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ABSTRACT 
Mining learner-generated sketches holds significant potential for 
acquiring deep insight into learners’ mental models. Drawing has 
been shown to benefit both learning outcomes and engagement, 
and learners’ sketches offer a rich source of diagnostic 
information. Unfortunately, interpreting learners’ sketches—even 
sketches comprised of semantically grounded symbols—poses 
significant computational challenges. In this paper we describe 
SKETCHMINER, an educational sketch mining framework that 
automatically maps learners’ symbolic sketches to topology-based 
abstract representations that are then analyzed with graph 
similarity metrics to perform automated assessment and 
misconception discovery. SKETCHMINER has been used to mine a 
corpus of symbolic science sketches created by upper elementary 
students in inquiry-based drawing episodes as they interact with 
an intelligent science notebook in the domain of physical science. 
Results of a study with SKETCHMINER suggest that it can correctly 
assess learners’ symbolic sketches. 
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1. INTRODUCTION 
Diagrams and sketching are fundamental to science education. 
From primary through post-secondary education, students use 
drawings and graphical representations to make sense of complex 
systems and as a tool to organize and communicate their ideas to 
others. Studies have shown that learning strategies focusing on 
learner-generated sketches can produce effective learning 
outcomes, such as improving science text comprehension and 
student engagement [12], facilitating the writing process [11], and 
improving the acquisition of content knowledge [3]. Furthermore, 
spatial ability has been recognized as a predictor of STEM success 
even when accounting for mathematical and verbal ability [17].  

Unlike the well studied areas of how people learn from writing 
text, viewing graphics, and reading, relatively little is known 
about how the generation of scientific drawings affects learning. 
Van Meter and Garner [9] posit that students asked to draw a 
picture engage in three cognitive processes: selecting relevant 

information, organizing the information to build up an internal 
verbal model, and constructing an internal nonverbal 
representation to connect with the verbal representation. Others 
suggest that drawing can be a meaningful learning activity 
requiring both essential and generative processing to mentally 
connect multiple knowledge representations [14]. 

The benefits of learner-generated sketching can best be realized 
by thoughtfully designing activities within a well-designed 
curriculum, as the positive effects of drawing strongly depend on 
the quality of the learner-generated products and scaffolding [10]. 
The act of generating a visual representation is a cognitively 
demanding task and, as such, requires scaffolds to guard against 
excessive and extraneous cognitive load [16]. Effective scaffolds 
for drawing include providing cutout figures, guiding questions, 
and targeted drawing prompts [7,19]. 

From a computational perspective, learner-generated drawings 
pose significant challenges. Even in an environment with 
predefined symbolic elements, the generative nature of the task 
yields a very large solution space of unique drawings and 
configurations. The work presented here describes initial efforts to 
mine learner-generated science drawings. To automatically cluster 
and compare drawings, the proposed framework uses a multi-step 
process of translating trace sketch behavior data of student 
drawings into topological representations. This process consists of 
converting the drawn elements into a graph representation based 
on a topology derived from the domain and using a modified edit 
distance methodology for comparing the topological graphs. We 
show how these comparisons can be used to analyze drawings to 
detect misconceptions, as well as to cluster student solutions in a 
manner that exhibits high fidelity with respect to human 
categorization. 

This paper is structured as follows. Section 2 discusses other 
approaches that have been used to analyze student sketching. 
Section 3 describes the tablet-based learning environment that was 
used to collect the symbolic sketch dataset from elementary 
students. Section 4 introduces SKETCHMINER, a sketch data 
mining systems that automatically analyzes and compares student 
drawings using topological graphs. Finally, Section 5 describes an 
application of SKETCHMINER to cluster student drawings 
compared to a human clustering.    
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2. RELATED WORK 
Sketch analysis poses significant computational challenges, with a 
majority of prior work focused on sketch recognition. For 
example, sketch recognition frameworks have been designed for 
domains such as organic chemistry and circuits in which free- 
hand drawing is translated into domain-specific symbols [1].  
Another system, Mechanix, combines free-hand recognition 
capabilities with error checking to create feedback for 
undergraduate engineering students enrolled in a statics course 
[15].  

Bollen and van Joolingen’s SimSketch merges sketching with 
modeling and simulation of science phenomena [2]. In SimSketch, 
user free-hand drawings are segmented into objects by the system, 
and then annotated by the user with a variety of behaviors and 
attributes. Students can then run a simulation based on their 
drawing and see the results before revising their sketch. 
SimSketch has been evaluated in a planetarium setting and been 
shown to be both a functionally useable and enjoyable system for 
visitors. 

Another promising line of investigation for studying learner-
generated drawing in educational settings centers on the 
CogSketch system [5]. CogSketch has been developed as an open-
domain sketch understanding system. Sketch worksheets were 
built within CogSketch, and used in a study to collect and cluster 
undergraduate geology student sketches by an analogical 
generalization engine [4]. 

3. LEONARDO CYBERPADS 
Recent years have witnessed growing interest in introducing 
science notebooks into elementary science classrooms [13]. 
Science notebooks capture students’ inquiry-based activities in 
both written and graphical form, potentially providing a valuable 
source of both diagnostic and prognostic information. However, 
because elementary teachers have limited training in science 
pedagogy, they often struggle with effectively using science 
notebooks in classroom learning activities [18]. 

For the past three years our laboratory has been developing a 
digital science notebook, the LEONARDO CyberPad (Figure 1), 
which runs on tablet computing platforms. LEONARDO integrates 
intelligent tutoring systems technologies into a digital science 
notebook that enables students to graphically model science 
phenomena. With a focus on the physical and earth sciences, the 
LEONARDO PadMate, a pedagogical agent, supports students’ 
learning with real-time problem-solving advice. LEONARDO’s 
curriculum is based on that of the Full Option Science System [8] 
and is aligned with the Next Generation Science Standard goals in 
elementary school science education [20].   

Throughout the inquiry process, students using the LEONARDO 
CyberPad are invited to create symbolic sketches, including 
electrical circuits. Given the challenges of machine analysis of 
freehand sketching, as well as concerns of excessive cognitive 
demand for elementary students working in such an unstructured 
space [18], LEONARDO supports symbolic drawing tasks. To 
preserve the generative processing hypothesized to be of great 
benefit for learner-generated drawings strategies, each activity 
begins with a blank page so that the representations must be 
created from scratch. Students then choose from a variety of 
semantically grounded objects and place them at various points in 
the drawing space. For example, objects for the electricity unit 
include light bulbs, motors, switches, and batteries. Students then 
place wires on the drawing space, connecting the various objects 
to simulate proper electrical behavior. This focuses the learning 

activity on choosing the appropriate circuit elements and creating 
the appropriate circuit topology. Drawing tasks vary in 
complexity from copying a picture of a circuit held up by the 
PadMate, to recreating a circuit made during a physical 
investigation, to creating more complex circuits designed to 
increase their understanding of series and parallel circuits. 

4. TOPOLOGY-BASED SKETCH MINING 
To analyze student drawings, SKETCHMINER first translates them 
into a more abstract representation. It takes as input trace logs 
from students’ work in the CyberPad. From the trace logs it 
extracts student actions at a level of granularity capable of 
producing replay-quality representations of the drawing activities. 
From these actions it extracts the state of the student drawing at 
each point in the activity. For the analyses reported in this paper, 
we focus only on the final submitted sketches rather than  the  
multiple drawings generated during the sketching process. The set 
of objects and locations are then utilized by a simulation engine 
that supports the querying of topological features of the drawing. 
SKETCHMINER uses these topological features to generate a 
labeled graph representation of the drawing. Topological graphs 
provide two key representational benefits. First, they are very 
flexible and can be used across many domains. For the domain of 
circuits, our representation focuses on the electrical topology of 
the circuit drawing, which could be replaced or augmented by 
other features such as two-dimensional spatial topology. Second, 
graphs are easily visualized and interpretable by humans, which 
facilitates  the interpretation of patterns and features extracted by 
automated analysis. 

The first step in the translation from drawings to topological 
graphs is encoding the non-wire circuit elements. Circuit elements 

Figure 1. Screenshot of the LEONARDO CyberPad 

Figure 2. Circuit elements and corresponding topology 
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are represented as nodes in the graph. Because there are only two 
points where each node can interact with other objects in the 
drawing space, each node is connected to two nodes representing 
its contact points (Figure 2). 

After creating the nodes of the graph, SKETCHMINER then 
generates the edges between them. For each contact point in the 
graph, the simulation engine uses a depth first search to return all 
other contact points reachable with a zero resistance path. If one 
or more paths exist between contact points, they are then 
connected with a single edge in the graph (Figure 3).  

While multiple methods can be used to compare the similarity of 
graphs and trees, SKETCHMINER uses a method capable of 
numerically summarizing the difference between topographical 
states that also provides a description of how to transition from 
one state to the other. In particular, it uses a modified form of edit 
distance. Edit distance has been used to characterize errors in a 
variety of domains and is perhaps best known for its application in 
natural language spelling correction. Edit distance captures the 
difference between two representations as a series of edit 
operations. Additionally, these edit operations can be weighted, 
with the sum of necessary operations equaling the edit distance. 
SKETCHMINER uses edit distance to measure the number of 
element additions, element deletions, edge additions and edge 
deletions needed to match two topologies. While traditional string 
edit distances tend to also utilize substitution, we chose to treat 
this instead as deleting an element, then adding a new one because 
this is the path a student would have to take to modify his or her 
drawing.   

To determine the sequence of edit operations necessary to match 
two topologies, SKETCHMINER utilizes a guided search of possible 
actions to determine the lowest cost path through the operation 
space. While there are more efficient algorithms for graph edit 
distance, (e.g., see [6] for a survey), the greater complexity of 
these is not justified for the size of topological graphs generated 
from student sketches in this work. 
Another design decision for SKETCHMINER considered how to 
weigh different edit operations for calculating the edit distance. 
An unweighted edit distance produces some undesirable effects. 
In particular, an unweighted score does not differentiate well 
between different types of errors. Consider a target drawing of a 
complete circuit featuring a battery and a motor. A blank 
submission and a complete circuit with the motor contacts short-
circuited will both produce the same edit distance. 

One approach to correcting for this is to adjust the weighting of 
actions. A subset of the student answers was analyzed with 
subject matter experts in an attempt to determine how the edit 
distance was aligning with curricular goals and assessment of 
different types of errors. A weighting scheme was generated to 

penalize missing elements at a cost of 4, extra elements at a cost 
of 2, and extra/missing edges at a cost of 1. SKETCHMINER uses 
this weighting scheme.  

5. CORPUS ANALYSIS 
For the analyses of SKETCHMINER reported here, a corpus of 
fourth grade symbolic drawings was collected with the LEONARDO 
CyberPads running on iPads in elementary classrooms in North 
Carolina and California. After data cleaning, drawing activities 
from 132 students were used for the analysis. Student drawings 
were scored in comparison to normative models constructed by 
the research team. Because there may be multiple correct 
solutions to a given exercise, student submissions were scored 
against multiple “correct” solutions and assigned the score of the 
closest match. These scores were then used to qualitatively 
analyze the student drawings as a basis for the distance metric for 
unsupervised clustering and for misconception detection. 

To evaluate SKETCHMINER’s edit distance’s value as an 
assessment metric, we clustered student drawings using both the 
weighted and unweighted topographical edit distance as the 
distance metric. In order to evaluate the clusters, two independent 
coders from the project’s education team developed a rubric 
(described in Table 2) and scored the student responses for a 
circuit involving a switch, motor, and battery connected in series. 
Based on the rubric, the drawings were independently classified 
into 4 clusters by the two coders (𝜅 = .9), creating a gold standard 
clustering to validate our clusters against.  

After the hand coding, we then ran an automated cluster analysis 
on the student drawings based on the SKETCHMINER generated 
codings. To cluster the drawings we utilized the WEKA toolkit 
implementation of k-means clustering with k=4 to align with the 
human coding. Because k-means can be dependent on 
initialization, the analysis was run 10 times with different random 
seeds and the results averaged. 

Table 1. Classification accuracy 

Distance Metric Accuracy Precision Recall 
Unweighted .73 .56 .63 

Weighted .86 .74 .76 

As shown in Table 1 above, SKETCHMINER produced strong 
alignment with the human classifications, with the weighted edit 
distance producing better results than unweighted. The improved 
accuracy is a result of the weighted edit distance outperforming 
the unweighted edit distance at separating the three error classes.   

Table 2. Classification by class for weighted edit distance 

Class Accuracy Precision Recall 
1 (Blank) .89 .61 1 
2 (No Structure) .87 .66 .5 
3 (Some Structure) .86 .92 .6 
4 (Correct) .98 1 .96 

Further analysis of the weighted edit distance classification 
reveals that the process produced near-perfect accuracy on correct 
answers (Class 4). Inspection of the misclassified correct student 
sketches showed one example where the student had created the 
correct circuit, and a smaller unrelated circuit on a different part 
of the drawing space which inflated its edit distance. The other 
human-coded correct answer misclassified by SKETCHMINER was 
due to the student creating the correct topology but using a light 
bulb instead of a motor. 
For classifying errors, the clustering showed strong alignment 

Figure 3. Connections encoded as edges 
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with empty entries, but had difficulty separating Class 2 errors 
(elements present but with no structure) from empty submissions. 
One possible way of improving this in the future could be to treat 
absence-of-circuit elements as a special case error.   

6. CONCLUSION 
Understanding how students learn from drawing is a foundational 
problem in learning analytics. Tablet-based science notebooks, 
such as the one provided by the LEONARDO CyberPad, offer an 
excellent “laboratory” for instrumenting the drawing process and 
afford significant opportunity for educational data mining 
techniques. In this paper we have introduced SKETCHMINER, 
which utilizes a graph-based representation of drawing topologies 
to automatically interpret learner-generated symbolic sketches. In 
an analysis of SKETCHMINER’s application to a corpus of fourth 
grade student symbolic sketches, it was found that its assessment 
of student drawings aligns with human-provided assessments.    

The results show promise as a means of automatically assessing 
learner drawings and suggest several lines of investigation for 
future research. First, while “distance to solution” is a valuable 
metric, SKETCHMINER’s edit distance could also be used to 
compare errors to each other. Preliminary analysis using this 
technique has shown promise for identifying common error states 
that could be used in curriculum redesign or to generate targeted 
scaffolding for students. 

Another area for future research is applying SKETCHMINER to 
more topologically complex domains. Because the topographical 
relations in the domain of circuits are somewhat sparse, 
SKETCHMINER’s representations would need to be evaluated on 
more complex student drawings containing more diverse sets of 
elements and relationships with more complex topologies. 

Perhaps the most promising area for analysis is investigating the 
drawing process itself. Topographical representations can be 
created at any point in the drawing process, allowing for analysis 
of sequences and patterns in student drawing. Models learned 
from corpora of learner drawing processes can be used to create 
more accurate models of learners’ conceptual representations, as 
well as the basis for providing customized scaffolding to support a 
broad range of learner populations.  
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