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ABSTRACT 

In recent years, schools have added cyber security to their 

computer science curricula. While doing so, existing teachers are 

trained with the new material. In this study we explore differences 

in teachers' and students' learning of cyber security, implementing 

a multi-way, data-driven approach by comparing measures of 

software quality and security. Our findings suggest that teachers’ 

codes have a better quality than the students’, and that the 

students’ codes are slightly better secured than the teachers’. The 

findings imply on the teachers benefit from their prior knowledge 

and experience. Also, findings shed light on the difference 

between quality and security in today’s programming paradigms. 
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1. INTRODUCTION 
Educational systems worldwide often adopt "hot", emerging 

topics to their curricula. Usually, teachers from within the system 

are quickly trained to teach the new material. The current study 

aims on understanding the differences in teachers' and students' 

learning of new material in the case of cyber security (also known 

as computer security, IT security), that is, the practice of 

protecting computer systems from unauthorized access, change or 

destruction. This understanding might contribute to the pedagogy 

of teaching new materials, as well as to teacher development, 

shedding light on previous findings regarding novices' and 

experts' programing knowledge [1,9]. Studies in this field had 

usually used various measures to assess experts’ and novices’ 

programming skills and knowledge, mostly based on qualitative 

data collection (mainly programming-related tasks and 

interviews), rather than on assessment of programs written. Our 

approach is to use automatically extracted software quality and 

security features. 

Explicit metrics for measuring different dimensions of code 

quality have been developed from the late 1960s, shortly after the 

development of the then-new domain of software engineering 

[3,5]. Metrics were defined with their automation in mind. As 

setting a numerical value for metrics might be time-consuming, 

subjective and expensive, "one would prefer for large programs an 

automated algorithm which examine the program and produces a 

metric value" [3; p. 596]. In recent years, EDM/LA methods have 

been used along with software metrics, allowing complex 

structure-based features, as well as adding variables measuring 

student-computer interaction [e.g., 2,7]. In this paper, we take an 

EDM approach, together with a comprehensive set of software 

metrics for both quality and security. We use both quality and 

security metrics. 

As the main purpose of the current study is to explore the way 

novice students and experienced teachers learn cyber security – 

most commonly involves learning Python – we chose to focus on 

software metrics derived from the standards of that language. 

Therefore, we used the Style Guide for Python Code (PEP 8)1 as 

the basis to the metrics. (These metrics were not accessible to the 

participants, and were only assessed in retrospect.) As there is no 

yet a Python standard for security, and based on the similarities 

between Python and C++, we based our quality metrics on the 

C++ Secure Coding Standard, by Carnegie Mellon University's 

CERT2. Both these standards are widely used in code evaluation 

2. METHODOLOGY 
Participants in this study were 31 11th- and 12th-grade students 

from two Israeli high-schools, 17-18 years old; and 18 high-

school computer science teachers from different parts of Israel, 

31-53 years old. Two of the latter were the teachers of the 

participant students. 

Each of the participant teachers attended one of two cyber security 

programs (June 2012 – March 2013 or September 2013 – January 

2014). The participant students took a curriculum-based cyber 

security program, as part of their computer science studies, during 

2012/3 school year. Solutions (in Python) to tasks assigned during 

these programs were collected and analyzed. 

Overall, 109 source files were collected – 68 teachers' and 41 

students'. The teachers were assigned with four different exercises 

(writing a UDP echo server, a basic TCP command server, an 

advanced TCP command server, and a Web server); the students 

were assigned with three different tasks (writing a UDP echo 

server, an advanced TCP command server, and a TCP-based 

Chat). 

Number of actual participants in the analysis was decreased to 17 

teachers (with 60 files) and 15 students (with 27 files), as 

sometimes teachers/students worked in pairs or triples. When the 

same pair/triple had submitted all of the exercises, we arbitrarily 

left only one of the group in the data set. When pairs/triples had 

changed over the course of the program, we arbitrarily assigned 

chose only one representative for each submission. 

                                                                 

1 This guide was co-authored by Python creator, Guido van 

Rossum. Available on http://legacy.python.org/dev/peps/pep-

0008 [accessed 3 May 2014]. 

2 Available at https://www.securecoding.cert.org [accessed 3 May 

2014]. 
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2.1 Feature Engineering 
Features were evaluated at the code-level; for the participant-level 

analysis (descriptive statistics, hierarchical tree), feature values 

were averaged across each participant's source files. 

2.1.1 General Features (6 features) 
For each source file, the general features are the following:  

 Number of Statements (code size); 

 Number of Comment Lines; 

 Documentation Rate (= Comment Lines / Statements); 

 Number of Lines (statements, comments and empty lines); 

 File Name Length [characters; excluding the extension .py]; 

 File Name Meaningfulness (1 – file name is not meaningful at 

all; 2 – partly meaningful; 3 – very meaningful). 

2.1.2 Quality Features (02 features) 
These were automatically extracted by running Pylint 

(http://pylint.org), a common source code bug and quality checker 

for Python which follows PEP 8 style guide. Pylint defines five 

categories of standard violations/errors: 

1. Convention (C; 18 measures). Recommendations of software 

structural quality. Convention measures indicate standard 

violations (e.g., function/variable name does not match a 

regular expression defined in the standard); 

2. Warning (W; 61 measures). Python-specific problems that 

do not follow Python's best practices and may cause run time 

bugs (e.g., an unused import from wildcard import); 

3. Error (E; 32 measures). Probable bugs in the code that relate 

to general programming concepts (e.g., the use of a local 

variable before its assignment); 

4. Refactor (R; 15 measures). A "bad smell" code (derived 

from the term refactoring. the process of restructuring existing 

computer code without changing its external behavior). Such 

violation might be indicated when a function takes too many 

variables as input; 

5. Fatal. This are errors in Pylint processing and not in the 

source file itself, hence were excluded. 

Pylint scans the code and returns a list of measures for which 

violations/errors found, along with their count (we consider 0 for 

the measures that were not triggered by Pylint). Based on Pylint 

output, the following features were computed for each category: 

 Mean Count (C/W/E/R) – mean count of violations/errors 

across all the category's measures. 

 Normalized Mean Count (C/W/E/R) – Mean Count divided by 

code size (Number of Statements); 

 Rate of Triggered Measures (C/W/E/R) – number of triggered 

measures divided by total number of measures; 

 Triggered Category (C/W/E/R) – indicating whether at least 

one measure of it was triggered. 

 Normalized Triggered Category (C/W/E/R) – Triggered 

Category divided by code size (Number of Statements). 

2.1.3 Security Features (6 features) 
These features – extracted using scripts written by the research 

team – are binary, indicating whether the relevant mechanism was 

implemented (1) or not (0). 

 Input Validation (the process of ensuring that a program 

operates on clean, correct and expected input); 

 Anti-Spoofing Mechanism (spoofing attack is a situation in 

which an attacker masquerades as another entity by sending 

specially crafted data that seems as it was send from the 

legitimate source); 

 Bound Checking (checking whether a variable is within some 

range before it is used); 

 Checking for Errors (not checking return codes for errors can 

cause logical security bugs/crashing of the program that can 

cause Denial of Service attacks); 

 Sensitive Data Encryption; 

 Client-Side-Only Security (when the server relies on 

protection mechanisms placed on the client side only); 

Among these, Client-Side-Only Security is the only one for which 

a 0-value denotes a good behavior. 

3. RESULTS 

3.1 Descriptive Statistics 

3.1.1 General Features 
Means of four general metrics are significantly different between 

students and teachers: Number of Statements, Number of Lines, 

File Name Length, and File Name Meaningfulness; on average, 

students' programs were longer than the teachers', and teachers' 

file names were longer and more meaningful than the students'. 

The difference regarding code size (Number of Statements and 

Number of Lines) might hint that teachers have a better grasp of 

the concept of programming with Pyhton, as this language allows 

far fewer lines compared to other languages. No significant 

differences were found between the means of the two 

documentation-related features. Average Documentation Rate was 

0.1, which shows a reasonable documenting practice in Python. 

Results are summarized in Table 1. 

Table 1. Descriptive statistics, t-test results for general features 

(one decimal place representation unless mean<0.1) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

t(30)a 

Number of Statements 51 

(28.3) 

40.5 

(19.7) 

62.9 

(32.3) 

2.3*, 

df=22.6b 

Number of Comments 6.1 

(7.4) 

5.5 

(7.8) 

6.8 

(7.0) 

0.5 

Documentation Rate 0.1 

(0.1) 

0.1 

(0.2) 

0.1 

(0.1) 

-0.4 

Number of Lines 56.9 

(29.6) 

45.4 

(23.8) 

69.7 

(30.9) 

2.5* 

Name Length 10.8 

(5.1) 

12.9 

(4.0) 

8.4 

(5.2) 

-2.8** 

Name Meaning. 1.3 

(0.5) 

1.6 

(0.4) 

0.9 

(0.5) 

-4.3** 

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 

b Levene's test for equality of variance resulted with a significant 

result, hence equal variances not assumed. 

Proceedings of the 7th International Conference on Educational Data Mining 293

http://pylint.org/


3.1.2 Quality Features 
Means of eight quality metrics of convention (C) and warning (Q) 

type are significantly different between students and teachers (see 

Table 2): Mean Count, Normalized Mean Count, Rate of 

Triggered Measures – for both C and W; Trigged Category W, 

and Normalized Triggered Category C. On average, students had 

more convention- and warning-type violations than the teachers. 

As convention guidelines improve code readability and 

maintainability, these differences might indicate on the teachers' 

smoother migration to programming in a new language. 

Table 2. Descriptive statistics, t-test results for quality features 

(one decimal place representation unless mean<0.1 or 

difference needs to be shown) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

t(30)a 

Mean Count C 72.3 

(56.7) 

40.8 

(28.8) 

108.0 

(60.0) 

4.0**, 

df=19.6b 

Mean Count W 56.9 

(70.9) 

20.7 

(37.6) 

97.8 

(78.4) 

3.5**, 

df=19.5b 

Mean Count E 1.4 

(1.5) 

1.3 

(1.0) 

1.5 

(2.0) 

0.5, 

df=19.5b 

Mean Count R 0.2 

(0.3) 

0.1 

(0.4) 

0.2 

(0.3) 

0.6 

Normalized Mean 

Count C 

0.11 

(0.04) 

0.09 

(0.04) 

0.13 

(0.03) 

3.6**, 

df=26.7b 

Normalized Mean 

Count W 

0.02 

(0.03) 

0.01 

(0.02) 

0.04 

(0.03) 

2.9**, 

df=21.6b 

Normalized Mean 

Count E 

– c – c – c 0.05 

Normalized Mean 

Count R 

– c – c – c 1.1 

Rate of Triggered 

Measures C 

0.4 

(0.1) 

0.3 

(0.1) 

0.4 

(0.1) 

4.5** 

Rate of Triggered 

Measures W 

0.05 

(0.04) 

0.03 

(0.03) 

0.07 

(0.04) 

3.5** 

Rate of Triggered 

Measures E 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

-0.1, 

df=21.6b 

Rate of Triggered 

Measures R 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.01) 

0.7 

Triggered Category C 1 (0) 1 (0) 1 (0) N/A 

Triggered Category W 0.7 

(0.4) 

0.6 

(0.4) 

0.9 

(0.3) 

2.7*, 

df=28.1b 

Triggered Category E 0.4 

(0.3) 

0.4 

(0.3) 

0.4 

(0.4) 

-0.6, 

df=23.8b 

Triggered Category R 0.2 

(0.3) 

0.1 

(0.3) 

0.2 

(0.3) 

1.2 

Normalized Triggered 

Category C 

0.03 

(0.02) 

0.04 

(0.02) 

0.02 

(0.01) 

-3.1** 

Normalized Triggered 

Category W 

0.02 

(0.01) 

0.02 

(0.02) 

0.02 

(0.01) 

0.6 

Normalized Triggered 

Category E 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

-1.1 

Normalized Triggered 

Category R 

– c – c – c 0.2 

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 

b Levene's test for equality of variance resulted with a significant 

result, hence equal variances not assumed. c Value < 0.01. 

Pay attention to the opposite direction difference between students 

and teachers in Normalized Triggered Category C. This is a direct 

result of Triggered Category C getting a 1-value for both students 

and teachers and of Number of Statements being larger for 

students that it is for teachers (Normalized Triggered Category C 

is a ratio of these two variables). 

3.1.3 Security Features 
Overall, both teachers and students showed low levels of 

implementing security mechanisms, as summarized in Table 3. 

Both implemented no security mechanism regarding Anti-

Spoofing Mechanisms and Sensitive Data Encryption. As for 

Input Validation and Checking for Errors – on average, students 

statistically significantly implemented more mechanisms than 

teachers regarding these features. It might be that teachers, 

learning from their own fresh experience, emphasized these 

subjects to their students. 

As for Client-Side-Only Security, recall that a 0-value for this 

feature denotes a proper security implementation. As seen in 

Table 3, teachers' mean value for this feature was 0; however, as 

they had barely implemented any security mechanism, this value 

cannot be interpreted as a good practice. The students, with 

relatively a high mean value (0.5), demonstrate poor security 

design that is focused mostly at the client-side. 

Table 3. Descriptive statistics, t-test results for security 

features (one decimal place representation unless mean<0.1) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

ta 

Input Validation 0.06 

(0.17) 

0 (0) 0.13 

(0.23) 

2.3*, 

df=14.0 

Anti-Spoofing 

Mechanism 

0 (0) 0 (0) 0 (0)b N/A 

Bound Checking 0.10 

(0.20) 

0.04 

(0.12) 

0.17 

(0.25) 

1.9, 

df=20.1 

Checking for Errors 0.18 

(0.35) 

0.04 

(0.12) 

0.33 

(0.45) 

2.5*, 

df=15.8 

Sensitive Data 

Encryption 

0 (0) 0 (0) 0 (0) N/A 

Client-Side-Only 

Security 

0.21 

(0.42) 

0 (0)c 0.52 

(0.52) 

3.3**, 

df=11.0 
* p<0.05, ** p<0.01. a Levene's test for equality of variance 

resulted with a significant result, hence equal variances not 

assumed. b For this case, N=12. c For this case, N=16. 

3.2 Hierarchical Clustering 
A hierarchical cluster analysis was performed, using Ward's 

method for clustering by Pearson correlation. Features were 

standardized using Z-scores before clustering. Analysis was 

computed using SPSS 18. The results, presenting two clusters, are 

strikingly clear: One cluster (N=9) holds only teachers, the other 

(N=23) holds all the 15 students and 8 additional teachers. 

Examining features' mean values between the two clusters adds to 

previous student-teacher comparison. The most striking difference 

is in refactor (R) features, which did not show up earlier: a) Rate 

of Triggered Measures R, with t(df=20.5)=2.2, at p<0.05; b) 

Triggered Category R, with t(df=24.4)=2.2, at p<0.05; and c) 

Normalized Triggered Category R, with t(df=20.0)=2.4, at 

p<0.05. Levene's test for equality of variance resulted with 
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significant results, hence equal variances were not assumed. 

Means in the teachers-only cluster were lower than in the mostly-

students cluster (i.e., the teachers had demonstrated better security 

design). Hence, it might be that teachers are more experienced 

than students in regulating their own programming and 

recognizing seemingly-suspicious code. 

Bound Checking was also found significantly different between 

the two clusters, with t(df=19.1)=2.2, at p<0.05 (here also, equal 

variances were not assumed as for Levene’s test significant 

result). Mean value for the teachers-only cluster is lower than the 

mostly-students cluster, in line with previous findings. 

Some features' means were statistically significantly different 

when compared between teachers and students, but not different 

when comparing between clusters: Number of Lines, Number of 

Statements, and Normalized Triggered Category C. As 

Normalized Triggered Category C is the ratio of Triggered 

Category C – for which all of the participants got a value of 1 – to 

Number of Statements, and as Number of Statements and Number 

of Lines are highly correlated– with Pearson’s r=0.983, at p<0.01 

– it is enough to look at Number of Statements; therefore, we 

might conclude that the original difference in Number of 

Statements might have been arbitrary. 

3.3 Prediction Model 
Finally, we built a classifier at the code-level, predicting whether 

a program was submitted by a student or a teacher. 87 source 

codes were used. We ran a Decision Tree algorithm, using 

RapidMiner 5.3 (default parameters), with a manual forward 

feature selection. The best model found (with LOOCV 

kappa=0.751) is relatively simple, having only two features – 

Normalized Mean Count C, and Normalized Triggered Category 

E – three leaves and a total height of two (see Figure 1). It 

highlights the already known difference in convention violations 

between teachers and students. However, it adds an interaction of 

a convention feature with an error-related feature; the latter did 

not show up earlier. This interesting result suggests that students 

and teachers that are relatively good in convention-keeping might 

still pay attention differently to probable bugs. 

Figure 1. Best prediction model (S=Student, T=Teacher) 

 

4. DISCUSSION 
Overall, we found that the teachers did better than students with 

regards to software quality metrics of a new programming 

language. However, the very existence of violations/errors in 

these metrics may hint that the teachers had struggled with the 

new material just like novices do. These findings support 

preliminary findings about computer science teachers being 

"regressed experts" when coping with new material [4]. 

Supporting computer science learners in improving their code 

might be relatively easily, by measuring software quality and 

security while writing the code and enabling a contextual 

feedback; this might produce a better code and, more importantly, 

a better learning [cf. 6, 8]. Popular IDEs (Integrated Development 

Environments) already provide integration with tools like Pylint 

(e.g., Emcas, VIM, Eclipse, Komodo, WingIDE, and gedit), so 

using such software might ease the measuring task. 

As our results suggest, codes with higher software quality are not 

necessarily better secured. Overall, teachers' codes were of higher 

quality comparing to the students' codes, however with regards to 

the measurable security features – the opposite was true. If we 

want future software engineers to implement appropriate security 

mechanisms, we need to educate them in secure programming 

while teaching them programming practices. 
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