
Teachers and Students Learn Cyber Security:

Comparing Software Quality, Security
Shlomi Boutnaru
School of Education
Tel Aviv University

ISRAEL

boutnaru@mail.tau.ac.il

Arnon Hershkovitz
School of Education
Tel Aviv University

ISRAEL

arnonhe@tauex.tau.ac.il

ABSTRACT

In recent years, schools have added cyber security to their

computer science curricula. While doing so, existing teachers are

trained with the new material. In this study we explore differences

in teachers' and students' learning of cyber security, implementing

a multi-way, data-driven approach by comparing measures of

software quality and security. Our findings suggest that teachers’

codes have a better quality than the students’, and that the

students’ codes are slightly better secured than the teachers’. The

findings imply on the teachers benefit from their prior knowledge

and experience. Also, findings shed light on the difference

between quality and security in today’s programming paradigms.

Keywords

Cyber security, code metrics, software quality, software security,

hierarchical clustering, decision tree.

1. INTRODUCTION
Educational systems worldwide often adopt "hot", emerging

topics to their curricula. Usually, teachers from within the system

are quickly trained to teach the new material. The current study

aims on understanding the differences in teachers' and students'

learning of new material in the case of cyber security (also known

as computer security, IT security), that is, the practice of

protecting computer systems from unauthorized access, change or

destruction. This understanding might contribute to the pedagogy

of teaching new materials, as well as to teacher development,

shedding light on previous findings regarding novices' and

experts' programing knowledge [1,9]. Studies in this field had

usually used various measures to assess experts’ and novices’

programming skills and knowledge, mostly based on qualitative

data collection (mainly programming-related tasks and

interviews), rather than on assessment of programs written. Our

approach is to use automatically extracted software quality and

security features.

Explicit metrics for measuring different dimensions of code

quality have been developed from the late 1960s, shortly after the

development of the then-new domain of software engineering

[3,5]. Metrics were defined with their automation in mind. As

setting a numerical value for metrics might be time-consuming,

subjective and expensive, "one would prefer for large programs an

automated algorithm which examine the program and produces a

metric value" [3; p. 596]. In recent years, EDM/LA methods have

been used along with software metrics, allowing complex

structure-based features, as well as adding variables measuring

student-computer interaction [e.g., 2,7]. In this paper, we take an

EDM approach, together with a comprehensive set of software

metrics for both quality and security. We use both quality and

security metrics.

As the main purpose of the current study is to explore the way

novice students and experienced teachers learn cyber security –

most commonly involves learning Python – we chose to focus on

software metrics derived from the standards of that language.

Therefore, we used the Style Guide for Python Code (PEP 8)1 as

the basis to the metrics. (These metrics were not accessible to the

participants, and were only assessed in retrospect.) As there is no

yet a Python standard for security, and based on the similarities

between Python and C++, we based our quality metrics on the

C++ Secure Coding Standard, by Carnegie Mellon University's

CERT2. Both these standards are widely used in code evaluation

2. METHODOLOGY
Participants in this study were 31 11th- and 12th-grade students

from two Israeli high-schools, 17-18 years old; and 18 high-

school computer science teachers from different parts of Israel,

31-53 years old. Two of the latter were the teachers of the

participant students.

Each of the participant teachers attended one of two cyber security

programs (June 2012 – March 2013 or September 2013 – January

2014). The participant students took a curriculum-based cyber

security program, as part of their computer science studies, during

2012/3 school year. Solutions (in Python) to tasks assigned during

these programs were collected and analyzed.

Overall, 109 source files were collected – 68 teachers' and 41

students'. The teachers were assigned with four different exercises

(writing a UDP echo server, a basic TCP command server, an

advanced TCP command server, and a Web server); the students

were assigned with three different tasks (writing a UDP echo

server, an advanced TCP command server, and a TCP-based

Chat).

Number of actual participants in the analysis was decreased to 17

teachers (with 60 files) and 15 students (with 27 files), as

sometimes teachers/students worked in pairs or triples. When the

same pair/triple had submitted all of the exercises, we arbitrarily

left only one of the group in the data set. When pairs/triples had

changed over the course of the program, we arbitrarily assigned

chose only one representative for each submission.

1 This guide was co-authored by Python creator, Guido van

Rossum. Available on http://legacy.python.org/dev/peps/pep-

0008 [accessed 3 May 2014].

2 Available at https://www.securecoding.cert.org [accessed 3 May

2014].

Proceedings of the 7th International Conference on Educational Data Mining 292

http://legacy.python.org/dev/peps/pep-0008
http://legacy.python.org/dev/peps/pep-0008
https://www.securecoding.cert.org/

2.1 Feature Engineering
Features were evaluated at the code-level; for the participant-level

analysis (descriptive statistics, hierarchical tree), feature values

were averaged across each participant's source files.

2.1.1 General Features (6 features)
For each source file, the general features are the following:

 Number of Statements (code size);

 Number of Comment Lines;

 Documentation Rate (= Comment Lines / Statements);

 Number of Lines (statements, comments and empty lines);

 File Name Length [characters; excluding the extension .py];

 File Name Meaningfulness (1 – file name is not meaningful at

all; 2 – partly meaningful; 3 – very meaningful).

2.1.2 Quality Features (02 features)
These were automatically extracted by running Pylint

(http://pylint.org), a common source code bug and quality checker

for Python which follows PEP 8 style guide. Pylint defines five

categories of standard violations/errors:

1. Convention (C; 18 measures). Recommendations of software

structural quality. Convention measures indicate standard

violations (e.g., function/variable name does not match a

regular expression defined in the standard);

2. Warning (W; 61 measures). Python-specific problems that

do not follow Python's best practices and may cause run time

bugs (e.g., an unused import from wildcard import);

3. Error (E; 32 measures). Probable bugs in the code that relate

to general programming concepts (e.g., the use of a local

variable before its assignment);

4. Refactor (R; 15 measures). A "bad smell" code (derived

from the term refactoring. the process of restructuring existing

computer code without changing its external behavior). Such

violation might be indicated when a function takes too many

variables as input;

5. Fatal. This are errors in Pylint processing and not in the

source file itself, hence were excluded.

Pylint scans the code and returns a list of measures for which

violations/errors found, along with their count (we consider 0 for

the measures that were not triggered by Pylint). Based on Pylint

output, the following features were computed for each category:

 Mean Count (C/W/E/R) – mean count of violations/errors

across all the category's measures.

 Normalized Mean Count (C/W/E/R) – Mean Count divided by

code size (Number of Statements);

 Rate of Triggered Measures (C/W/E/R) – number of triggered

measures divided by total number of measures;

 Triggered Category (C/W/E/R) – indicating whether at least

one measure of it was triggered.

 Normalized Triggered Category (C/W/E/R) – Triggered

Category divided by code size (Number of Statements).

2.1.3 Security Features (6 features)
These features – extracted using scripts written by the research

team – are binary, indicating whether the relevant mechanism was

implemented (1) or not (0).

 Input Validation (the process of ensuring that a program

operates on clean, correct and expected input);

 Anti-Spoofing Mechanism (spoofing attack is a situation in

which an attacker masquerades as another entity by sending

specially crafted data that seems as it was send from the

legitimate source);

 Bound Checking (checking whether a variable is within some

range before it is used);

 Checking for Errors (not checking return codes for errors can

cause logical security bugs/crashing of the program that can

cause Denial of Service attacks);

 Sensitive Data Encryption;

 Client-Side-Only Security (when the server relies on

protection mechanisms placed on the client side only);

Among these, Client-Side-Only Security is the only one for which

a 0-value denotes a good behavior.

3. RESULTS

3.1 Descriptive Statistics

3.1.1 General Features
Means of four general metrics are significantly different between

students and teachers: Number of Statements, Number of Lines,

File Name Length, and File Name Meaningfulness; on average,

students' programs were longer than the teachers', and teachers'

file names were longer and more meaningful than the students'.

The difference regarding code size (Number of Statements and

Number of Lines) might hint that teachers have a better grasp of

the concept of programming with Pyhton, as this language allows

far fewer lines compared to other languages. No significant

differences were found between the means of the two

documentation-related features. Average Documentation Rate was

0.1, which shows a reasonable documenting practice in Python.

Results are summarized in Table 1.

Table 1. Descriptive statistics, t-test results for general features

(one decimal place representation unless mean<0.1)

Variable Mean

(SD)

N=32

Mean

(SD),

Teach.

N=17

Mean

(SD),

Stud.

N=15

t(30)a

Number of Statements 51

(28.3)

40.5

(19.7)

62.9

(32.3)

2.3*,

df=22.6b

Number of Comments 6.1

(7.4)

5.5

(7.8)

6.8

(7.0)

0.5

Documentation Rate 0.1

(0.1)

0.1

(0.2)

0.1

(0.1)

-0.4

Number of Lines 56.9

(29.6)

45.4

(23.8)

69.7

(30.9)

2.5*

Name Length 10.8

(5.1)

12.9

(4.0)

8.4

(5.2)

-2.8**

Name Meaning. 1.3

(0.5)

1.6

(0.4)

0.9

(0.5)

-4.3**

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30.

b Levene's test for equality of variance resulted with a significant

result, hence equal variances not assumed.

Proceedings of the 7th International Conference on Educational Data Mining 293

http://pylint.org/

3.1.2 Quality Features
Means of eight quality metrics of convention (C) and warning (Q)

type are significantly different between students and teachers (see

Table 2): Mean Count, Normalized Mean Count, Rate of

Triggered Measures – for both C and W; Trigged Category W,

and Normalized Triggered Category C. On average, students had

more convention- and warning-type violations than the teachers.

As convention guidelines improve code readability and

maintainability, these differences might indicate on the teachers'

smoother migration to programming in a new language.

Table 2. Descriptive statistics, t-test results for quality features

(one decimal place representation unless mean<0.1 or

difference needs to be shown)

Variable Mean

(SD)

N=32

Mean

(SD),

Teach.

N=17

Mean

(SD),

Stud.

N=15

t(30)a

Mean Count C 72.3

(56.7)

40.8

(28.8)

108.0

(60.0)

4.0**,

df=19.6b

Mean Count W 56.9

(70.9)

20.7

(37.6)

97.8

(78.4)

3.5**,

df=19.5b

Mean Count E 1.4

(1.5)

1.3

(1.0)

1.5

(2.0)

0.5,

df=19.5b

Mean Count R 0.2

(0.3)

0.1

(0.4)

0.2

(0.3)

0.6

Normalized Mean

Count C

0.11

(0.04)

0.09

(0.04)

0.13

(0.03)

3.6**,

df=26.7b

Normalized Mean

Count W

0.02

(0.03)

0.01

(0.02)

0.04

(0.03)

2.9**,

df=21.6b

Normalized Mean

Count E

– c – c – c 0.05

Normalized Mean

Count R

– c – c – c 1.1

Rate of Triggered

Measures C

0.4

(0.1)

0.3

(0.1)

0.4

(0.1)

4.5**

Rate of Triggered

Measures W

0.05

(0.04)

0.03

(0.03)

0.07

(0.04)

3.5**

Rate of Triggered

Measures E

0.01

(0.01)

0.01

(0.01)

0.01

(0.01)

-0.1,

df=21.6b

Rate of Triggered

Measures R

0.01

(0.02)

0.01

(0.02)

0.01

(0.01)

0.7

Triggered Category C 1 (0) 1 (0) 1 (0) N/A

Triggered Category W 0.7

(0.4)

0.6

(0.4)

0.9

(0.3)

2.7*,

df=28.1b

Triggered Category E 0.4

(0.3)

0.4

(0.3)

0.4

(0.4)

-0.6,

df=23.8b

Triggered Category R 0.2

(0.3)

0.1

(0.3)

0.2

(0.3)

1.2

Normalized Triggered

Category C

0.03

(0.02)

0.04

(0.02)

0.02

(0.01)

-3.1**

Normalized Triggered

Category W

0.02

(0.01)

0.02

(0.02)

0.02

(0.01)

0.6

Normalized Triggered

Category E

0.01

(0.01)

0.01

(0.01)

0.01

(0.01)

-1.1

Normalized Triggered

Category R

– c – c – c 0.2

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30.

b Levene's test for equality of variance resulted with a significant

result, hence equal variances not assumed. c Value < 0.01.

Pay attention to the opposite direction difference between students

and teachers in Normalized Triggered Category C. This is a direct

result of Triggered Category C getting a 1-value for both students

and teachers and of Number of Statements being larger for

students that it is for teachers (Normalized Triggered Category C

is a ratio of these two variables).

3.1.3 Security Features
Overall, both teachers and students showed low levels of

implementing security mechanisms, as summarized in Table 3.

Both implemented no security mechanism regarding Anti-

Spoofing Mechanisms and Sensitive Data Encryption. As for

Input Validation and Checking for Errors – on average, students

statistically significantly implemented more mechanisms than

teachers regarding these features. It might be that teachers,

learning from their own fresh experience, emphasized these

subjects to their students.

As for Client-Side-Only Security, recall that a 0-value for this

feature denotes a proper security implementation. As seen in

Table 3, teachers' mean value for this feature was 0; however, as

they had barely implemented any security mechanism, this value

cannot be interpreted as a good practice. The students, with

relatively a high mean value (0.5), demonstrate poor security

design that is focused mostly at the client-side.

Table 3. Descriptive statistics, t-test results for security

features (one decimal place representation unless mean<0.1)

Variable Mean

(SD)

N=32

Mean

(SD),

Teach.

N=17

Mean

(SD),

Stud.

N=15

ta

Input Validation 0.06

(0.17)

0 (0) 0.13

(0.23)

2.3*,

df=14.0

Anti-Spoofing

Mechanism

0 (0) 0 (0) 0 (0)b N/A

Bound Checking 0.10

(0.20)

0.04

(0.12)

0.17

(0.25)

1.9,

df=20.1

Checking for Errors 0.18

(0.35)

0.04

(0.12)

0.33

(0.45)

2.5*,

df=15.8

Sensitive Data

Encryption

0 (0) 0 (0) 0 (0) N/A

Client-Side-Only

Security

0.21

(0.42)

0 (0)c 0.52

(0.52)

3.3**,

df=11.0
* p<0.05, ** p<0.01. a Levene's test for equality of variance

resulted with a significant result, hence equal variances not

assumed. b For this case, N=12. c For this case, N=16.

3.2 Hierarchical Clustering
A hierarchical cluster analysis was performed, using Ward's

method for clustering by Pearson correlation. Features were

standardized using Z-scores before clustering. Analysis was

computed using SPSS 18. The results, presenting two clusters, are

strikingly clear: One cluster (N=9) holds only teachers, the other

(N=23) holds all the 15 students and 8 additional teachers.

Examining features' mean values between the two clusters adds to

previous student-teacher comparison. The most striking difference

is in refactor (R) features, which did not show up earlier: a) Rate

of Triggered Measures R, with t(df=20.5)=2.2, at p<0.05; b)

Triggered Category R, with t(df=24.4)=2.2, at p<0.05; and c)

Normalized Triggered Category R, with t(df=20.0)=2.4, at

p<0.05. Levene's test for equality of variance resulted with

Proceedings of the 7th International Conference on Educational Data Mining 294

significant results, hence equal variances were not assumed.

Means in the teachers-only cluster were lower than in the mostly-

students cluster (i.e., the teachers had demonstrated better security

design). Hence, it might be that teachers are more experienced

than students in regulating their own programming and

recognizing seemingly-suspicious code.

Bound Checking was also found significantly different between

the two clusters, with t(df=19.1)=2.2, at p<0.05 (here also, equal

variances were not assumed as for Levene’s test significant

result). Mean value for the teachers-only cluster is lower than the

mostly-students cluster, in line with previous findings.

Some features' means were statistically significantly different

when compared between teachers and students, but not different

when comparing between clusters: Number of Lines, Number of

Statements, and Normalized Triggered Category C. As

Normalized Triggered Category C is the ratio of Triggered

Category C – for which all of the participants got a value of 1 – to

Number of Statements, and as Number of Statements and Number

of Lines are highly correlated– with Pearson’s r=0.983, at p<0.01

– it is enough to look at Number of Statements; therefore, we

might conclude that the original difference in Number of

Statements might have been arbitrary.

3.3 Prediction Model
Finally, we built a classifier at the code-level, predicting whether

a program was submitted by a student or a teacher. 87 source

codes were used. We ran a Decision Tree algorithm, using

RapidMiner 5.3 (default parameters), with a manual forward

feature selection. The best model found (with LOOCV

kappa=0.751) is relatively simple, having only two features –

Normalized Mean Count C, and Normalized Triggered Category

E – three leaves and a total height of two (see Figure 1). It

highlights the already known difference in convention violations

between teachers and students. However, it adds an interaction of

a convention feature with an error-related feature; the latter did

not show up earlier. This interesting result suggests that students

and teachers that are relatively good in convention-keeping might

still pay attention differently to probable bugs.

Figure 1. Best prediction model (S=Student, T=Teacher)

4. DISCUSSION
Overall, we found that the teachers did better than students with

regards to software quality metrics of a new programming

language. However, the very existence of violations/errors in

these metrics may hint that the teachers had struggled with the

new material just like novices do. These findings support

preliminary findings about computer science teachers being

"regressed experts" when coping with new material [4].

Supporting computer science learners in improving their code

might be relatively easily, by measuring software quality and

security while writing the code and enabling a contextual

feedback; this might produce a better code and, more importantly,

a better learning [cf. 6, 8]. Popular IDEs (Integrated Development

Environments) already provide integration with tools like Pylint

(e.g., Emcas, VIM, Eclipse, Komodo, WingIDE, and gedit), so

using such software might ease the measuring task.

As our results suggest, codes with higher software quality are not

necessarily better secured. Overall, teachers' codes were of higher

quality comparing to the students' codes, however with regards to

the measurable security features – the opposite was true. If we

want future software engineers to implement appropriate security

mechanisms, we need to educate them in secure programming

while teaching them programming practices.

5. REFERENCES
[1] Bateson, A.G., Alexander, R.A., and Murphy, M.D. 1987.

Cognitive processing differences between novice and expert

computer programmers. Int. J. Man-Machine Studies, 26(6),

649-660.

[2] Blikstein, P. 2011. Using learning analytics to assess

students' behavior in open-ended programming tasks. In

Proceedings of the 1st International Conference on Learning

Analytics and Knowledge (Banff, AB), 110-116.

[3] Boehm, B.W., Brown, J.R., and Lipow, M. 1976.

Quantitative evaluation of software quality. In Proceedings

of the 2nd International Conference on Software Engineering

(San Francisco, CA), 592-605.

[4] Liberman, N., Ben-David Kolikant, Y., and Beeri, C. 2012.

“Regressed experts” as a new state in teachers’ professional

development: lessons from Computer Science teachers’

adjustments to substantial changes in the curriculum.

Computer Science Education, 22(3), 257-283.

[5] McCall, J.A., Richards, P.K., and Walters, G.F. 1977.

Factors in software quality. General Electric Company,

Technical Report RADC-TR-77-369.

[6] Truong, N., Roe, P., and Bancroft, P. 2005. Automated

feedback for “fill in the gap” programming exercises. In

Proceedings of the 7th Australasian Computing Education

Conference, (Newcastle, NSW, Australia), 117–126.

[7] Vihavainen, A., Luukkainen, M., and Kurhila, J. 2013. Using

students' programming behavior to predict success in

introductory mathematics course. In Proceedings of the 6th

International Conference on Educational Dada Mining

(Memphis, TN), 300-303.

[8] Wang, T., Su, X., Ma, P., Wang, Y., and Wang, K. 2011.

Ability-training-oriented automated assessment in

introductory programming course. Computers & Education,

56(1), 220-226.

[9] Wiedenbeck, S. 1985. Novice/expert differences in

programming skills. Int. J. Man-Machine Studies, 23(4),

383-390.

Proceedings of the 7th International Conference on Educational Data Mining 295

	EDMshortfinal
	26-edm2014_submission_13

