not significant.

The fifth row of Table 3 shows the average amount of time
students spent on training. As the row shows, the Full-
RL condition spent significantly more time than the DT-RL
condition: t(84) = 3.829, p = 0.0002, d = 0.827. Thus
the Full-RL and DT-RL policies have significant different
impact upon the students’ training time.

The last three rows of Table 3 show the number of WE
and PS steps given and the percentage of WE steps re-
ceived by the Full-RL and the DT-RL condition. Pair-
wise t-tests showed that comparing to the DT-RL condi-
tion, the Full-RL condition received significantly fewer WE
steps: t(84) = −4.952, p < 0.0001, d = 1.069; received a
lower percentage of WE steps: t(84) = −4.955, p < 0.0001,
d = 1.070; and completed more PS steps: t(84) = 4.999,
p < 0.0001, d = 1.079. These results suggest that the peda-
gogical decisions made by the compact and full policies are
substantively different.

7. DISCUSSION
In this study, we applied DT to extract a compact set of
pedagogical rules from the full set of RL-induced rules and
empirically evaluated the effectiveness of two sets of rules in
a classroom study. Our goal was to shed some light on the
RL-induced policies and we think this is only the first step
towards narrowing the gap and building a bridge between
machine-induced pedagogical policies and learning theories.

In order to find the best DT, we explored two types of tree:
unweighted and weighted; and for each of them, we con-
ducted two types of pruning strategy: pre- and post-pruning.
After comparing the performance among them, we selected
the weighted tree with the post-pruning strategy to perform
the extraction of general decision-making rules. The RL-
induced policy contains 3706 specific rules, and the compact
DT-RL consisted of 529 rules with a weighted decision ac-
curacy of 76%.

In our empirical experiment, we were able to strictly control
the domain content and thus to isolate the impact of ped-
agogy from content. Based on this isolation, we compared
students’ performance with the Full-RL policy, the DT-RL
policy and the baseline random policy. Our results showed
that students in all three conditions learned significantly af-
ter training on Pyrenees, this suggests that the basic training
of the ITS is effective, even when the pedagogical decisions
are made randomly. To evaluate the effectiveness of the two
machine induced policies (Full-RL policy and DT-RL pol-
icy), we combined the Full-RL and DT-RL condition as the
Induced group and compared its learning performance with
the Random group. Our results showed that the Induced
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Table 3: Full-RL vs. DT-RL
Cond Full-RL(45) DT-RL (41) T-test Result
Pre .683(.205) .690(.184) t(84) = −0.168, p = 0.867, d = 0.036

Iso Post .859(.145) .842(.168) t(84) = 0.505, p = 0.615, d = 0.109
Adjusted Post .757(.144) .739(.145) t(84) = 0.594, p = 0.554, d = 0.128

Time 118.42(35.000) 92.10(27.95) t(84) = 3.829, p = 0.0002, d = 0.827
WE steps 177.44(48.86) 236.80(62.03) t(84) = −4.952, p < 0.0001, d = 1.069
PS steps 201.47(47.22) 143.20(60.57) t(84) = 4.999, p < 0.0001, d = 1.079

WE pct(%) 46.77(12.78) 62.26(16.13) t(84) = −4.955, p < 0.0001, d = 1.070

group significantly outperform the Random group. These
results suggest that the machine induced policies are indeed
more effective than the random policy.

Finally, in order to examine to what extent the compact DT-
RL policy retained the power of the full RL-induced policy,
we compared the learning performance of the Full-RL and
the DT-RL conditions. Our results suggest that while some
of the power was lost in the general rules extraction, the rel-
ative performance difference between the Full-RL and the
DT-RL condition is not significant. In addition, our results
on the pedagogical decisions made in training revealed that
the compact DT-RL policy selected significant more WE
than the Full-RL policy. This suggests that the two sets
of policies indeed made materially different decisions. How-
ever, since the weighted DT took account of the importance
of each rule, the DT-RL policy aims to retain maximal de-
cision effectiveness from the Full-RL policy while the size of
the former is less than 15% of the size of the Full-RL rules.
In the future, we will apply existing learning theories to the
decision-making process generated by decision tree to find
a theoretical basis for the DT-induced general pedagogical
decision-making rules.

8. ACKNOWLEDGEMENTS
This research was supported by the NSF Grant #1432156:
“Educational Data Mining for Individualized Instruction in
STEM Learning Environments” and #1651909: “Improving
Adaptive Decision Making in Interactive Learning Environ-
ments”.

9. REFERENCES
[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and

R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167–207, 1995.

[2] J. Beck, B. P. Woolf, and C. R. Beal. Advisor: A
machine learning architecture for intelligent tutor
construction. AAAI/IAAI, 2000:552–557, 2000.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored
representations. Artificial intelligence, 121(1):49–107,
2000.

[4] M. Chi, K. VanLehn, D. Litman, and P. Jordan.
Empirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21(1-2):137–180, 2011.

[5] L. J. Cronbach and R. E. Snow. Aptitudes and
instructional methods: A handbook for research on
interactions. Irvington, 1977.

[6] A. D. Davidson and et al. Multiple ecological pathways
to extinction in mammals. Proceedings of the National
Academy of Sciences, 106(26):10702–10705, 2009.

[7] U. D. Gupta, E. Talvitie, and M. Bowling. Policy tree:
Adaptive representation for policy gradient. In AAAI,
pages 2547–2553, 2015.

[8] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Learning teaching strategies in an adaptive and
intelligent educational system through reinforcement
learning. Applied Intelligence, 31(1):89–106, 2009.

[9] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Reinforcement learning of pedagogical policies in
adaptive and intelligent educational systems.
Knowledge-Based Systems, 22(4):266–270, 2009.

[10] K. R. Koedinger and et al. Intelligent tutoring goes to
school in the big city. IJAIED, 8(1):30–43, 1997.

[11] P. Phobun and J. Vicheanpanya. Adaptive intelligent
tutoring systems for e-learning systems.
Procedia-Social and Behavioral Sciences,
2(2):4064–4069, 2010.

[12] J. R. Quinlan. Induction of decision trees. Machine
learning, 1(1):81–106, 1986.

[13] S. H. Reichard and C. W. Hamilton. Predicting
invasions of woody plants introduced into north
america. Conservation Biology, 11(1):193–203, 1997.

[14] S. Shen and M. Chi. Aim low: Correlation-based
feature selection for model-based reinforcement
learning. EDM, 2016.

[15] S. Shen and M. Chi. Reinforcement learning: the
sooner the better, or the later the better? In UMAP,
pages 37–44. ACM, 2016.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge,
1998.

[17] K. Vanlehn. The behavior of tutoring systems.
IJAIED, 16(3):227–265, 2006.

[18] M. P. Vayssières, R. E. Plant, and B. H. Allen-Diaz.
Classification trees: An alternative non-parametric
approach for predicting species distributions. Journal
of vegetation science, 11(5):679–694, 2000.

Proceedings of the 10th International Conference on Educational Data Mining 119



On the Influence on Learning of Student Compliance with 

Prompts Fostering Self-Regulated Learning
Sébastien Lallé 

University of British Columbia 
2366 Main Mall 

Vancouver, BC V6T1Z4, Canada 

lalles@cs.ubc.ca 

Nicholas Mudrick 
North Carolina State University 

106 Caldwell Hall 
Raleigh, NC 27695-8101, USA 

nvmudric@ncsu.edu  

 

Cristina Conati 
University of British Columbia 

2366 Main Mall 
Vancouver, BC V6T1Z4, Canada 

conati@cs.ubc.ca 

Michelle Taub 
North Carolina State University 

106 Caldwell Hall 
Raleigh, NC 27695-8101, USA 

mtaub@ncsu.edu 

Roger Azevedo 
North Carolina State University 

106 Caldwell Hall 
Raleigh, NC 27695-8101, USA 

razeved@ncsu.edu  
 

 

ABSTRACT 

In this paper, we investigate the relationship between students’ 

learning gains and their compliance with prompts fostering self-

regulated learning (SRL) during interaction with MetaTutor, a 

hypermedia-based intelligent tutoring systems (ITS). When possi-

ble, we evaluate compliance from student explicit answers on 

whether they want to follow the prompts, When such answers are 

not available, we mine several student behaviors related to prompt 

compliance. These behaviors are derived from students’ eye-

tracking and interaction data (e.g., time spent on a learning page, 

number of gaze fixations on that page). Our results reveal that 

compliance with some, but not all SRL prompts provided by 

MetaTutor do influence learning. These results contribute to gain 

a better understanding of how students benefit from SRL prompts, 

and provides insights on how to further improve their effective-

ness. For instance, prompts that do improve learning when fol-

lowed could be the focus of adaptation designed to foster compli-

ance for those students who would disregard them otherwise. 

Conversely, prompts that do not improve learning when followed 

could be improved based on further investigations to understand 

the reason for their lack of effectiveness  

Keywords 

Intelligent tutoring systems; Self-regulated learning; Scaffolding; 

Compliance with prompts; Learning gains; Eye tracking; Linear 

regression; Hypermedia 

1. INTRODUCTION 
There is extensive evidence that the effectiveness of Intelligent 

Tutoring Systems (ITS) is influenced by how well students can 

regulate their learning, e.g., [13, 22]. Current research has shown 

that scaffolding self-regulated learning (SRL) strategies such as 

setting learning goals or assessing progress through the learning 

content can improve learning outcomes with an ITS, e.g., [1, 10, 

22]. In particular, one of the most common approaches to scaffold 

SRL is to deliver prompts designed to guide students in applying 

specific SRL strategies as needed [22]. Previous work has focused 

on assessing the general effectiveness of such SRL prompts, for 

instance by comparing learning outcomes of students working 

with versions of the same ITS with and without the prompts. (e.g., 

[1, 19, 21]). Other work has investigated the extent to which 

students comply with the overall set of prompts generated by an 

ITS [16, 21]. However, there has been no reported study on the 

relationship between compliance with specific SRL prompts and 

learning outcomes. In this paper, we aim to fill this gap. Specifi-

cally, we explore the impact of student compliance with SRL 

prompts on learning gains with MetaTutor, an ITS designed to 

scaffold student SRL processes while learning about topics of the 

human circulatory system [1].  

Our results show that student learning is influenced by compli-

ance with some, but not all, of the SRL prompts delivered by 

MetaTutor. Overall, we found a positive impact on learning for 

compliance with prompts fostering learning strategies (revising a 

summary, reviewing notes), or planning processes (setting new 

learning goals). On the other hand, we found no impact on learn-

ing with prompts related to metacognitive monitoring processes 

(e.g., prompts to stay on or move away from the current page 

depending on student performance on a quiz on that page). Hav-

ing information on the efficacy of each specific prompt in a ITS is 

important to guide further research on how to improve prompts 

that do not seem to improve learning when students follow them. 

Furthermore, prompts that foster learning when followed can 

become the focus of adaptive interventions designed to improve 

compliance for those students who would disregard these prompts 

if left to their own device. 

The paper also provides initial insights into prompts design issues 

that affect how easy it is to evaluate compliance. In MetaTutor, 

some prompts explicitly asked students whether they wanted to 

follow the prompt, and then provided suitable affordance to ac-

commodate a positive reply. Compliance with these prompts is 

easy to assess, but the additional interactions that they require 

might not always be possible, or might even be intrusive for some 

students. Other prompts did not require any specific response 

from the students. Thus, such prompts are in less danger of being 

intrusive, and provide for a more open-ended interaction. On the 

other hand, assessing compliance with these prompts is not trivial, 

because there is no clear definition of what compliance means. 

For example, one of the MetaTutor prompts asks students to re-

read the current MetaTutor content page, but there is no obvious 

way to map this rather generic suggestion to a specific desired 

behavior (e.g., spend a specific amount of time on the page, read a 

specific number of words). We addressed this problem by running 

linear models to correlate a variety of student behaviors related to 

prompt compliance with learning. The behaviours we mined are 

based on both action and eye-tracking data (e.g., time spent on 

that page, gaze fixations on the content of the page), and our 
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results provide initial evidence that combining these two data 

sources can help to evaluate compliance. Thus, our findings repre-

sent a step toward research on how to evaluate compliance with 

prompts, both for the type of off line analysis presented in this 

paper, as well as for the real-time detection of compliance neces-

sary if we want to have ITSs that adaptively help students follow 

prompts as needed.  

The remainder of the paper starts with an overview of related 

work, followed by a description of MetaTutor and the study that 

generated the dataset we used for this research. Next, we illustrate 

how we mined data to evaluate compliance with MetaTutor’s 

prompts, the statistical analysis we conducted, and our results.  

2. RELATED WORK 
There has been extensive work on assessing the effectiveness of 

scaffolding designed to support learning with ITSs. Scaffolding 

can include prompts or hints (i.e., interventions that guide the 

student in the right direction), feedback (evaluation of students 

answers, behavior or strategies), or demonstration (e.g., worked 

examples showing expert behavior) [22, 23]. Such scaffolding can 

be domain-specific to support the acquisition of domain-specific 

knowledge, or targeting domain-independent, meta-cognitive 

learning processes such as processes for self-regulated learning 

(SRL). There is extensive evidence that both domain-specific 

scaffolding (e.g., [3, 12, 18, 20]) and meta-cognitive scaffolding 

(e.g., [2, 10, 11, 21]) can improve the effectiveness of ITS. For 

example, domain-specific hints that explain how to solve the 

current problem step have been shown to improve skill acquisi-

tion in a variety of domains such as mathematics [20] and reading 

[3, 12]. At the meta-cognitive level, Roll et al. [21] tracked 

suboptimal help-seeking patterns (e.g., overuse of help) to deliver 

prompts and feedback on how to effectively use help. Prompts 

and feedback designed to help construct self-explanations during 

reading [10] or solving scientific problems [11] have been found 

to positively influence learning. Azevedo et al. [2] showed that 

SRL prompts and feedback effectively foster efficient use of SRL 

strategies while learning about biology. 

Research has also examined student compliance with SRL 

prompts in ITS [5, 16]. Kardan and Conati [16] examined the 

benefit of providing a variety of prompts designed to help stu-

dents progress within an interactive learning simulation. Overall 

they found that students largely complied with the prompts and 

that providing these prompts improved learning gains. However, 

they did not explore whether and how compliance with specific 

prompts influence learning outcomes, and which prompts are the 

most effective. Bouchet et al. [5] adapted the frequency of prompt 

delivery in MetaTutor based on whether students previously com-

plied with prompts of the same type. However, their analysis 

uncovered no influence of such adaptive prompting strategy on 

learning gains. We extend the aforementioned work on prompt 

compliance by showing how learning gains are impacted by com-

pliance with some, but not all SRL prompts in MetaTutor. Fur-

thermore, whereas previous solely used interaction data to evalu-

ate compliance, we also leverage eye-tracking data when compli-

ance cannot be inferred directly from students’ answers or actions 

(e.g., compliance with the prompts of reading a text further). 

Eye-tracking has been used in ITS to model a variety of students 

traits and behavior, e.g., emotions [14], learning outcomes [15], 

metacognitive behavior [7], or mind wandering [4]. Eye tracking 

has also been used to capture students attention to prompts [6, 8] 

and to pedagogical agents [17]. Conati et al. [6] leveraged gaze 

data to detect whether students processed domain-specific textual 

prompts in an educational game for math, and found that reading 

the prompts more extensively improved game performance. Lallé 

et al. [17] used gaze data to capture student visual attention to 

pedagogical agents in MetaTutor, and found that student learning 

gains are significantly influenced by specific metrics for visual 

attention (fixation rate, longest fixation). Eye-tracking has also 

 

Figure. 1. Screenshot of MetaTutor. 
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been used to add real-time adaptive prompts to Guru, an agent-

based ITS for learning biology [9]. In that work, audible prompts 

designed to reorient student attention towards the screen were 

triggered if a student had not looked at the screen for more than 5s 

while Guru was providing scaffolding. This research showed that 

this gaze-reactive feedback can improve learning with Guru. In 

our work, we mine eye-tracking data to evaluate compliance with 

specific SRL prompts, and examine whether and how compliance 

with such SRL prompts influences learning gains. 

3. METATUTOR 
MetaTutor [1] is a hypermedia-based ITS containing multiple 

pages of content about the circulatory system, as well as mecha-

nisms to help students self-regulating their learning with the assis-

tance of multiple speaking pedagogical agents (PAs). When work-

ing with MetaTutor, students are given the overall goal of learning 

as much as they can about the human circulatory system. The 

main interface of MetaTutor (see Fig. 1) includes a table of con-

tents (Fig. 1A), the text of the current content page (Fig.1B), a 

miniature image allowing the student to display a diagram along 

with the text (Fig. 1C), the current goals and subgoals to learn 

about (Fig. 1E), a timer indicating how much time remains in the 

learning session (Fig. 1F), and an SRL palette (Fig. 1D). This 

palette is designed to scaffold students self-regulatory processes 

by providing buttons they can select to initiate specific SRL activ-

ities (e.g., making a summary, taking a quiz, setting subgoals). 

Further SRL scaffolding is provided by three PAs in the form of 

feedback on student performance on these SRL activities (e.g., 

performance on quiz or on the quality of their summaries), as well 

as prompts designed to guide these activities as needed. The PAs 

deliver these prompts based on student behavior (e.g., time spent 

on page, number of pages visited). 

Specifically, Pam the Planner prompts planning processes pri-

marily at the beginning of the learning session by suggesting to 

add a new subgoal and, if needed, which one to choose (e.g., path 

of blood flow, heart components). Mary the Monitor scaffolds 

students’ metacognitive monitoring processes by making them 

take quizzes on the target material when they appear to be ready 

for them. Based on quiz outcomes, Mary prompts students to 

evaluate the relevance of the current content and subgoal to their 

knowledge, and suggests how to move through the available mate-

rial and sub goals accordingly. Sam the Strategizer prompts stu-

dents to apply the learning strategies consisting of summarizing 

the content studied so far or reviewing notes they have taken on 

the content1. 

All PAs provide audible assistance through the use of a text-to-

speech engine (Nuance). The PAs are visually rendered using 

Haptek virtual characters, which generate idle movements when 

the PAs are not speaking (subtle, gradual head and eye move-

ments), as well as lip movements during speech.  

4. USER STUDY 
The data used for the analysis presented in this paper were col-

lected via a user study designed to gain a general understanding of 

how students learn with MetaTutor [1]. The study included the 

collection of a variety of multi-channel trace data (e.g., eye track-

                                                                 

 

1 More details about the design of the agents can be found in [1]. 

ing, log files, physiological sensors). In this paper, we focus on 

using interaction and eye-tracking data to track compliance with 

the SRL prompts provided by MetaTutor, and study the relation-

ship among compliance with the prompts and learning gains. 

Twenty-eight college students participated in the study, which 

consisted of two sessions conducted on separate days. During the 

first session, lasting approximately 30-60 minutes, students were 

administered several questionnaires, including a 30-item pretest to 

assess their knowledge of the circulatory system. During the sec-

ond session lasting approximately three hours, students first un-

derwent a calibration phase with the eye tracker (SMI RED 250) 

as well as a training session on MetaTutor. Each student was then 

given 90 minutes to interact with the system. Finally, students 

completed a posttest analogous to the pretest, followed by a series 

of questionnaires about their experience with MetaTutor. 

5. DATA ANALYSIS 

5.1 Evaluating Compliance with Prompts  
In our analysis we categorize prompts into two types based on 

how compliance can be evaluated. The first type includes prompts 

for which compliance can be explicitly assessed from students 

subsequent responses (explicit compliance prompts); the second 

type includes prompts for which compliance needs to be inferred 

by mining a variety of behaviors (inferred compliance prompts).  

Explicit compliance prompts are those that: 

 Require students to answer “yes” or “no” (using a dialogue 

panel that becomes active at the bottom of the display). If stu-

dents answers yes, the only action they can perform in the 

MetaTutor interface is the one they agreed upon (e.g., adding a 

specific subgoal suggested by the agent, making or revising a 

summary, moving to a previously added subgoal or staying on 

the current one)2. 

 Require students to take a specific action within a specific time 

frame (i.e., open the diagram while they are on the current page, 

and review notes by the end of the learning session). 

Table 1 lists the explicit compliance prompts considered in this 

analysis. 

Inferred compliance prompts are those for which the PAs do not 

force students to provide an explicit answer. Specifically, after the 

agent utters one of these prompts, the student simply clicks on 

“continue” in the same dialogue panel, and can either ignore the 

prompted action, or comply at some point. These prompts (listed 

in Table 2) include all prompts related to staying on or moving 

away from the current page, as well as initiating the action of 

adding a new subgoal. 

5.2 Statistical Analysis 
Our analysis aims to investigate if and how compliance with 

MetaTutor’s SRL prompts influence learning. The variable we 

                                                                 

 

2 For the “stay on current subgoal” prompt, students are not forced 

to comply after answering “yes”, but we have listed it in this 

category because student are still required to explicitly answer 

“yes” or “no” to the PAs as for whether they want to follow the 

prompt or not. 
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adopted to measure learning in our analysis is proportional learn-

ing gain, defined as: 

   

Table 3 reports statistics for pre- and post-test scores, as well as 

for the corresponding learning gains.3 

Table 3. Descriptive statistics for pretest, posttest, and 

learning gain. 

Measures of learning  M SD Median 

Pretest 18.6 4.2 19 

Posttest 21.4 4 21 

Proportional learning gain 15.3 50.2 20 

 

We conducted two separate analyses for explicit and inferred 

compliance prompts, described next. 

Explicit compliance prompts. Since compliance is directly 

observed in the data for explicit compliance prompts (listed in 

Table 2), we computed a compliance rate for each of these 

prompts as follow: 

  

                                                                 

 

3 The increase from pretest to post-test is statistically significant 

indicating that MetaTutor is overall effective at fostering learn-

ing, as further discussed in [1]. 

Table 4 shows the compliance rate averaged across students for 

each of the seven explicit compliance prompts in MetaTutor, and 

the number of prompts delivered. 

Table 4. Descriptive statistics of the number of explicit com-

pliance prompts delivered, as well as on compliance rate. 

Prompt 
Total number of 

prompts delivered 

Compliance rate 

Mean (SD) 

Suggest subgoal 60 .90 (.25) 

Move next subgoal 25 .85 (.34) 

Stay on subgoal 44 .27 (.37) 

Open diagram 77 .21 (.32) 

Summarize 105 .32 (.41) 

Revise summary 59 .76 (.37) 

Review notes 28 .46 (.51) 

To investigate the impact of compliance with explicit compliance 

prompts on learning, we ran a multiple linear regression model 

with proportional learning gain as the dependent variable, as 

well as the compliance rate for each of the seven explicit compli-

ance prompts, and the total number of prompts received as the 

factors. For post-hoc analysis we ran pairwise t-test comparisons, 

and p-values were adjusted with the Holm-Bonferroni approach to 

account for multiple comparisons. 

Inferred compliance prompts. As stated above, for inferred 

compliance prompts (listed in Table 5), students are not forced to 

explicitly accept or ignore the prompt. This means that compli-

ance with those prompts has to be assessed from student behav-

iors following the prompts. One approach we considered was to 

make this assessment binary, as we did for explicit compliance 

prompts, by establishing thresholds for relevant behaviors. For 

instance, compliance with the prompt to re-read the current page 

could be assessed to be true if the student stays on the page for a 

fixed number of seconds after receiving this prompts. However, it 

Table 1. List of explicit compliance prompts provided in MetaTutor (grouped by type of prompted SRL processes). 

Prompt label Description Prompts for 

Suggest subgoal Recommend possible subgoals to learn about while the students is adding new subgoal. Planning processes 

Moving to next 

subgoal 

Recommend moving on to another subgoal when the student did well on a quiz related to 

the current subgoal. 
Metacognitive monitor-

ing processes  Stay on subgoal 
Recommend to learn more about the current subgoal when the student did not do well 

enough on a quiz related to that subgoal. 

Open diagram Recommend opening the diagram when it is relevant to the current subgoal. 

Summarize 
Recommend making a summary of the current page when the student has spent enough 

time on that page. 

Learning strategies  Revise summary 
Recommend revising the summary submitted by the student when there are issues with the 

summary (e.g., the summary is too long or too short). 

Review notes 
Recommend reviewing notes taken on the learning content when approaching from the 

end of the session. 

Table 2. List of inferred compliance prompts provided in MetaTutor (grouped by type of prompted SRL processes). 

Prompt label Description Prompts for 

Add subgoal Recommend adding a new subgoal to learn about when a student has no active subgoal. Planning processes 

Move to next 

page 

Recommend moving on to another page when the student did well on a quiz related to the 

current page. Metacognitive monitor-

ing processes  
Stay on page 

Recommend staying on the current page when the student did not well enough on a quiz 

related to that page. 
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is difficult to fix these thresholds in an informed manner, as they 

may depend on the student (e.g., on a student’s readings speed, 

existing understanding of the page, etc.), and on the object of the 

prompt (e.g., on the length or difficulty of the page to be re-read). 

It is also difficult to decide which specific behaviors should be 

considered for compliance, as several might be relevant (e.g., time 

spent on a page, specific attention patterns on a page). 

Thus, for the subsequent analysis, we avoided committing to 

specific thresholds and behaviors, and we opted instead for per-

forming regression analyses to try to relate multiple relevant com-

pliance behaviors to learning.  

We started by building data windows that capture student data 

from the delivery of each inferred compliance prompt in Table 2, 

to the following actions: 

 “Moving to another page” for the move to next page and stay 

on page prompts; 

 “Adding a new subgoal” for the add new subgoal prompt. 

We used these data windows to derive three behavioral measures 

related to compliance: 

 Window length, capturing how long students spent before mov-

ing on to another page or adding a new subgoal; 

  Number of fixations4 made on MetaTutor’s learning content 

(text and diagram), as captured by eye tracking. We use this 

measure to understand whether students read the page and/or 

processed the diagram; 

  Number of SRL strategies initiated by the student by pressing 

the corresponding buttons in the SRL palette (see Fig. 1 D). 

Higher values of these measures (i.e., long windows, high number 

of fixations on the page and high number of SRL strategies used) 

are possible indicators that the student is processing the current 

page, e.g., the student is thinking about or reading the content (as 

captured by the length of the data window and number of fixa-

tions on the page), or using SRL strategies on the current page. 

Thus, we hypothesized that higher values of these measures could 

reveal compliance with stay on page prompts, whereas lower 

values could reveal compliance with prompts instructing students 

to move on. Similarly, because prompts to add a subgoal requires 

moving on from the learning content to actually add a subgoal, we 

expected a short window, a small number of fixations on the page, 

and a small number of SRL strategies to indicate compliance. 

It should be noted that we could have generated other eye-

tracking measures, such as fixation duration on the text or the 

number of transitions from the text to other components of the 

MetaTutor’s interface. However, because valid eye-tracking data 

were collected for only 16 students out of the 28 who participated 

in the study, resulting in a rather small dataset, we focused on the 

most promising behavioral measures that could be related to com-

pliance, as a proof of concept. Table 5 shows the amount of in-

ferred compliance prompts delivered to those 16 students. 

                                                                 

 

4 Fixation is defined as gaze maintained at one point on the screen 

for at least 80ms. 

Table 5. Number of inferred prompts delivered. 

Prompt 
Total number of 

prompts delivered 

Add a subgoal 34 

Stay on page 117 

Move to next page 326 

 

We leveraged the three aforementioned measures of student be-

havior to investigate if complying with inferred compliance 

prompts influences learning, and if so, how. Specifically, for each 

of the three inferred compliance prompts, we ran a multiple linear 

regression model with proportional learning gain as the depend-

ent variable, as well as the window length, number of SRL strate-

gies performed, and number of fixations on the learning content 

as the factors. As done for explicit compliance prompts, we used 

pairwise t-test comparisons for post-hoc analysis, and all p-values 

were adjusted with the Holm-Bonferroni approach.  

6.  RESULTS 
We describe below the significant5 effects found in our analysis, 

first for explicit compliance prompts, and second for inferred 

compliance prompts. 

6.1 Effects for Explicit Compliance Prompts 
Our statistical analysis uncovered significant main effects of com-

pliance rate for three explicit compliance prompts: 

 Revise summary (F1,20 = 6.17, p=.02, ηp
2 =.15), shown Fig. 2a. 

 Review notes (F1,20 = 7.43, p=.013, ηp
2 =.16), shown Fig. 2b. 

 Suggest subgoal (F1,20 = 11.4, p=.003, ηp
2=.27), shown Fig. 2c. 

These three main effects and related pairwise comparisons all 

reveal that students learned more when they complied more with 

these prompts than when complying less.  

These results for revise summary and review notes are consistent 

with previous findings showing these learning strategies can be 

beneficial for learning [17, 22, 24], and extend them by showing 

that prompting these strategies is effective when students comply 

with the prompts. Notably, we found a significant effect for 

prompts to revise summary, but not for prompts to summarize. 

This indicates that solely prompting to summarize is not enough 

to improve learning, and that guiding the students through the 

process of making a good summary is necessary. Results for sug-

gest subgoal indicate that recommending a particular learning 

subgoal is useful, possibly because it is difficult for students to 

choose good subgoals by themselves. 

These results suggest to examine ways to improve compliance 

with prompts to revise summary, review notes and suggest sub-

goal, since our analysis reveals that not complying with them 

hinders learning. For instance, MetaTutor could foster compliance 

with these prompts by explaining how they can help the students, 

or conversely force the students to follow these prompts. 

                                                                 

 

5 We report statistical significance at the 0.05 level throughout 

this paper, and effect sizes as small for ηp
2 ≥ 0.02, medium for 

ηp
2 ≥ 0.13, and large for ηp

2 ≥ 0.26. 
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We found no significant effects and small effect sizes (see Appen-

dix A) for the four remaining prompts, namely summarize, stay 

on subgoal or move to next subgoal, and open the diagram. 

These results indicate it is important to study the effectiveness of 

SRL prompts individually, to identify those for which compliance 

does not improve learning. Based on these findings, it is justified 

to further investigate why complying with these prompts is not 

beneficial for learning in MetaTutor, and revise the prompts ac-

cordingly. For example, it might be due to the nature of the 

prompts, their timing, their frequency, their wording, and so forth. 

6.2 Effects for Inferred Compliance Prompts 
We found a main effect of fixation on learning content for the 

“add subgoal” prompts (F1,3 = 13, p = .03, ηp
2 = .29), shown in 

Fig. 2d. This effect and related pairwise comparisons reveal that 

students learned more when they fixate more on the current page 

than when fixating less. Since students were instructed to add a 

new subgoal rather than process the current page, this finding 

suggests that complying with this prompt might not be effective 

for learning with MetaTutor, possibly because of the timing of 

this prompt, its frequency or its wording. Although only seven 

students with valid gaze data received this prompt, the effect size 

is large, suggesting it is worth conducting further analysis to as-

certain whether and why complying with this prompt is not bene-

ficial for learning. 

We found no effects and small effect sizes (see Appendix B) for 

the other inferred compliance prompts, namely stay on page and 

move to next page, two prompts related to metacognitive monitor-

ing processes. We cannot make final conclusions on the pedagog-

ical effectiveness on these prompts based on these results, because 

the dataset is not large and for this reason we did not include in 

the analysis other features that could indicate compliance (for 

example other eye-tracking measures such as fixation duration on 

text or gaze transitions from the text to other components of 

MetaTutor). However, it should be noted that we also found no 

effect for the explicit compliance prompts that foster metacogni-

tive monitoring processes (stay on subgoal, move to next subgoal, 

and open the diagram, see previous section). This lack of effect 

for all prompts fostering metacognitive monitoring, even when 

compliance is explicitly assessed, suggests that these prompts are 

not beneficial for learning with MetaTutor. This could be due to 

the way these prompts are currently implemented in MetaTutor 

(e.g., their wording, timing delivery or frequency), or to the nature 

or the prompts itself. Our results nonetheless justify to run further 

analysis to ascertain whether (and why) prompts fostering meta-

cognitive monitoring are not effective, and revise them as needed.  

7. CONCLUSION 
In this research we investigated the relationship between compli-

ance with prompts designed to support the use of self-regulated 

learning (SRL) processes and learning gains while learning about 

 

a. Main effect of compliance rate with “revise summary”.  

 

b. Main effect of compliance rate with “review notes”. 

 

c. Main effect of compliance rate with “suggest subgoal”.  

 

d. Main effect of fixation on page after reception of “add 

subgoal”.  

Figure 2. Main effects found in this analysis, for explicit compliance prompts (charts a, b, c) and inferred conpliance prompts 

(chart d). Error bars show 95% confidence interval. 
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the human circulatory system with MetaTutor. We identified two 

approaches to evaluate compliance to MetaTutor’s prompts:  

(i) Assess compliance from students’ subsequent response to the 

prompts when students are forced to express compliance (e.g., by 

answering “yes” or “no” to a prompt);  

(ii) Run linear models to examine the influence on learning of a 

variety of student behaviors related to prompt compliance, when 

compliance is not elicited by MetaTutor. The behaviors we mined 

are based on both interface and eye-tracking data (e.g., time spent 

on that page, gaze fixations on the content of the page). 

Our results revealed that student learning gains are influenced by 

compliance with some, but not all SRL prompts provided by 

MetaTutor. Specifically, we found a positive influence on learning 

for prompts that foster learning strategies (revise a summary and 

review notes) as well as prompts that recommend setting a specif-

ic learning subgoal. Based on these findings, it is worth exploring 

ways to improve compliance with these prompts. In particular, in 

future research we plan to examine whether forcing students to 

comply with these prompts or providing detailed explanations on 

how the prompted SRL strategies can be useful can improve 

learning.  

We found that compliance with the other MetaTutor’s prompts 

studied in this analysis does not improve learning. This finding 

reveals that assessing compliance to SRL prompts individually is 

useful to identify prompts that may not be effective at supporting 

learning. In particular, we found no results for all prompts related 

to metacognitive monitoring processes (e.g., staying on/moving 

away from the current page), suggesting to examine further why 

complying with these prompts do not influence learning with 

MetaTutor. For example, it could be due to their timing and fre-

quency, their wording, their nature, and so forth. 

In this paper we also addressed the challenge of evaluating com-

pliance with rather open-ended prompts for which there is no 

clear definition of compliance. Specifically we ran a linear regres-

sion analysis to relate relevant compliance behaviors to learning. 

Such behaviors were derived from a combination of student inter-

action and eye-tracking data after receipt of a prompt (e.g., time 

spent and amount of gaze fixations on a page can reveal compli-

ance with prompt to read that page). Preliminary results show that 

such interaction-based and eye-tracking-based measures can help 

evaluate compliance. In future research, we plan to investigate 

further behavioral measures relevant to assessing compliance, 

such as tracking eye gaze patterns on the different components of 

MetaTutor as well as transitions between those components. 

Lastly, we plan to investigate the possibility of detecting in real 

time compliance with SRL prompts for which we found a positive 

effect on learning, using eye-tracking and interaction data. Such 

real-time detection could inform the design of adaptive prompts to 

foster compliance for those students who might otherwise disre-

gard these prompts. For instance, adaptive prompts could force 

students to follow them or explain how the prompted SRL pro-

cesses can improve learning. Evaluating such adaptive prompts 

fostering SRL processes would provide further insights on how 

students comply with and benefit from SRL prompts. 
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APPENDIX A 
All statistical results for explicit compliance prompts (discussed in 

Section 6.1). Bold indicates a significant effect. 

Prompt F value p-value Effect size 

Suggest subgoal F1,20 = 11.4 p=.003 ηp
2=.27 

Review notes F1,20 = 7.43 p=.013 ηp
2 =.16 

Revise summary F1,20 = 6.17 p=.02 ηp
2 =.15 

Summarizing F1,20 = 1.76 p=.20 ηp
2 =.06 

Move on subgoal F1,20 = 0.92 p=.35 ηp
2 =.02 

Stay on subgoal F1,20 = 1.47 p=.24 ηp
2 =.01 

Open diagram F1,20 = 0.71 p=.41 ηp
2 =.08 

APPENDIX B 
All statistical results for explicit compliance prompts (discussed in 

Section 6.2). Bold indicates a significant effect. 

Prompt 
Measure 

F value p-value 
Effect 

size 

Add sub-

goal 

Window length F1,3 = .91 p = .41 ηp
2 = .04 

#fixations on 

page 
F1,3 = 13 p = .03 ηp

2 = .29 

#SRL strategies  F1,3 = .02 p = .90 ηp
2 = .01 

Move on 

page 

Window length F1,10 = .00 p = .98 ηp
2 = .00 

#fixations on page F1,10 = .03 p = .86 ηp
2 = .00 

#SRL strategies  F1,10 = .40 p = .54 ηp
2 = .01 

Stay on 

page 

Window length F1,10 = .34 p = .57 ηp
2 = .01 

#fixations on page F1,10 = .07 p = .79 ηp
2 = .03 

#SRL strategies  F1,10 = .004 p = .95 ηp
2 = .02 
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ABSTRACT
Adaptive learning technologies hold great promise for im-
proving the reading skills of adults with low literacy, but
adults with low literacy skills typically have low computer
literacy skills. In order to determine whether adults with
low literacy skills would be able to use an intelligent tutor-
ing system for reading comprehension, we adapted a 44 task
computer literacy assessment and delivered it to 114 adults
with reading skills between 3rd and 8th grade levels. This
paper presents four analyses on these data. First, we report
the pass/fail data natively exported by the assessment for
particular computer-based tasks. Second, we undertook a
GOMS analysis of each computer-based task, to predict the
task completion time for a skilled user, and found that it
negatively correlated with proportion correct for each item,
r(42) = −.4, p = .01. Third, we used the GOMS task de-
composition to develop a Q-matrix of component computer
skills for each task, and using logistic mixed effects models
on this matrix identified five component skills highly pre-
dictive of the success or failure of an individual on a com-
puter task: function keys, typing, using icons, right clicking,
and mouse dragging. And finally, we assessed the predictive
value of all component skills using logistic lasso.

Keywords
adult literacy, computer literacy, GOMS, Q-matrix, mixed
model, lasso

1. INTRODUCTION
Of adults with the lowest literacy levels, 43% live in poverty,
and low literacy costs the U.S. economy $225 billion annu-

ally [14]. The need for literacy interventions is matched
by the complexity of delivering interventions to this pop-
ulation. Low literacy adults have difficulty attending face
to face programs at literacy centers because of work, child
care, and transportation [5], and even when these challenges
are met, two-thirds of literacy centers have long waiting
lists [14]. Adaptive computer-based interventions for liter-
acy hold promise to overcome these challenges. Such in-
terventions can be deployed in homes and local libraries, in
addition to literacy centers. However, computer-based inter-
ventions raise another question: can adults with low literacy
skills use computers well enough to benefit? Several surveys
suggest that this might be a problem. The demographics
most affected by low literacy are the same demographics
least likely to use the Internet (over age 50, making less
than $30 thousand a year, and with less than a high school
education [1]).

Several decades of research have investigated computer lit-
eracy using self-report measures as well as objective tests,
i.e. multiple choice, and find that self-report measures tend
to exaggerate proficiency while objective tests are more re-
liable (see [3] for a review). For an adult literacy popula-
tion, however, multiple-choice tests delivered as print create
additional concerns as to whether the questions themselves
can be comprehended. Recently a new type of assessment,
known as the Northstar Digital Literacy Assessment (the
Northstar), has been created that directly measures ability
to perform computer tasks [13]. Unlike multiple choice as-
sessments, the Northstar can simulate a computer desktop,
use voice prompts to instruct users to perform tasks on that
desktop, and then record their mouse clicks and keystrokes
to determine if the task has been completed. Almost all
of the tasks can be completed without reading by listening
to the voice prompt instructions. The few tasks that do
involve reading are word recognition tasks rather than sen-
tence reading, e.g. a task to log in may require the user
to copy a name and password to the appropriate boxes and
so require reading of “Username,”“Password,” and the cor-
responding fillers. The Northstar has been adopted as the
computer literacy standard for adult basic education in the
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state of Minnesota, which further supports its appropriate-
ness for assessing the computer literacy skills of adults with
low literacy skills.

The present study investigated the computer literacy skills
of adults with low literacy skills for the purpose of devel-
oping an intelligent tutoring system for reading comprehen-
sion for this population [7]. It includes a set of Northstar
items that were collected to cover a range of potential inter-
face and interaction components. In the remainder of the
paper we describe the data collection procedure and four
analyses performed, including pass/fail frequencies for each
task, relation of these frequencies to GOMS-predicted exe-
cution times for skilled users, a logistic mixed-model using a
Q-matrix decomposition of the tasks into component skills,
and a logistic lasso model to assess the predictive value of
component skills. From these analyses we identify specific
tasks that are problematic for adults with low literacy skills
as well as component skills that make it more likely adults
with low literacy skills will succeed or fail at a computer-
based task.

2. ANALYSIS 1: PROPORTION CORRECT
2.1 Participants
Participants (N = 114) were recruited through adult literacy
centers in Atlanta, GA and Toronto, ON, from classes where
the reading level was between 3rd and 8th grade. Reading
level was determined by the centers using their “business as
usual” assessments. Demographic surveys were completed
by 90 participants (79% completion rate). Completed sur-
veys indicated that participants were slightly more female
than male (55 vs. 35) and that participant age ranged from
17 to 69 (M = 42.74, SD = 13.73).

2.2 Materials
Forty-four items were selected from four (out of seven) of
the Northstar modules available at the time of the study:
Basic Computer Skills (21), WWW (13), Windows (6), and
Email (4). Task descriptions are given in Table 1. Basic
Computer Skills covered such topics as turning a computer
on, identifying components of a computer, files and fold-
ers, menus, and windows. WWW focused on browser-based
activities like searching, search results, browser functionali-
ties, and logging in. Although the Windows module focused
on Windows overall, the items selected were fairly generic
to any windowed operating system and mostly pertained to
desktop applications. Email questions used a webmail inter-
face (browser-based email client) and queried how one would
create a new email, send an email, or similar email task.
Because Northstar modules are integrated assessments, the
Northstar Project compiled the items we selected into a cus-
tom assessment for us.

2.3 Procedure
Participants first completed informed consent and then the
demographic survey. Both informed consent and demographic
survey were read aloud to participants to ensure comprehen-
sion. Participants were then asked to sit in front of a com-
puter to take the Northstar assessment. The assessment was
delivered in the browser using Adobe Flash. At the start of
the assessment, a 3-minute orientation video was played ex-
plaining how to answer questions in the assessment. If the

participant was confused about what to do, an experimenter
was available to answer questions. Each question consisted
of an voice prompt defining the task, which was also writ-
ten at the top of the screen. A replay button was available
to repeat the prompt. Participants could select, click, type,
drag, etc. on the interface in an attempt to perform the task.
If the participant did not know how to complete the task,
they could press an “I Don’t Know” button, at which point
the system scored their attempt as a failure. Attempts were
only scored as a success if the participant completed the task
in the manner requested in the prompt. The completion of
each task initiated the next task until the assessment was
complete.

2.4 Results & Discussion
The Northstar records success/failure of each participant on
each task, and these data are reported in detail elsewhere [2].
Here we briefly note that the proportion of correct responses
for each task is quite wide, ranging from .19 to .98. Tasks
in which participants performed particularly well (propor-
tion correct above .80) include identification tasks (e.g. for
mouse, keyboard, headphone jack, and websites), turning on
a computer or monitor, and common operations like recy-
cling a file, using checkboxes, dragging, scrolling, and using
hyperlinks. Tasks in which participants performed poorly
(proportion correct below .60) include identification of var-
ious keys, double- or right-clicking, typing web addresses,
signing into email, and composing email.

The proportion correct results from the Northstar indicate
the adults with low literacy skills can power on their device
and perform a variety of basic operations. To the extent
that these tasks exactly matched tasks that would be per-
formed in a computer-based literacy intervention, like an
intelligent tutoring system, this level of results is quite use-
ful. However, for some tasks there is not an exact match,
and the implications of the proportion correct results are
less clear. For example, difficulties performing tasks using
Word, Excel, or webmail may reflect problems with those
specific interfaces that may not transfer to other programs.
Understanding these more nuanced relationships would re-
quire a deeper analysis than is afforded by Northstar’s suc-
cess/failure output.

3. ANALYSIS 2: GOMS MODELING
The purpose of this analysis was to explore whether the
success rate of the Northstar tasks could be modeled us-
ing GOMS (Goals, Operators, Methods, & Selection rules),
a well-known computational technique for modeling expert
user performance on a task [10]. GOMS decomposes a par-
ticular computer task, e.g. saving a file, into goals and sub-
goals, perceptual, cognitive, and motor actions in service
these goals, methods or sequences of operators that achieve
a goal, and selection rules that choose between alternative
methods. An important assumption of GOMS is that the
users are expert at the computer task in question. Therefore
GOMS models of execution time represent the upper bound
of performance after a user has learned the interface and
practiced it many times. The expert assumption of GOMS
is violated in the adult literacy population, making the out-
come of this analysis non-obvious. If the GOMS model pre-
dictions of execution time were related to our adult’s perfor-
mance, that would provide evidence that GOMS modeling
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Table 1: Northstar Tasks
Click on the monitor Recycle file Click stop loading
Click on the keyboard Checkboxes Select search engines
Click on the system unit Organize folder options Google query
Click on the headphone jack Start menu, lauch program Google scroll
Click on picture of a mouse Turn up audio slider Use hyperlink
Newline key Mute audio Maximize window
Caps key Select browser icons Minimize window
Shift key Click on the website Open Excel
Backspace key Drag item in browser Open Word using taskbar
Up arrow Click on address bar Close Word
Turn on monitor Type the web address Select login and password
Turn on computer Click homepage button Choose secure password
Log on to computer Click browser back button Sign into email
Double click on Documents Click browser refresh Compose email
Right click menu Click browser forward

Figure 1: A CogTool annotation of a Northstar
task. Annotations appear as semi-transparent or-
ange boxes over the Northstar interface.

has some validity for this population.

3.1 Procedure
The CogTool system was used to perform a GOMS analysis
[11, 9]. CogTool allows the easy creation of GOMS models
by annotating an existing user interface, and then recording
a demonstration of the task against than annotated inter-
face. Figure 1 shows the CogTool interface for the “Click on
the mouse” task. For example, when the Northstar task re-
quired clicking on an icon, button, or other interface element
as in Figure 1, a CogTool button annotation was overlaid on
the interface, and then in demonstration mode the modeler
would demonstrate the task by clicking on the annotated
button. From this demonstration on the annotation, Cog-
Tool builds a GOMS model that includes the perceptual,
cognitive, and motor tasks required to perform the task.
Similar annotations were made for auditory directions, key-
board input, and other kinds of interface actions. Once a
task was annotated and demonstrated, a CogTool simulation
was run on GOMS model to generate a predicted execution
time of expert performance. Annotations, demonstrations,
and execution time predictions were performed for all 44

Northstar items used in Analysis 1.

3.2 Results & Discussion
GOMS-predicted execution times for Northstar tasks ranged
from 3.0 to 17.1 seconds (M = 6.88, SD = 4.07). These ex-
ecution times were significantly negatively correlated with
proportion correct, r(42) = −.40, p = .01, CI95[−.61,−.10],
indicating that tasks predicted to take an expert longer
to accomplish were more likely to be answered incorrectly
by low literacy adults. Tasks that take longer are inher-
ently more complex and require more operations to com-
plete. These results suggest that GOMS has some valid-
ity for modeling the performance of adults with low literacy
skills even though it was not intended for this purpose. How-
ever, by themselves these results convey little additional in-
sight. The GOMS-predicted execution times, generated by
CogTool, are still at the task level rather than the com-
ponent skills required to achieve each task. This is partly
because the orientation of CogTool is to produce execution
times and partly because of the expert orientation of GOMS.
For example, in GOMS the factors involved in clicking a but-
ton are the perceptual (size, location) and motor operations
involved, but in Northstar, some “buttons” are tapping spe-
cific types of knowledge, like identifying hardware, under-
standing icons, or various keys on a keyboard. The different
types of knowledge behind the various CogTool annotations
are not represented or considered in the GOMS analysis it
provides.

4. ANALYSIS 3: Q-MATRIX & LOGISTIC
MIXED MODELS

We would like to understand how the component skills un-
derlying Northstar tasks differentially affect the probability
a low literacy adult will perform the task correctly. In ed-
ucational data mining, component skills are typically mod-
eled using a Q-matrix analysis [4]. In its simplest form,
a Q-matrix analysis constructs a problem by skill matrix
such that a cellij in the matrix represents whether skilli is
needed to solve problemj : cellij = 1 if skilli is needed to
solve problemj , and cellij = 0 if skilli is not needed to solve
problemj . Analysis 2 provides a useful guide towards the
creation of a Q-matrix for the Northstar tasks, as it has al-
ready captured each component action required to perform
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Table 2: Component skills coded from GOMS

Component Skill Probability Correct Given Skill

Checkboxes .89
Mouse Drag .86
Hardware Identify .83
Hardware Function .78
Complex Scrolling .74
Browser Functions .66
Left Click .64
Use Icons .61
Double Click .58
Window Functionality .56
Program Brands .55
Desktop Concept .53
Select Menu .50
Good Login Info .50
Login Info .48
Keyboard Function .46
Simple Typing .43
Right Click .19

each task. What it lacks in some cases, however, is an an-
notation of the knowledge behind each component action.

4.1 Procedure
The first author recoded the GOMS task annotations with
18 novice-relevant component skills. The coding was done
in one pass, and component skills were defined on the fly.
Component skills that occurred in only one task were then
removed as they offer no predictive utility for other tasks.
The appropriateness of the component skills was evaluated
by correlating the total number of component skills needed
in each task with the GOMS execution time and the pro-
portion correct for the respective task. We used a logistic
mixed model to predict the correctness of each participant
on each task as a function of the presence of component
skills for that task. This analysis addresses the question as
to whether there is an effect (main effect) of the presence of
component skills on the likelihood that an adult with low lit-
eracy skills will be able to perform the task correctly. Using
a logistic mixed model in this way has strong similarities to
cognitive psychometric models like Diagnostic Classification
Models [16] or more specifically a mixed model implementa-
tion of linear logistic test models [15].

In the logistic mixed model, random slopes were initially in-
cluded but failed to converge. Random intercepts for task
and participant are theoretically motivated, and backward
selection of these effects using Akaike information criterion
(AIC) achieved a minimum when these effects were included,
indicating that these intercepts should remain in the model.
These random intercepts can be considered as per-task dif-
ficulty not captured by component skills and per-subject
ability, respectively. The initial model that included Left
Click was rank deficient, so Left Click, which appears in
most tasks, was removed from the final model. Addition-
ally, the total number of component skills in each task (i.e.
column sums of the Q-matrix) was initially considered as
a predictor of correctness, but was excluded based on ex-
tremely high collinearity, having a variance inflation factor
of over 40.

4.2 Results & Discussion
The component skills and the conditional probability that
a task will be correctly performed if the component skill is
present are shown in Figure 2. Total component skills per
task was marginally positive correlated with GOMS execu-
tion time, r(42) = .27, p = .07, CI95[−.02, .53], suggesting
that tasks with more component skills take longer to per-
form. Total component skills per task was significantly nega-
tively correlated with proportion correct, r(42) = −.35, p =
.02, CI95[−.59,−.06], indicating that tasks with more com-
ponent skills are more difficult to perform correctly. The
correlation between predicted execution time and propor-
tion correct was not significantly different from the correla-
tion between total component skills and proportion correct,
t(82) = .18, p = .86, indicating that the Q-matrix decompo-
sition of component skills is comparable to the GOMS exe-
cution time in terms of its relationship to proportion correct-
ness. Altogether these correlation results provide additional
evidence that the Q-matrix decomposition is appropriate.

The logistic mixed model had a marginal R2 of .18 (fixed
effects only) and a conditional R2 of .47 (including ran-
dom effects) [12]. We found a positive main effect of Mouse

Drag, β̂ = 2.06, SE = .90, p = .02, such that tasks with
a Mouse Drag component were 7.87 times as likely to be
answered correctly, CI95[1.36, 45.50], and a marginal main

effect of Hardware Identify, β̂ = .89, SE = .53, p = .10,
such that tasks with a Hardware Identify component were
2.44 times as likely to be answered correctly, CI95[.86, 6.94].

We found negative main effects for Keyboard Function, β̂ =
−1.31, SE = .51, p = .01, Use Icon β̂ = −1.35, SE =
.55, p = .01, Simple Typing β̂ = −1.91, SE = .64, p = .003,
and Right Click β̂ = −3.20, SE = 1.34, p < .02, such that
tasks with a Keyboard Function component were .27 times
as likely to be answered correctly, CI95[.10, .73], tasks with
a Use Icon component were .26 times as likely to be an-
swered correctly, CI95[.09, .75], tasks with a Simple Typing
component were .15 times as likely to be answered correctly,
CI95[.04, .52], and tasks with a Right Click component were
.04 times as likely to be answered correctly, CI95[.00, .56].

We found that Mouse Drag was extremely predictive of suc-
cess. The reason is unclear, but we hypothesize that the
frequency of mouse dragging in many computer tasks may
have afforded participants the opportunity to become expert
in this skill. Mouse dragging has some similarity to swiping
on a smartphone or tablet interface, so it may be that ex-
pertise with other devices has transferred into the Northstar
tasks. Amongst the components that predict failure, per-
haps the most intuitive are Keyboard Function and Simple
Typing. Typing is a complex skill that takes practice to mas-
ter. Function keys are difficult in that they don’t themselves
produce a character, but either operate on a character on the
screen (Delete) or work in combination with another key to
modify it (Shift). The negative effects associated with Use
Icon and Right Click are somewhat surprising. Icons come
in many different variations, and so it is possible that the
negative Use Icon effect is attributable to a lack of knowl-
edge of specific icons or perhaps to the conventions of icons
generally. Right Click is possibly rare and usually brings up
a context menu with commands that are often available else-
where, making it more relevant for power users but perhaps
less so to novice users.
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Figure 2: The coefficient path for the lasso model. As the L1 sparsity threshold increases along the x-axis,
more coefficients are non-zero.

5. ANALYSIS 4: Q-MATRIX LASSO
Analysis 3 provides a more traditional analysis of signifi-
cant predictors in our study, but must be interpreted with
caution with respect to generalizing to new data. It may
be that insignificant predictors in Analysis 3 nevertheless
have predictive value on new data. The problems of rely-
ing on p-values or criteria like AIC to select variables are
well known [8]. To explore the predictive potential of the
Q-matrix component skills, we created a lasso model (least
absolute shrinkage and selection operator [18]), a form of
regression that promotes sparsity (i.e. zero coefficients) and
predictive accuracy simultaneously. While not necessarily
the best predictive model (cf. gradient boosting [6]), lasso
has the advantage of being simple to interpret, and thus our
results can guide what variables to use in future models.

5.1 Procedure
A logistic regression base model without random effects was
initialized with 17 component skills (Left Click excluded)
and submitted to lasso. Because lasso has a free parameter,
λ, that controls sparsity of the regression, a lasso analysis
varies the level of λ and generates regression coefficient esti-
mates at each level. This sequence of regression coefficients
is known as the regularization path. The value of λ that
minimized prediction error was estimated using both cross
validation and AIC.

5.2 Results & Discussion
The coefficient (regularization) path for the lasso model is
shown in Figure 2 and the corresponding AIC curve is shown
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Figure 3: The AIC curve for the lasso model. Lower
values of AIC indicate better model fit.

in Figure 3. In Figure 2, the center line represents coef-
ficients having zero values. As the L1 sparsity threshold
(|beta|) increases, more coefficients become non-zero. For se-
lecting the optimal λ that minimizes overall prediction error,
ten-fold cross validation and AIC yielded congruent results.
AIC results are depicted in the curve in Figure 3, which
shows that that AIC improves as |beta| increases, coming to
a minimum at |beta| = 13.40. Accordingly, most coefficients
for the optimal lasso model are non-zero.
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Table 3: Lasso component skill coefficients

Component Skill β̂ exp(β̂)

Mouse Drag 1.80 6.02
Checkboxes 1.27 3.55
Login Information .88 2.41
Hardware Identify .60 1.82
Hardware Function .50 1.65
Desktop Concept .35 1.43
Browser Functions .24 1.27
Double Click .11 1.12
Complex Scrolling .03 1.03
Program Brands .00 1.00
Select Menu -.21 .81
Window Functionality -.44 .64
Keyboard Function -.86 .42
Use Icons -1.01 .36
Good Login Info -1.28 .28
Simple Typing -1.47 .23
Right Click -2.39 .09

Table 3 gives the β̂ coefficients (log odds) for the AIC-

optimal model as well as the odds ratio exp(β̂) for each co-
efficient. The coefficients converted to odds ratios have the
same interpretation as in the logistic mixed model, e.g. tasks
with a Mouse Drag component are 6.02 times as likely to be
answered correctly as those without. Although the logistic
lasso model does not include random intercepts correspond-
ing to task difficulty and subject ability, the magnitudes of
coefficients in the logistic lasso are highly comparable to the
logistic mixed model. However, the strength of the coeffi-
cients in the logistic lasso are weaker, in general, than in
the logistic mixed model, suggesting that the logistic mixed
model may be slightly over-fitted. For example, according to
the logistic mixed model, Mouse Drag tasks are 7.87 times
as likely to be answered correctly, but according to the lo-
gistic lasso model, Mouse Drag tasks are only 6.02 times as
likely to be answered correctly; similarly Right Click con-
taining tasks in the mixed model are .04 times as likely to
be answered correctly compared to .09 times as likely in the
logistic lasso. These results suggest that while the logistic
mixed model might be more appropriate for assessment pur-
poses, as it additionally estimates task difficulty and subject
ability, the logistic lasso model might be more appropriate
for predicting the effects of component skills on success rates
for new tasks.

6. GENERAL DISCUSSION
Together, our results suggest that not only are there spe-
cific Northstar tasks that are informative with regard to
building an adaptive computer-based intervention for adults
with low literacy skills but also that these tasks can them-
selves be decomposed into component skills that can be
further used for this purpose. The main effects of Analy-
sis 3 and coefficient rankings of Analysis 4 are consistent
and complimentary with the proportion correct results in
Analysis 1. The marginal main effect for Hardware Iden-
tify explains the high proportion correctness for identifica-
tion tasks for mouse, keyboard, and headphone jack, and the
main effect for Mouse Drag explains the high proportion cor-
rectness for recycling a file (dragging to the Recycle Bin),
dragging, and scrolling (by dragging a scroll bar). These

correctness-enhancing main effects are also reflected in odds
ratios greater than one in Analysis 4. Similarly the main ef-
fects for Keyboard Function and Simple Typing explain the
low proportion correctness for identifying various keys, typ-
ing web addresses, signing into email, and composing email,
and these main effects are likewise reflected in odds ratios
less than one in Analysis 4. In these cases we infer that
the problem is not specific to the interface in question, e.g.
email, but rather that there is a deficiency in a component
skill needed for the task taking place in the context of that
interface.

The implications for building adaptive computer-based in-
terventions for adults with low literacy skills are clear. First,
it is important to keep typing to a minimum, either by hav-
ing users select response options or by using speech recog-
nition. Second, right clicking should be eliminated or at
least made optional. Third, icons should be close to icon
archetypes. And finally, mouse dragging is a good skill
around which to build user interaction. Interestingly, all
of these implications seem to point to tablet and smart-
phone platforms, which have a minimum of typing (and
built in speech interfaces), no right clicking, minimal icons
in-app, and plenty of swiping/dragging. Moreover, smart-
phone ownership has been rapidly increasing – now 64% of
households earning below $30 thousand own a smartphone
[17]. It may be the case that deploying interventions on
smartphones and tablets better makes use of both the com-
puter literacy strengths and the material resources of low
literacy adults.
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ABSTRACT 
Research in Educational Data Mining could benefit from greater 
efforts to ensure that models yield reliable, valid, and interpretable 
parameter estimates. These efforts have especially been lacking 
for individualized student-parameter models. We collected two 
datasets from a sizable student population with excellent “depth” 
– that is, many observations for each skill for each student. We fit 
two models, the Individualized-slope Additive Factors Model 
(iAFM) and Individualized Bayesian Knowledge Tracing (iBKT), 
both of which individualize for student ability and student 
learning rate. Estimates of student ability were reliable and valid: 
they were consistent across both models and across both datasets, 
and they significantly predicted out-of-tutor pretest data. In one of 
the datasets, estimates of student learning rate were reliable and 
valid: consistent across models and significantly predictive of 
pretest-posttest gains. This is the first demonstration that 
statistical models of data resulting from students’ use of learning 
technology can produce reliable and valid estimates of individual 
student learning rates. Further, we sought to interpret and 
understand what differentiates a student with a high estimated 
learning rate from a student with a low one. We found that 
learning rate is significantly related to estimates of student ability 
(prior knowledge) and self-reported measures of diligence. 
Finally, we suggest a variety of possible applications of models 
with reliable estimates of individualized student parameters, 
including a more novel, straightforward way of identifying wheel 
spinning. 

Keywords 

Explanatory models, model interpretability, individualized 
parameters, 3, Additive Factors Model, individualized Bayesian 
Knowledge Tracing 

1. INTRODUCTION 
In Educational Data Mining, statistical models are typically 
evaluated based on fit to overall data and/or predictive accuracy 
on test data. While this is an important initial step in evaluating 
the contributions of advancements in statistical and cognitive 
modeling, research in the field could benefit from greater efforts 
to ensure that models are reliable and valid. More reliable and 
valid models offer more explanatory power, contributing to the 
advancement of learning science. They also inspire greater 
confidence that deploying model advancements in future tutoring 
systems will genuine result in the hypothesized improvements to 
learning. 

Some recent work has been done towards interpreting, validating, 
and acting upon cognitive/skill modeling improvements [7, 8, 10, 
11, 17]. Educational data mining efforts oriented around 
personalizing student constructs [3, 12, 13, 14, 18], however, have 
remained focused on improving predictive accuracy and/or 
demonstrating hypothetical time savings. Little has been done to 

validate or understand the estimates that models with 
individualized or clustered student parameters produce. 
Anecdotally, efforts to do so have shown that these individualized 
student parameter estimates, or discovered student clusters, are 
often difficult to interpret. 

It is especially critical to examine the reliability and validity of 
parameter estimates for modeling advancements that dramatically 
increase the parameter count, as is generally true for 
individualized student-parameter models. More parameters create 
greater degrees of freedom and increase the likelihood that the 
model may be underdetermined by the data. 

We focus on the question: To what degree can we trust a model’s 
parameter estimates to correctly represent the constructs they are 
supposed to? 

Key to expecting reliable, valid estimates of student-level 
constructs is not just big data in the “long” sense, but big data in 
the “deep” sense. Oftentimes, the datasets used in secondary 
analyses in EDM are large in terms of total number of students (or 
total observations) but highly sparse in terms of observations per 
skill, per student. These features make it difficult to get reliable 
measurements of constructs at the individual student level, 
particularly constructs related to learning over time. 

Here, we collected two datasets from a sizable student population 
(196 students) with excellent “depth” – that is, many observations 
for each skill for each student. We then fit two models that 
individualize for student ability and student learning rate (the 
Individualized-slope Additive Factors Model [9] and 
Individualized Bayesian Knowledge Tracing [18]). We assess the 
models’ fit to data and predictive accuracy. We also move beyond 
these metrics to examine the reliability of the models’ estimates of 
student ability and student learning rate. Additionally, we 
externally validate the parameter estimates against out-of-tutor 
assessment data. 

We further interpret and understand the constructs by visualizing 
representative student learning trajectories, examining the 
relationship between estimated student ability and student 
learning rate, and the relationship between those constructs and 
self-reported data on motivational attributes. Finally, we propose 
some useful applications of reliable and valid individualized 
student-parameter models, including a new way to detect wheel 
spinning. 

2. PRIOR WORK 
Prior work on individualizing student parameters has focused on 
variants of Bayesian Knowledge Tracing (BKT) [3]. This work 
includes modeling the parameters separately for each individual 
student instead of separately for each skill [3], individualizing the 
P(Init) (“initial knowledge”) parameter for each student [13], and 
individualizing both P(Init) and P(Learn) (“learning rate”) to the 
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base BKT model [18]. These models have generally focused on 
assessing predictive accuracy improvements relative to their 
respective non-individualized baseline models. 

There have also been some “time savings” analyses [12, 18] that 
evaluate the hypothetical real world impact that individualizing 
statistical model fits could have. These analyses report the effect 
of fitting individualized BKT models, compared to traditional 
BKT, on the hypothetical number of under- and over- practice 
attempts that would be predicted for each student. Results 
generally have indicated that many more practice opportunities 
are needed for models to infer the same level of knowledge when 
using whole-population parameters rather than individual student 
parameters. These analyses show that individualized models differ 
in their hypothetical decision points if they were to be applied to 
drive mastery-based learning, but they do not in and of themselves 
interpret the individualized parameter estimates, nor do they 
assess the reliability and validity of such estimates. 

In a previous effort to better understand individualized student 
learning rate parameters [9], we examined predictive accuracy and 
parameter reliability in an extension of the Additive Factors 
Model [2] applied to existing educational datasets. We did not 
find evidence that individualizing student rate parameters 
consistently improved predictive accuracy improvements, nor 
could we validate the parameter estimates on out-of-tutor 
assessment data. However, the datasets we analyzed either 
contained a small number of students or were largely sparse in 
observations for student-skill pairs, with the exception of two 
datasets. These two datasets happened to be the ones on which the 
Individualized-slope Additive Factors Model did achieve higher 
predictive accuracy. Thus, we wondered if the sparsity of the 
datasets were the primary limitation, rather than the modeling 
advancement itself. This idea is corroborated by the fact that 
pooling students into “groups” rather than generating 
individualized estimates worked well on those datasets [9]. 

For the present modeling work, we collected our own data in 
order to ensure the data features that we believe are necessary for 
reliable, valid, and potentially meaningful estimates of constructs 
at the individual student level. 

3. METHODS 
It is common in EDM to do secondary analyses across multiple 
datasets. However, it can be difficult to find datasets that (1) 
contain a sizable number of students, (2) contain many 
observations for each skill for each student (i.e., are not sparse), 
(3) contain students spanning a range of abilities in the domain 
covered by the tutor, and (4) contain data from out-of-tutor 
assessment data that is well-mapped to the content in the tutor. 

For the present work, we wanted to use as close to an “ideal” 
dataset as possible for estimating student parameters. We 
collected our own dataset with a sizable number of students (196), 
many observations (5-50, depending on the skill) for each skill for 
each student. In addition, we ensured that a wide range of student 
ability levels was represented in our data to allow for the 
possibility that models could capture this variability. 

3.1 Data Collection 
196 students, spanning 10 classes taught by three different 
teachers, enrolled in high school geometry participated in two 
studies conducted about a month apart. A range of student 
abilities were included in the study.  Two of the 10 classes were 
“Honors” and three of the 10 classes were “Inclusion”. Honors 
classrooms are intended for students who have strong theoretical 
interests and abilities in mathematics. Inclusion classrooms are 

“general education” classrooms designed to provide the 
opportunity for individuals with disabilities and special needs to 
learn alongside their non-disabled peers. 

Students spent five consecutive days participating in each study 
during their regular geometry class periods. On the first and last 
days, they took a computerized pretest and posttest, respectively. 
During the middle three days, they worked within an intelligent 
tutoring system [19] designed to give them practice on their 
current chapter’s content. This procedure applied to both studies, 
one of which covered the students’ Chapter 3 content (Parallel 
Lines Cut by a Transversal, Angles & Parallel Lines, Finding 
Slopes of Lines, Slope-Intercept Form, Point-Slope Form) and the 
other of which covered the students’ Chapter 4 content 
(Classifying Triangles, Finding Measures of Triangle Sides & 
Angles, Triangle Congruence Properties). Figure 1 shows an 
example problem interface from the intelligent tutoring system, 
which was designed using Cognitive Tutor Authoring Tools [1]. 
 

 
Figure 1. Example problem interface from the intelligent 
tutoring system used for data collection. 
 

We also collected self-report survey data on motivational factors 
falling along three dimensions. These were Competitiveness (e.g., 
“In this unit, I am striving to do well compared to other students” 
and “In this unit, I am striving to avoid performing worse than 
others”), Effort (e.g., “I am striving to understand the content of 
this unit as thoroughly as possible” and “I work hard to do well in 
this class even if I don't like what we are doing”), and Diligence 
(e.g., “when class work is difficult, I give up or only study the 
easy parts” [inverted scale] and “I am diligent”). Self-report 
measures were indicated on a Likert scale from 1-7. 
A key reason we collected two datasets, covering two distinct 
chapters of the curriculum, is that we were interested in 
investigating the consistency of student-level parameter estimates 
across different content, time, and contexts. We discuss this 
further, along with preliminary results, in Section 4.4.1. 

3.2 Statistical Models 
3.2.1 The Individualized-slope Additive Factors 
Model (iAFM) 
The Additive Factors Model (AFM) [2] is a logistic regression 
model that extends item response theory by incorporating a 
growth or learning term. 

ln !!"
!-!!"

= θ! + Q!"(β!!∈!"# + γ!T!")       (1) 
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This statistical model (Equation 1) gives the probability 𝑝!" that a 
student i will get a problem step j correct based on the student’s 
baseline ability (𝜃!), the baseline easiness (𝛽!) of the required 
knowledge components on that problem step (𝑄!"), and the 
improvement (𝛾!) in each required knowledge component (KC) 
with each additional practice opportunity. This KC slope, or 
“learning rate,” parameter is multiplied by the number of practice 
opportunities (𝑇!") the student already had on it. Knowledge 
components (KCs) are the underlying facts, skills, and concepts 
required to solve problems [6]. 

Individualized-slope AFM (iAFM) builds upon this baseline 
model by adding a per-student learning rate parameter (𝛿!). This 
parameter represents the improvement (𝛿!) by student i with every 
additional practice opportunity with the KCs required on problem 
step j. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑇!") (2) 

The KC and student learning rate parameters are both multiplied 
by the number of opportunities (𝑇!") the student already had to 
practice that KC. 

3.2.2 Individualized Bayesian Knowledge Tracing 
(iBKT) 
Bayesian Knowledge Tracing (BKT [3]) is an algorithm that 
models student knowledge as a latent variable using a Hidden 
Markov Model. The goal of BKT is to infer, for each skill, 
whether a student has mastered it or not based on his/her sequence 
of performance on items requiring that skill. It assumes a two-
state learning model whereby each skill is either known or 
unknown. There are four parameters that are estimated in a BKT 
model: the initial probability of knowing a skill a priori – p(Init), 
the probability of a skill transitioning from not known to known 
state after an opportunity to practice it – p(Learn), the probability 
of slipping when applying a known skill – p(Slip), and the 
probability of correctly guessing without knowing the required 
skill – p(Guess). Fitting BKT produces estimates for each of these 
four parameters for every skill in a given dataset. BKT models are 
usually fit using the expectation maximization method (EM), 
Conjugate Gradient Search, or discretized brute-force search. 

Individualized Bayesian Knowledge Tracing (iBKT [18]) builds 
upon this baseline BKT model by individualizing the estimate of 
the probability of initially knowing a skill, p(Init), and the 
transition probability, p(Learn), for each student. To accomplish 
the student-level individualization of these parameters, each of 
them is split into skill- and student-based components that are 
summed and passed through a logistic transform to yield the final 
parameter estimate. Details on the decomposition of p(Init) and 
p(Learn) into skill- and student-based components are described 
in [18]. 

4. RESULTS 
4.1 Model Fit & Predictive Accuracy 
As a first pass evaluation of the two individualized models, we 
assessed them using Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC), which are standard metrics 
for model comparison, and 10 independent runs of split-halves 
cross validation (CV). Although 10-fold cross validation has been 
popular in the field, [4] showed that it has a high type-I error due 
to high overlap among training sets and recommended at least 5 
replications of 2-fold CV instead. 
Here, the comparison of interest is each individualized model 
against its non-individualized counterpart. We do not encourage a 

literal comparison between the predictive accuracies of the two 
classes of models due to differences in whether they use incoming 
test data towards their predictions on later test data (BKT/iBKT 
do, and AFM/iAFM do not). 

Both iAFM and iBKT outperform their non-individualized 
counterparts by all metrics, with the exception of BKT having a 
better BIC value than iBKT for the Chapter 4 dataset. This is not 
surprising, as BIC is known to over-penalize for added 
parameters. We recommend cross validation as a better indicator 
that iBKT is the true better fitting model in this case. 

Counter to the majority of findings reported in [9], iAFM 
achieved higher predictive accuracy than AFM in both datasets 
here. This further supports the idea that the “depth” of the dataset 
is a critical factor in whether an individualized student-parameter 
model can explain unique variance in the data. 

Table 1. Summary of Model Fit and Predictive Accuracy 
metrics comparing AFM vs. iAFM and BKT vs. iBKT. Cross-
validation values are mean RMSE values across 10 runs, with 
standard deviations included in parentheses. 

Data 
Set Model AIC BIC CV Test RMSE 

(10-Run Average) 

Ch. 3 

AFM 57229 57283 0.38440 (0.0039) 

iAFM 55931 56003 0.37868 (0.0044) 

BKT 66714 67473 0.4222 (0.0005) 

iBKT 56325 60479 0.3777 (0.0006) 

Ch. 4 

AFM 18059 18106 0.41037 (0.0048) 

iAFM 17863 17925 0.40789 (0.0050) 

BKT 19908 20376 0.44091 (0.0014) 

iBKT 18285 21809 0.40725 (0.0018) 
 

4.2 Reliability of Student Parameters 
Next, we examined the degree to which we can rely on these 
parameters to reasonably estimate the constructs that they should 
be estimating. We believe that a strong relationship between the 
parameter estimates of two statistical models with entirely 
different architectures is a high bar for testing reliability. That is, 
if a student genuinely displayed evidence of high overall ability in 
a dataset (relative to his/her peers), then both iAFM and iBKT 
should estimate that to be the case. 

Because of known and observed nonlinear relationships between 
logistic regression and Bayesian Knowledge Tracing parameter 
estimates, we measured correlation based on Spearman’s 
coefficient (rs), which is based on rank order. 

We observed strong and statistically significant correlations 
between iAFM Student Intercept and iBKT Student p(Init) 
parameter estimates (Figure 2, top row). We also observed a 
strong and statistically significant correlation between iAFM 
Student Slope and iBKT Student p(Learn) parameter estimates for 
one of the two datasets (Chapter 4). This correlation was much 
milder, though still significant, for the other dataset (Chapter 3). 

We hypothesize that this difference between datasets may be due 
to the presence of more difficult KCs in Chapter 4. A dataset with 
more difficult items should provide more sensitive measures of 
individual differences in improvement, since it avoids ceiling 
effects. Indeed, this was the case: the mean KC easiness parameter 
estimate (𝛽!) for chapter 4 was 0.799 (which translates to a 
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probability of 0.69), compared to 1.253 for chapter 3 (which 
translates to a probability of 0.78). When students are practicing 
many opportunities at ceiling (which was the case in particular for 
chapter 3, based on exploratory analyses of the data), the 
individualized models will often assign them a lower “learning 
rate” due to an essentially flat learning trajectory. 

 
Figure 2. Relationships between iAFM Student Intercept and 
iBKT Student p(Init) parameter estimates (top row), and 
between iAFM Student Slope and iBKT Student p(Learn) 
parameter estimates (bottom row), for the two datasets. 

4.3 Validity of Student Parameters 
To assess the validity of student parameter estimates, we related 
them to out-of-tutor assessments of the relevant student 
constructs. In this case, we validated parameter estimates using 
pretest and posttest assessment data collected in the study.  

4.3.1 Estimates of Student Ability 
The Student Intercept (𝜃!) parameter of iAFM and the Student 
p(Init) parameter of BKT are designed to estimate baseline 
student ability, as least for the knowledge domain represented in 
the dataset. To validate the models’ estimates of this construct, we 
examined relationships between the model estimates and students’ 
pretest scores, which are an out-of-tutor assessment of student 
initial ability for the skills covered by the tutor. 

We report standard Pearson correlation coefficients here, since the 
relationships between pretest scores and the parameter estimates 
did not appear to be particularly nonlinear. 

Figure 3 illustrates a summary of these relationships. Both 
models’ estimates of the student ability construct were strongly 
and significantly correlated with pretest scores. 

In addition, adding an individualized student slope improved the 
validity of the model’s estimate of student ability (a parameter 
that’s modeled in both AFM and iAFM). We compared the 
correlations between AFM’s intercept estimates to pretest scores 
(Chapter 3: r = 0.62, p < 0.0001, Chapter 4: r = 0.58, p < 0.0001) 
to iAFM’s intercept estimate / pretest score correlations (Chapter 
3: 0.74, p < 0.0001, Chapter 4: r = 0.66, p < 0.0001). 

This has several interesting implications for educational 
applications. First, it suggests that formative assessment via 
modeling of process data as learning unfolds is a reasonable 
method of assessment. 

It also suggests that detailed assessment data (e.g., from a pretest) 
could be used to reasonable effect to improve different students’ 
“on-line” estimates of students’ knowledge of KCs. For example, 
combining KC parameter estimates (derived from model-fitting to 
prior domain-relevant data) with student intercept priors based on 
pretest assessment data would allow a model like AFM to 
generate individualized predictions of how much each student 
needs to practice to reach mastery. 

In addition, these results suggest that individualized BKT models 
could use pretest assessment data to “set” reasonably valid 
student-specific p(Init) values before collecting any within-tutor 
data from those students. 

In considering the degree to which these results may generalize, it 
is important to note that the pretests in the present datasets were 
specifically designed to map closely to the practice problems in 
the intelligent tutor. Pretests contained 1-2 questions for each KC 
that was practiced in the tutor, and the items were similar to those 
encountered within the tutor. 

 
Figure 3. Relationships between out-of-tutor pretest scores 
and iAFM/iBKT estimates of student ability based on within-
tutor data. 

4.3.2 Estimates of Student Learning Rate 
Given that the only external assessment data collected were a 
pretest and posttest, we sought to validate the construct of student 
learning rate (as estimated by the models) on pretest-posttest 
gains. Students were given roughly the same amount of time to 
engage with the tutors, so those with accelerated learning rates 
might be expected to gain more knowledge in the time available. 

Thus, we examined the degree to which student learning rate 
estimates predicted pretest-posttest gains while controlling for 
pretest scores. We controlled for pretest scores because they have 
been shown to negatively predict learning gains due to assessment 
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ceiling effects. That is, students who start out performing well on 
the pretest have less “room for improvement”. 

For the Chapter 3 dataset, iAFM Student Slope (𝛿!) estimates did 
not significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores were a significant 
predictor (β=-0.189, p=0.005) and Student Slope estimates were 
not (β=0.396, p=0.144). iBKT Student p(Learn) estimates did not 
significant predict learning gains. In a linear regression predicting 
pretest-posttest gains, pretest scores were a significant predictor 
(β=-0.226, p=0.005) and Student Slope estimates were not 
(β=0.062, p=0.218). 

For the Chapter 4 dataset, iAFM Student Slope (𝛿!) estimates 
significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores (β=-0.641, 
p<0.0001) and Student Slope estimates (β=0.576, p=0.007) were 
both significant predictors. iBKT Student p(Learn) estimates also 
significantly predict learning gains. In a linear regression 
predicting pretest-posttest gains, pretest scores (β=-0.645, 
p<0.0001) and p(Learn) estimates (β=0.133, p=0.004) were both 
significant predictors. 

For one of the two units (Chapter 4), we observed that student 
learning rate estimates were validated on external assessments of 
learning gain. Interestingly, this is the same unit for which we 
observed a strong cross-model reliability in student learning rate 
estimates. Thus, we have converging evidence that student 
learning rates estimates for the Chapter 4 dataset are both reliable 
and valid. 

 
Figure 4. Relationships between student parameter estimates 
across the two datasets (same student population). 
 

4.4 Towards Understanding & Using Student 
Parameter Estimates 
4.4.1 Consistency of individual student constructs 
across datasets 
A core motivating question for collecting two datasets on the 
same group of students was: How consistent are iAFM and iBKT 

model estimates of the student ability and student learning rate 
constructs across units? 

Figure 4 summarizes this relationship. Estimates of student ability 
are fairly consistent, especially as estimated by iAFM. It seems 
sensible to interpret this as suggesting that overall student ability 
on Chapter 3 content is strongly related to overall student ability 
on Chapter 4 content, as we have shown estimates of student 
ability to be both reliable and valid. 
Estimates of student learning rate are less consistent. This may 
either be due to the fact that Chapter 3 estimates of student 
learning rate were neither very reliable nor very valid. 
Alternatively, the differences in student learning rate estimates 
across the two chapters may also be due to the fact that students 
genuinely learn different material at different rates. Unfortunately, 
we cannot resolve this question with the present data. We are 
currently collecting more datasets from this same group of 
students. If we obtain more reliable and valid student learning rate 
estimates in future data from this group of students, we can more 
confidently address this question in future research. 

4.4.2 Understanding student learning rate estimates 
Given that we established the reliability and validity of iAFM and 
iBKT’s parameter estimates for the Chapter 4 dataset were 
reasonably reliable and valid, we sought to dig deeper into the 
explanatory power of these estimates. To this end, we conducted 
exploratory analyses on the Chapter 4 data to (1) visualize the 
learning trajectories of students with the highest vs. lowest 
estimated learning rates, (2) understand the relationships between 
estimated learning rates and prior-knowledge and motivational 
factors, and (3) understand the degree of variability in estimated 
learning rate across students. 
 

 
Figure 5. Top Row: Early-opportunity learning trajectories of 
students, grouped based on iAFM (Left) and iBKT (Right) 
estimated learning rates. Solid lines are actual data; dotted 
lines are each respective model’s predicted performance.  
Bottom Row: Mean self-report Likert scale ratings of 
questions measuring dimensions of competitiveness, effort, 
and diligence. Grouped based on iAFM (Left) or iBKT (Right) 
estimated learning rates. Error bars show standard errors on 
the means.  

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

iAFM Student Slope Estimate

# Practice Opportunities

Fi
rs

t A
tte

m
pt

 S
uc

ce
ss

Top 25%
Middle 50%
Bottom 25%

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

iBKT Student p(Learn) Estimate

# Practice Opportunities

Fi
rs

t A
tte

m
pt

 S
uc

ce
ss

Competitiveness Effort Diligence

Li
ke

rt 
Sc

al
e

0
1

2
3

4
5

6
7

Top 25% iAFM Learning Rates
Middle 50% iAFM Learning Rates
Bottom 25% iAFM Learning Rates

Competitiveness Effort Diligence

Li
ke

rt 
Sc

al
e

0
1

2
3

4
5

6
7

Top 25% iBKT Learning Rates
Middle 50% iBKT Learning Rates
Bottom 25% iBKT Learning Rates

Proceedings of the 10th International Conference on Educational Data Mining 139



Figure 5 (top row) shows the aggregate learning trajectories for 
students split based either on their iAFM Student Slope estimates 
(top left) or their iBKT Student p(Learn) estimates (top right). The 
top 25% of student parameter estimates are plotted in blue, the 
middle 50% (between 1st and 3rd quartiles) are plotted in red, and 
the lower 25% are plotted in black. Dotted lines represent each 
respective model’s predicted earning trajectories. 

One striking pattern, especially in the iAFM learning trajectories 
(top left), is the apparent relationship between average success on 
initial practice opportunities (i.e., prior knowledge) and estimated 
learning rate through the remaining opportunities. This 
observation is corroborated by a strong and significant correlation 
between iAFM Student Intercepts and iAFM Student Slopes 
(r=0.78, p<0.0001). One might interpret this to suggest that 
students who enter into the tutor with greater prior knowledge will 
be poised to gain more from the tutor (i.e., “the rich get richer”). 
Alternatively, students may have higher overall knowledge 
because they are fast learners. There may also be individual trait-
based variables that positively drive both learning rate and overall 
achievement. 

To explore the relationships between measures of traits relevant to 
learning, we analyzed self-report survey data grouped by three 
factors (as described in Section 3.1): Competitiveness, Effort, and 
Diligence. The relationship between these measures and the high, 
medium, and low learning rate estimates from iAFM and iBKT 
are shown in Figure 5 (bottom row). There appears to be a 
relationship between the means of each self-report measure and 
the general range that the learning rate estimate falls in. 
We analyzed the continuous relationship between students’ mean 
self-report rating along each dimension and their iAFM learning 
rate estimates. In a linear regression predicting iAFM Student 
Slopes, Competitiveness and Effort were not significant predictors 
but Diligence (β=0.016, p=0.007) was. In a similar linear 
regression predicting iAFM Student Intercepts, again Diligence 
was the only significant predictor (β=0.02, p=0.04). Thus, among 
self-reported measures, the strongest dimension predicting both 
student ability/prior knowledge and student learning rate was the 
Diligence measure. Future work using causal modeling is 
warranted to discover the true nature of causality among these 
student-level constructs. 

Finally, we investigated the degree of variability in estimated 
learning rate across students. The first quantile of student learning 
rates from iAFM is 0.03 logits and the third quantile of rates from 
iAFM is 0.08 logits. These can be conceptualized as canonical 
“slow” and “fast” learners. If we were to assume starting at 
around 70% performance (which comes from the model’s global 
intercept estimate), it would take the “slow” (0.03 logits) student 
approximately 25 opportunities to reach mastery (defined as 85%, 
the performance equivalent of a p(Know)=0.95, factoring in the 
guess and slip probabilities we used in the actual tutor). It would 
take the “fast” (0.08 logits) student approximately 11 
opportunities to reach the same place. 

4.4.3 Identifying wheel spinners 
The current definition of “wheel spinning” put forth in the 
Educational Data Mining community is the “phenomenon in 
which a student has spent a considerable amount of time 
practicing a skill, yet displays little or no progress towards 
mastery” [5]. There has been some controversy around the ideal 
way to measure mastery (e.g., 3 corrects in a row vs. reaching a 
certain p(Know) in knowledge tracing). Furthermore, some 
students may be classified as wheel spinners based on not 
mastering in a certain number of opportunities but they may still 
be making progress. 

We propose that reliable and validated estimates of individual 
student learning rate parameters, combined with KC learning rate 
parameters, could be used to estimate wheel spinning student/KC 
pairs in way that is agnostic to mastery status. Specifically, if the 
combined student and KC learning rate parameters in iAFM 
predict no improvement or negative improvement across 
additional practice opportunities, and aren’t already at a high level 
of performance on their first opportunity (here we considered this 
to be 80% or above), we could consider the student to be wheel 
spinning on the KC. This method of estimating wheel spinning 
would be particularly useful for datasets with sparse data on some 
student-KC pairs, as it is not performance-dependent after the 
model has been fit to the full dataset. 

Based on this operationalized definition, we found that 
approximately 15% of student-KC pairs in the Chapter 4 dataset 
are estimated to be wheel spinning. That is, those students are not 
making progress on those KCs. This is a substantially lower 
estimate than the 25% reported by a recent wheel spinning 
detector in [5]. An interesting route for future work would be to 
do a direct comparison of the wheel spinning detector presented in 
[5] and our proposed student/KC learning rate identifier within the 
same dataset. This would allow for testing the possibility that 
some students who are still making progress, albeit extremely 
slowly, may be prematurely labeled as “wheel spinners” by [5]. 

5. SUMMARY & LIMITATIONS 
Previous efforts towards more explanatory, interpretable, and 
actionable modeling advancements in the realm of 
skill/knowledge component model discovery have been promising 
in their potential and demonstrated impact on learning science and 
education. The present paper represents a novel effort to bring 
these deeper modeling approaches, focused on ensuring 
explanatory power, to the realm of individualized student- 
parameter models. 

Towards improving the reliability and validity of individualized 
student estimates, we collected two datasets from the same student 
population. Both datasets were “deep” along the dimension of 
student-KC observations. We fit iAFM and iBKT to both datasets 
and showed that the models outranked their non-individualized 
counterparts in terms of fit to data and predictive accuracy. 
Importantly, we moved beyond these metrics to show that 
estimates of student ability were highly reliable (iAFM and iBKT 
yielded strongly correlated estimates) and valid (estimates 
significantly predicted pretest data). 

This demonstration of confidence in the student ability estimates 
from iBKT, but even more so iAFM, has promising implications 
for the possibility of individualizing the student models that 
determine mastery in intelligent tutoring systems at least in terms 
of overall student ability/knowledge. Our results also suggest that 
it would be reasonable to fix such student ability parameters, or 
set priors on them, based on either well-mapped pretest 
assessment data or prior (deep) data from those students’ learning.  

We also showed that estimates of student learning rate per 
practice opportunity were reliable and valid in one of the two 
datasets (Chapter 4). This is the first evidence, to our knowledge, 
of obtaining both reliable and valid student learning rates through 
a statistical model with individualized student parameters. We 
believe that this success is largely related to the amount and 
quality of per-student data we collected. 

With the confidence of having reliable and valid parameter 
estimates, we then proceeded to further investigate potential 
explanations for differences in student learning rates within the 
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Chapter 4 dataset. We found a strong and significant relationship 
between student ability and improvement rate as well as an 
additional effect of diligence, based on self-report measures. 
Further research is warranted to distill the causal relationships 
between these constructs. 

Knowing that a model’s estimates of individualized student 
parameters not only fit data well, but are reliable and valid, 
provides greater confidence for applying the model to (1) interpret 
the parameter estimates to understand characteristics of students, 
and (2) use the model to individualize the trajectory of mastery 
estimation for future students. 

Even though both iBKT and iAFM outperformed their non-
individualized counterparts in predicting performance in the 
Chapter 3 dataset, we did not find strong evidence of reliability 
and validity of the student-specific parameter estimates. Thus, we 
did not rely on that dataset to help us understand individual 
differences in learning rates. For the same reason, we could not 
confidently attribute the differences, in estimated student learning 
rates across the datasets, to true differences in students’ learning 
rates for the two chapters’ material. 

Although considering reliability and validity of models’ parameter 
estimates sets a higher bar than predictive accuracy for evaluating 
modeling advances, we believe those to be important 
characteristics of a model that is to be explanatory, interpretable, 
and/or actionable. Here, we have demonstrated that with a 
sufficiently good dataset, iAFM and iBKT are individualized 
student models that can produce reliable and valid parameter 
estimates. 

Since our present work was limited to two datasets on one 
population of students, it is unclear the degree to which our 
modeling results will generalize, especially given that at least 
iAFM does not produce reliable, valid parameter estimates on 
more sparse datasets [9]. In addition, these results are limited to 
two specific statistical models produce individualized estimates 
student-level parameters, with a particular focus on individual 
differences in learning rate. There are other classes of models that 
could be extended to estimate differences in learning rate: for 
example, producing individualized estimates of the differential 
effects of success versus failure [15]. This would be an interesting 
focus for future work on this topic. 

Nevertheless, we have laid a foundation of methodology by which 
reliability and validity of parameter estimates, whether student- or 
KC-level, can be assessed. We have also demonstrated ways of 
using the reliable and valid student parameter estimates from 
iAFM and iBKT to yield interesting insights about student 
learning. 
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ABSTRACT
In this paper, we investigate two purported problems with
Bayesian Knowledge Tracing (BKT), a popular statistical
model of student learning: identifiability and semantic model
degeneracy. In 2007, Beck and Chang stated that BKT is
susceptible to an identifiability problem—various models with
different parameters can give rise to the same predictions
about student performance. We show that the problem they
pointed out was not an identifiability problem, and using an
existing result from the identifiability of hidden Markov mod-
els, we show that under mild conditions on the parameters,
BKT is actually identifiable. In the second part of the paper,
we discuss a problem that has been conflated with identifiabil-
ity, but which actually does arise when fitting BKT models,
semantic model degeneracy—the model parameters that best
fit the data are inconsistent with the conceptual assumptions
underlying BKT. We give some intuition for why semantic
model degeneracy may arise by showing that BKT models fit
to data generated from alternative models of student learning
can have semantically degenerate parameters. Finally, we
discuss the potential implications of these insights.

Keywords
Bayesian Knowledge Tracing, identifiability, semantic model
degeneracy

1. INTRODUCTION
Bayesian Knowledge Tracing (BKT) is a popular model of
student learning that tries to predict the probability that
a student knows a skill and the probability that a student
will answer questions based on the skill correctly. The BKT
model is a two state hidden Markov model (HMM) that
posits students have either mastered a skill or not, and at
every practice opportunity, a student who has not mastered
the skill has some chance of attaining mastery. If a student
has mastered a skill, they will answer a question correctly
unless they “slip” with some (ideally small) probability, and

if the student has not mastered the skill, they can only guess
correctly with some (ideally small) probability. In 2007,
Beck and Chang stated that BKT is not identifiable, mean-
ing that different settings of the four BKT parameters can
lead to identical predictions about a student’s performance
[7]. Whether or not BKT is identifiable is an important
issue, because if BKT is not identifiable, it means that we
would fundamentally need other criteria (beyond accurately
modeling student performance data) to fit BKT models.

However, in this paper, we show that BKT is actually an
identifiable model, under mild conditions on the parameters
that should always be satisfied in practical settings. This
result follows from BKT being a special case of a hidden
Markov model and therefore it inherits identifiability results
that prior work has proven for HMMs. This implies no ad-
ditional criteria beyond predictive accuracy are needed to
identify a single BKT model that best explains observed
student performance, under the assumption that learning
can accurately be modeled by a BKT. We then describe three
potential issues with BKT models that may have been mis-
construed as an identifiability problem in the literature. Note
that our goal is by no means to criticize prior researchers, as
such researchers helped identify some important limitations
of Bayesian Knowledge Tracing, but these limitations do not
stem from a lack of identifiablity.

In the second part of this paper, we focus on one of the
issues that has been conflated with identifiability, but which
actually does arise when fitting BKT models, semantic model
degeneracy—the model parameters that best fit the data are
inconsistent with the conceptual assumptions underlying
BKT. We give a critical look at the types of semantic model
degeneracy in the literature and then give some intuition for
why this problem may arise by showing that BKT models
fit to data generated from alternative models of student
learning can have degenerate parameters. We further show
that fitting models to sequences of different lengths generated
from the same underlying model can result in different forms
of semantic degeneracy. We show that these insights can
have important implications on how these models should be
used.
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2. BAYESIAN KNOWLEDGE TRACING
The Bayesian Knowledge Tracing model is a two-state hid-
den Markov model that keeps track of the probability that a
student has mastered a particular skill and the probability
that the student will be able to answer a question on that
skill correctly over time. At each practice opportunity i ≥ 1
(i.e., when a student has to an answer a question correspond-
ing to the skill), the student has a latent knowledge state
Ki ∈ {0, 1}. If the knowledge state is 0, the student has
not mastered the skill, and if it is 1, then the student has
mastered it. The student’s answer can either be correct or
incorrect: Ci ∈ {0, 1} (where 0 corresponds to incorrect and
1 corresponds to correct). After each practice opportunity,
the student is assumed to master the skill with some proba-
bility. The BKT model is parametrized by the following four
parameters:

• P (L0) = P (K1 = 1): the initial probability of know-
ing the skill (before the student is given any practice
opportunities)

• P (T ) = P (Ki+1 = 1|Ki = 0): the probability of mas-
tering a skill at each practice opportunity (if the student
has not yet mastered the skill)

• P (G) = P (Ci = 1|Ki = 0): the probability of guessing

• P (S) = P (Ci = 0|Ki = 1): the probability of “slip-
ping” (answering incorrectly despite having mastered
the skill)

3. IDENTIFIABILITY
In their 2007 paper, Beck and Chang claimed that BKT is
not identifiable, illustrating this with a particular example of
three different BKT models [7]. For concreteness we include
these models in Table 1. The authors consider the case of
predicting the probability of correctness under these three
models as the students receive practice opportunities, but in
absence of any observation about the student’s performance.
They use plots as in Figure 1 to claim that the three models
make very different predictions about student knowledge
(Figure 1 (a)), but make identical predictions about student
performance (Figure 1 (b)). They claim,

All three of the sets of parameters instantiate
a knowledge tracing model that fit the observed
data equally well; statistically there is no justifica-
tion for preferring one model over another. This
problem of multiple (differing) sets of parameter
values that make identical predictions is known
as identifiability.

However, this is not correct since no data was used to fit
these curves; the curves are predicting the probability that
a student will know the skill or will answer the skill cor-
rectly at each practice opportunity i, when we have no prior
performance or data on the student. In order to take past
data from a student into account, we actually want to pre-
dict P (Ki = 1|C1, . . . Ci−1) and P (Ci = 1|C1, . . . Ci−1) and
this is indeed what we do in practice when doing knowledge
tracing; we make predictions based on our past observations.
Figure 2 shows the curves predicting these conditional proba-
bilities for a particular sequence of correct/incorrect answers
for a student (namely we use (1, 0, 0, 0, 0, 0, 0, 1, 1)). We find

that even when we condition on a single observation (i.e.,
for P (C2 = 1|C1)), the three models make vastly different
predictions, and as we collect more data, the models con-
tinue to make very different predictions. In fact, except for
P (C1 = 1), the models never agree on the probability that a
student would answer the step correctly.

Formally, a model is said to be identifiable if there are no two
distinct sets of model parameters θ and θ′ that can give rise
to the same joint probability distribution over observations
under that model. As far as inference is concerned, identifia-
bility means that the likelihood function of the model has
only one global maximum, so inference of the true model
parameters is possible. In the case of BKT, the model would
be identifiable if for any two distinct sets of BKT parameters,
θ and θ′,

Pθ(C1, C2, . . . , Cn) 6= Pθ′(C1, C2, . . . , Cn)

for some n ≥ 1. What Beck and Chang show is that there can
be infinitely many models that share the same set of marginal
distributions P (C1), P (C2), . . . , P (Cn). This does not mean
the model is unidentifiable. As we saw from Figure 2, the
conditional distribution P (Cn|C1, . . . , Cn−1) is quite different
for each model, and so the joint distribution P (C1, . . . , Cn)
is also very different for the three models.

It turns out there has been a substantial amount of work,
going back 50 years and continuing to this day, on finding the
conditions for which hidden Markov models are identifiable
[15, 1, 2, 17, 10]. Although much of the literature focuses on
particular types of HMMs (e.g., stationary, irreducible) that
do not include the standard BKT model, Anandkumar et al.
have recently shown that, subject to some non-degeneracy
conditions, a large class of HMMs, which includes BKTs, is
identifiable with just the joint probability distributions for
up to three sequential observations [4]. That is, knowing
P (C1), P (C1, C2), and P (C1, C2, C3) is enough to infer the
unique model parameters, subject to non-degeneracy condi-
tions. In our context, the conditions are that P (L0) 6∈ {0, 1},
P (T ) 6= 1, and P (G) 6= 1− P (S). This suggests that as long
as we have more than two observations per student, BKT
models with reasonable parameters are identifiable and there
is a single global maximum to the likelihood function. Feng
recently independently showed the same result directly for
BKT models, except without requiring the condition that
P (L0) 6= 0 [9]. One advantage of relying on general identifia-
bility results for HMMs is that we can use the same results
to show the conditions under which related student models
that can also be modeled as HMMs are identifiable1.

This misuse of the term “identifiability” has lead to multiple
subsequent papers in the educational data mining commu-
nity throughout the past decade which have similarly given a
mistaken description of the underlying phenomena [5, 16, 13,
12]. Two papers, however, have correctly identified that the

1For example, for the BKT model with forgetting, where
P (F ) = P (Ki+1 = 0|Ki = 1) 6= 0, we can show that the
model is identifiable with the same conditions, except that we
require P (T ) 6= 1− P (F ) instead of P (T ) 6= 1. We can also
easily show the conditions under which multi-state extensions
of BKT such as the model introduced in Section 4.2 are
identifiable. These conditions can be derived from Condition
3.1 and Proposition 4.2 of [4]. See also the note under
Proposition 3.4 of [3].
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Model

Parameter Knowledge Guess Reading Tutor

P (L0) 0.56 0.36 0.01
P (T ) 0.1 0.1 0.1
P (G) 0 0.3 0.53
P (S) 0.05 0.05 0.05

Table 1: The three BKT models used by Beck and Chang [7] to claim BKT is unidentifiable. The models are chosen to have
very different semantic interpretations. The Knowledge model requires the student to master the skill to get it correct, the
guess model relies on the student guessing, and the Reading Tutor model has an even higher probability of guessing, but it was
based on models actually used by the Reading Tutor [14].

(a) Learning Curve (b) Performance Curve

Figure 1: Hypothetical learning and performance curves for three models from [7], in absence of any data.

(a) Learning Curve (b) Performance Curve

Figure 2: Learning and performance curves for three models from [7] conditioned on all past observations for a student whose
observed trajectory is as follows: (C1, C2, C3, C4, C5, C6, C7, C8, C9) = (1, 0, 0, 0, 0, 0, 0, 1, 1)
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“identifiability problem” is limited to the case where there
is no data [18, 11]. Even though this is not a statistically
precise claim, it does show that some researchers have the cor-
rect understanding behind the phenomenon. Van de Sande
distinguishes between the two cases where predictions are
made in the absence of data and where they are made in the
presence of data, and claims that the source of the identifia-
bility problem in the former case is that the predictions can
be completely determined by three parameters, so there is
a degree of freedom [18]. When we are making predictions,
however he claims there is no identifiability problem, because
P (Ki|Ci) depends on four parameters [18]. While he has
correctly identified the absence of an identifiability problem
in the presence of data, we believe that there is still confu-
sion about the identifiability problem in the community (e.g.,
some of the papers that show a misunderstanding of the issue
are more recent than [18]). We hope to make the absence
of an identifiability problem more clear and elucidate the
phenomena and misconceptions surrounding it. Gweon et
al. also distinguish between two cases which they refer to as
the BKT model without measurement and the BKT model
with measurement, and show, as van de Sande did, that the
former depends on three parameters (hence the “identifia-
bility problem”) whereas the latter depends on all four [11].
However, they claim this does not necessarily mean that
the BKT model with measurement does not suffer from an
identifiability problem, and actually claim that it still does
suffer from an identifiability problem, because empirically,
they found that for some data, fitting BKT models many
times resulted in a wide spread of possible parameters [11].
However, this cannot be due to the presence of an multiple
global maxima, which we have shown cannot exist, and hence
must be due to multiple local optima.

The work closest to ours is Feng’s recently published disser-
tation [9]. The author gives a similar explanation to ours for
why Beck and Chang’s claim was incorrect and also proves
that the BKT model is identifiable directly [9]. However,
we believe the exposition there is perhaps less accessible to
the educational data mining community and will likely not
obtain the visibility needed to clear the misunderstandings
surrounding the identifiability of BKT. In this paper, we
not only focus on identifying the misidentified identifiability
problem, but also understanding the confusion surrounding
it as well as pointing out actual issues with fitting BKT
models that have been conflated with identifiability. This is
the focus of the rest of the paper.

There are three potential sources of confusion that we believe
could be and have been misconstrued as an identifiability
problem:

1. A priori predictions. That multiple models, which
make very different claims about student’s knowledge
state over time, could predict the same probability
that students answer questions correctly over time in
the absence of data. This is the problem that Beck
and Chang conflated with identifiability, and many
researchers thereafter also treated as identifiability. As
we showed above, van de Sande, Gweon et al. and
Feng correctly identified what is happening here [18,
11, 9].

2. Multiple local optima. It is well known that the ex-
pectation-maximization algorithm that is commonly
used to fit BKT models is suceptible to converging
to local optima of the likelihood function rather than
converging to the global optimum. While Beck and
Chang clearly did not conflate this with the identifi-
ability issue, we saw that other researchers such as
Gweon et al. have possibly conflated the two. In order
to avoid local optima, one can use a grid search over
the entire parameter space or run multiple iterations of
the expectation-maximization algorithm with different
initializations of the parameters.

3. Semantic model degeneracy. Baker et al. identified an-
other problem with BKT models, which they termed
model degeneracy [5]. A model is said to be seman-
tically degenerate2 when it is inconsistent with the
conceptual assumptions underlying the BKT model.
The problem is when the model that best fits our data
is semantically degenerate. Even though Baker et al.
clearly contrasted this to the (supposed) identifiability
problem, we claim that this is the problem that Beck
and Chang attempted to fix in their paper. We will
now focus on better understanding this problem.

4. SEMANTIC MODEL DEGENERACY
In their paper, Beck and Chang propose a way to get around
the identifiability problem. They propose using Dirichlet pri-
ors to encode prior beliefs about the BKT parameters, which
will in turn bias the model search towards more reasonable
parameters [7]. They motivate their method as follows:

We have more knowledge about student learning
than the data we use to train our models. As
cognitive scientists, we have some notion of what
learning “looks like.” For example, if a model
suggest that a skill gets worse with practice, it
is likely the problem is with the modeling ap-
proach, not that the students are actually getting
less knowledgeable. The question is how can we
encode these prior beliefs about learning?

The problem they appear to be describing is that some models
have parameters that do not match our intuitions of student
learning, i.e., they are exactly describing the issue of semantic
model degeneracy (and not that of unidentifiability). Baker
et al. later provide another solution to tackling semantic
model degeneracy by using contextual features to estimate
the guess and slip parameters [5]; however, interestingly they
did not view Beck and Chang’s original solution as a way of
tackling semantic model degeneracy, treating it as a way to
tackle identifiability as the authors originally claimed.

Having shown that identifiability is not an issue with BKT,
and given that there are easy ways to tackle the existence
of local optima, we believe semantic model degeneracy is
perhaps the most important problem with respect to fitting
BKT models that needs to be better understood and tackled.
Essentially, the problem arises because the BKT is simply a

2We refer to this property as semantic model degeneracy to
distinguish it from mathematically degenerate parameters
that would result in BKT models being unidentifiable, as
described above.
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particular form of a two-state hidden Markov model and it
will try to fit the best two state hidden Markov model it can
to the data; our model fitting procedures do not understand
that the Ki = 1 state is supposed to correspond to mastering
a skill, and so it might fit a model that does not match our
intuitions of mastery. We will try to understand this in more
detail below, but first we aim to characterize the types of
semantic model degeneracy that have been pointed out in
the literature.

4.1 Types of Semantic Model Degeneracy
Baker et al. distinguish between two forms of semantic model
degeneracy: theoretical degeneracy and empirical degeneracy
[5]. They define a model to be theoretically degenerate when
either the guess or the slip parameter is greater than 0.5.
They define a model to be empirically degenerate if one of
two things occur: (1) for some large enough n the model’s
estimate of the student having mastered the skill decreases
after the student gets the first n skills correct or (2) for some
large enough m, the student does not achieve mastery (our
estimate of the student having mastered the skill does not go
beyond 0.95) even after m consecutive correct responses [5].
The authors arbitrarily chose the values n = 3 and m = 10.
Note that the first form of empirical degeneracy is only
possible if 1− P (S) < P (G) (i.e., the student is more likely
to answer a question correctly if they have not mastered a skill
than if they have mastered a skill), as was shown by van de
Sande [18]. This is true, even for n = 1. Thus, this first notion
of empirical degeneracy is equivalent to P (G) + P (S) > 1,
which implies either P (S) > 0.5 or P (G) > 0.5, meaning
that it always implies theoretical degeneracy! Huang et al.
have noted that while P (G) + P (S) > 1 definitely implies
semantically degenerate parameters as it contradicts mastery,
the condition that P (G) < 0.5 and P (S) < 0.5 may not
always be necessary for the parameters to be semantically
meaningful, since, for example, there may be some domains
where the student can guess the correct answer easily [12].
We agree that suggesting P (G) < 0.5 is degenerate does
seem somewhat arbitrary depending on the domain; however,
we do think P (S) > 0.5 should be characterized as a form
semantic degeneracy, because, as Baker et al. claimed, it does
not make sense for a student who has mastered a skill to
answer questions of that skill incorrectly most of the time—
that goes against our intuitions of what mastery means.
In any case, it does not seem like the distinction between
theoretical and empirical degeneracy is a clear one, so we
suggest categorizing the forms of semantic model degeneracy
by what they suggest about student learning:

• Forgetting: This is a result of P (G) + P (S) > 1, which
suggests that not only are students not learning, but
that students have some probability of losing their
knowledge over time. Another way to view this degen-
eracy is that the state we would conceptually call the
mastery state is now the state where performance is
worse.

• Low Performance Mastery: This is a result of P (S) >
0.5. Alternatively, we can set our threshold for low
performance mastery to be lower (e.g., P(S) > 0.4).

• High Performance Guessing: This is a result of P (G) >
t, where t is some threshold. As mentioned earlier,

this seems like a weak form of degeneracy, as students
can often guess an answer easily even if they have not
mastered a skill, but we can set t to a large enough
value, to make this a form of model degeneracy.

• High Performance 6⇒ Learning: This is the second form
of empirical degeneracy given by Baker et al. [5]: for
some choice of m, the probability that the student
has achieved mastery is less than some threshold p
(typically taken to be 0.95) after m consecutive correct
responses

4.2 Sources of Semantic Model Degeneracy
We will now consider a possible explanation for why BKT
models are so prone to semantic model degeneracy (which
we believe to be part of the reason that researchers look
towards identifiability and local optima to explain the strange
parameters that result from fitting BKT models). First of all,
note that forgetting degeneracy will occur whenever students
actually do forget or when they learn misconceptions; it is
not unreasonable to believe that students will sometimes
learn and reinforce a misconception, causing their knowledge
of some skill to decrease over time. Thus, while this form
of degeneracy technically violates our notion of mastery, it
is to be expected if we switch the semantic interpretation
of the two states and suppose that students forget instead
of learn. We now consider sources of the other forms of
semantic model degeneracy. We claim that such forms of
semantic model degeneracy can result from not accurately
being able to capture the complexity of student learning with
a two state HMM. When this is the case, fitting the data
with a two state HMM will result in trying to find the best fit
of the data for a two state HMM, and not to come up with
a model that tries to accurately model the data while also
matching our intuitions about what it means for a student
to have mastered a skill.

To support our claim, suppose student learning is actually
governed by a 10-state HMM with ten consecutive states
representing different levels of mastery. From each state, the
student has some probability of transitioning to the next
state (slightly increasing in mastery), and from each state,
the student has a probability of answering questions correctly,
and this probability strictly increases as the student’s level of
mastery increases. Specifically consider the model presented
in Table 2. Now suppose we try to use a standard BKT
model to fit data generated from this alternative model of
student learning. The first two columns of Table 3 show the
parameters of BKT models fit to 500 sequences of 20 practice
opportunities or 100 sequences of 200 practice opportunities,
both generated from the the model in Table 2. Notice that
the model fits (nearly) degenerate parameters in both cases.
When we only have 20 observations per student, the model
estimates a very high slip parameter; this is because it has
to somehow aggregate the different latent states which cor-
respond to different levels of mastery, and since not many
students would have reached the highest levels of mastery
in 20 steps, it is going to predict that students who have
“mastered” the skill are often getting it wrong. However,
what’s more interesting is that for the same model, if we
simply increase the number of observations per student from
20 to 200, we find that the slip parameter is reasonably small,
but now the guess probability is 0.49! This is because, by
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State i

Parameter 0 1 2 3 4 5 6 7 8 9

P (K0 = k) 0.1 0.1 0.1 0.2 0.2 0.3 0 0 0 0
P (Ci = 1|Ki = k) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P (Ki = k + 1|Ki = k) 0.4 0.3 0.2 0.1 0.05 0.05 0.05 0.05 0.05 -

Table 2: Alternative model of student learning where there are ten levels of mastery.

10-State HMM AFM

Parameter 20 200 20 200

P (L0) 0.30 0.001 0.09 0.001
P (T ) 0.05 0.02 0.05 0.05
P (G) 0.27 0.49 0.14 0.28
P (S) 0.44 0.13 0.46 0.03

Table 3: BKT models fit to data generated from the model
described in Figure 2 and an additive factors model described
in the text. The first column for each model is fit to 500
sequences of 20 practice opportunities, while the second
column is fit to 100 sequences of 200 practice opportunities.
The models were fit using brute-force grid search over the
entire parameter space in 0.01 increments for the parameters
using the BKT Brute Force model fitting code [6].

this point most students have actually reached the highest
level of mastery, so to compensate for the varying levels of
mastery that occurred earlier in student trajectories, the
model will have to estimate a high guess parameter. So we
find that not only can alternative models of student learning
lead to fitting (near) degenerate parameters, but varying
the number of observations can lead to different forms of
degeneracy! This is a counterintuitive phenomenon that we
believe is not the result of not having enough data (students)
to fit the models well, but rather the result of the mismatch
between the true form of student learning and the model we
are using the fit student learning.

We find similar results if we fit a BKT model to data gener-
ated from another alternative model of student learning that
is commonly used in the educational data mining community,
the additive factors model (AFM) [8]. In particular, we used
the model

P (Ci = 1) =
1

1 + exp(−θ + 2− 0.1i)

where θ ∼ N (0, 1) is the student’s ability3. The second two
columns of Table 3 show the parameters of BKT models fit
to data generated from this model. We again find that when
using only data with 20 practice opportunities, we fit a high
slip parameter, but when we using data with 200 practice
opportunities, we fit a higher guess parameter and a very
small slip parameter.

Additionally, notice that for the parameters fit to the 10-
state HMM, the probability of transitioning to mastery is

3This model suggests that students who are two standard
deviations above the mean initially will answer correctly half
the time, and after 20 practice opportunities the average
student will answer correctly half the time.

very small when we fit to sequences with 200 practice op-
portunities. Since the transition probability is small and the
guess probability is large, we also have high performance 6⇒
learning degeneracy for this model for m = 10. That is,

P (K11 = 1|C1 = 1, C2 = 1, . . . , C10 = 1) ≈ .89 < 0.95

This is yet another form of degeneracy that does not exist
in the model fit to sequences of 20 practice opportunities.
Furthermore, notice that when we have 200 observations,
the probability of transitioning to mastery is smaller than
P (Ki = k + 1|Ki = k) for all states i in the model that
generated the data (Table 2). Again, this is because the best
fitting BKT model will aggregate low performing states and
high performing states, so a single transition in the BKT
model between these two aggregate states will have to loosely
correspond to the student transitioning several times in the
actual 10-state HMM. Thus, while the learned BKT model
makes it appear as though learning happens very slowly,
according to the true student model, learning actually occurs
much more often but in more progressive increments. This
suggests that if we use some automated technique to detect
if a skill is useful for student learning, we may conclude it is
not, if we do not allow for the possibility that students are
learning progressively.

These observations have important implications for how
learned models can be used in practice. Using such a BKT
model to predict student mastery can lead to problematic in-
ferences. For example, for the first model in Table 3, the BKT
model assumes that when a student has reached mastery,
they have a 56% chance of answering a question correctly,
whereas a student who has actually mastered the skill will
have a 90% chance of answering correctly (see Table 2). Thus,
an intelligent tutoring system that uses such a BKT model
to determine when a student has had sufficient practice on a
problem, will likely give far fewer problems to the student
than they actually need in order to reach mastery!

There are several potential ways that future work can pro-
ceed in light of these findings. One is that we should be
giving our model fitting procedures more domain knowledge
about the kind of model we want it to fit. This is essentially
what Beck and Chang did by using Dirichlet priors [7] and
what Baker et al. did by estimating the guess and slip param-
eters using context [5]. But perhaps there are other ways of
doing this where we do not need to give context-dependent
domain knowledge to the model per se, but rather come up
with a model that realizes the difference between a student
having mastered a skill or not (which the BKT model cannot
do). However, this may not be ideal in some cases where
student learning cannot accurately be modeled by BKT with
semantically plausible parameters. For example when we
have forgetting degeneracy, we should probably not force
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the parameters to suggest learning is occurring when it may
not be. Another way to proceed is to consider alternative
student models, which is an active area of educational data
mining research. Perhaps, obtaining semantically degenerate
parameters from a fit should signal that our students may
be learning in more complicated ways than the simple BKT
model can predict, and so we should try to find alternative
models that fit our data better without yielding semantically
degenerate parameters. Finally, even if our model is seman-
tically degenerate, it does not necessarily make the BKT
model useless. The result of fitting a BKT model is that we
get the best fit of the data given that we are modeling the
data with a two-state HMM (if we disregard local optima).
Presumably, such a model can give us some insights about
student learning even if it is not modeling student mastery.
So perhaps we can use such semantically degenerate models
to understand student learning rather than to predict student
mastery.

5. CONCLUSION
We have explored the issues of identifiability and semantic
model degeneracy in Bayesian Knowledge Tracing. We have
shown that what researchers posited was an identifiability
problem is actually not an identifiability problem, and by
using a result from the literature on learning hidden Markov
models, we showed that an identifiability problem does not
exist for BKT models (with the exception of some mathemat-
ically degenerate cases that should not come up in practice).
We then examined the various issues with fitting BKT mod-
els that have been conflated with identifiability. We offered
what we believe to be new insights on one potential source of
semantic model degeneracy. We believe analyzing the sources
of semantic model degeneracy in more detail can be a fruitful
direction for future research. For example, it could be useful
to know what BKT parameters result from fitting various
other popular models of student learning. It would also be
informative to see if we can find automated ways of detecting
which assumptions of BKT are not met in our data (e.g., the
number of levels of mastery, the independence of different
skills). Such analyses could help in devising better student
models, and ultimately may lead to a better understanding
of student learning.
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