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ABSTRACT 

In our recent work, we have proposed that multiple behavior 

demonstrations can be automatically combined to generate an 

Example-Tracing Tutor model. In this paper, we compare four 

algorithms for this problem using a number of different metrics 

for two different datasets, one of which is publicly available. Our 

experiments show that these four algorithms are complementary 

to each other in terms of their performance along the different 

metrics. These findings make a case for incorporating multiple 

algorithms for building behavior graphs into authoring tools for 

Intelligent Tutoring Systems (ITS) that use behavior graphs. 
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1. INTRODUCTION 

Conventionally, Example-Tracing Tutors [1] are developed in 

three stages by trained domain experts: (1) User Interface 

development, (2) Behavior demonstration, (3) Generalization and 

annotation of the behavior graph. Recently, we proposed [2] that 

the effort involved in Stage 3 of this process can be significantly 

reduced by using algorithms that can automatically create a 

generalized behavior graph from multiple demonstrations. 

Automation of tutor model development has been explored in 

different contexts using completely automated methods as well as 

augmentation of authoring tools. Barnes and Stamper [3] 

proposed a method that uses existing student solutions to generate 

hint messages for the Logic Proof tutor. Recently, Eagle et al. [4] 

have used clustering of interaction network states as an approach 

to the same problem. In the context of knowledge-tracing and 

example-tracing tutors, McLaren et al. [5] proposed the use of 

activity logs from novice users to bootstrap tutor model 

development. They developed software tools that integrate access 

to novice activity logs with tutor authoring tools.  

In the next section, we briefly outline four algorithms for 

automatically generating behaviors graphs. In Section 3, we will 

present experiments using two datasets, to compare these 

algorithms along a number of metrics that measure desirable 

characteristics of tutor models. 

2. ALGORITHMS 

2.1 Behavior Graphs and Demonstrations 

Behavior graphs are directed graphs. The nodes in a graph 

correspond to valid solution states. Non-terminal nodes represent 

partial solutions. Edges in the graph represent events, some of 

which are correct and lead to the next state while others are 

incorrect and lead back to the same state. Edges are annotated 

with the conditions that an event must meet to traverse the edge. 

Behavior graphs may also include unordered groups. As the name 

suggests, states within an unordered group may be traversed in 

any order. Constituents of the behavior graph (i.e. nodes, edges, 

groups) may be associated with a number of annotations based on 

the educational application. 

On the other hand, behavior demonstrations are captured as a 

sequence of user interface (UI) events. Each event is represented 

as a 2-tuple ei = ( ui, di ) that includes an identifier ui of the UI 

element and data di associated with the event. Note that each 

behavior demonstration implicitly represents a behavior graph 

where the nodes in the graph correspond to the state of completion 

of each event in the demonstration. Such a behavior graph does 

not generalize to learner behaviors beyond those that are exactly 

identical to the demonstration. Automatic Behavior Graph 

Generation (ABGG) algorithms utilize multiple demonstrations of 

solutions of a problem to generate a behavior graph that can serve 

as a tutor model for the problem. 

2.2 Algorithm 1: Interaction Network 

The baseline algorithm used in our work combines the individual 

behavior graph corresponding to available demonstrations by 

merging identical nodes and edges in a sequential order. When a 

non-identical edge is found, a new branch is created in the graph. 

The resulting behavior graph is an interaction network which has 

been used in prior work [4] [6]. All paths in the behavior graph 

generated by this algorithm are assumed to be correct paths i.e. 

this algorithm is incapable distinguishing between correct and 

incorrect actions by the learner. While the behavior graph 

generated by this algorithm is more general than any individual 

demonstration used to create the graph, no unseen paths are 

generated. Furthermore, the number of nodes and edges created 

by this algorithm is fairly large, which makes the annotation of 

such graphs difficult for problems with many UI elements.  

2.3 Algorithm 2: Heuristic Alignment1 

Our next algorithm, shown in Table 1, utilizes two characteristics 

of behavior demonstrations. First, if two or more events in a 

demonstration have the same element identifier ui, the latter event 

likely corresponds to a correction of the data value input in the 

former events. Second, if we assume that there is one and only 

one correct solution sequence through the UI elements, we can 

transform the problem of generalizing behavior demonstrations to 

that of finding the optimal sequence of states through the UI 

elements. 
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Table 1. Algorithm 2 (Heuristic Alignment)  

Stage 1. Compute Retracted Demonstrations 

 For each demonstration D 

 For each retracted event e = (u, d) 

1. etarget = last event in D s.t. etargetu = eu 

2. Add ed to etarget.dwrong 

3. Remove e from D 

Stage 2. Find Sequence of States 

 For each unique identifier u 

1. pu = set of positional indices of events s.t. identifier = u 

2. modeu = mode(pu) 

 Sequence states (su) corresponding to each element 

identifier (u) in increasing order of their modeu 

Stage 3. Generate Edges 

 For each state su* 

1. Generate correct edge for each unique d for events s.t. 

identifier = u* 

2. Generate wrong edge for each unique entry in dwrong for 

events s.t. identifier = u* 

Stage 4. Identify Unordered Groups 

 For each pair of adjacent states (su1,su2) 

1. if |∩(pu1,pu2)| > √                , group su1, su2 

2.4 Algorithm 3: Center Star Alignment 

Note that Stage 2 of the previous algorithm is, in effect, aligning 

the multiple demonstrations. The Center Star Algorithm can be 

used to perform this alignment. Algorithm 3 uses the Center-Star 

Alignment between the retracted demonstrations. Similar to 

algorithm 2, a new state is generated for each position in the 

aligned demonstrations. However, since we obtain the alignment 

using the Center Star algorithm, the second assumption made by 

algorithm 2 is not necessary, which can lead to multiple states 

with the same element identifiers. This allows algorithm 3 to 

generate alternate paths. 

2.5 Algorithm 4: Combining Multiple Paths 

Algorithm 4 considers ABGG as the process of finding multiple 

paths in a directed graph. A first order transition matrix obtained 

from the demonstrations represents a directed graph. Specifically, 

the longest (non-repeating) path in this directed graph is the most 

likely path through the UI elements based on the demonstrations. 

While the problem of finding longest paths in general graphs is 

known to be NP-hard, in our approach, we employ an exponential 

time longest path finding algorithm within bounds of the number 

of UI elements and uses a transformed transition matrix to find 

multiple shortest paths. The transform changes the weight of each 

valid edge of the directed graph to row normalized inverse. We 

merge all the paths found to we construct a behavior graph similar 

to the process of constructing an interaction network. The 

algorithm uses Stage 1 and Stage 4 of algorithm 1. 

2.6 Discussion 

As mentioned earlier, incremental addition of demonstrations to 

generate interaction networks does not identify incorrect input 

data values. Using the assumption about retracted events, the 

other three algorithms are able to identify incorrect inputs. 

Johnson et al. [6] used a similar assumption in their work on 

reducing the visual complexity of interaction networks. We notice 

that the algorithms 2 and 3 are complementary in terms of their 

ability to find alternate paths and unordered groups. Algorithm 4 

on the other hand offers both of these abilities. In the next section, 

we will discuss the performance of all of these algorithms in terms 

of quantitative metrics  

None of the algorithms discussed in this paper are capable of 

discovering data values beyond those seen in the training 

demonstrations. This type of generative ability is particularly 

useful for learning tasks, such as language learning, where a large 

number of different inputs may be expected from the learners. In 

our ongoing work, we want explore the use of grammar induction 

techniques to learn regular expressions from correct and incorrect 

data values for each state. 

3. EVALUATION 

3.1 Datasets 

We use two collections of behavior demonstrations/traces to 

evaluate the performance of the four algorithms described earlier. 

The first dataset (referred to as the BBN dataset) comprises of five 

physics problems. Nine subjects spent upto one hour each to 

create demonstrations of the five problems. All nine subjects were 

able to complete demonstrations of three problems. Six subjects 

completed the fourth problem and only four completed the fifth 

problem. Additionally, we used three Assistments datasets 

accessed via DataShop [7] to form our second collection of 

behavior demonstrations. This publicly shared large dataset 

comprises a total of 683197 traces and 1905672 events for 3140 

problems. We filtered these datasets to use only problems that had 

six or more traces and had at least two UI elements. 

3.2 Metrics 

Metrics used in our evaluation are discussed in detail in our prior 

publication [2]. These metrics are categorized by the desirable 

characteristics of automatically generated behavior graphs they 

measure.  

 Readability/Maintainability: The conciseness of a graph can 

be measured using the number of nodes and edges in the graph. 

Compression ratio measures the rate at which an algorithm is 

able to reduce demonstration events into behavior states (i.e. 

nodes) by finding similarities between events. 

 Completeness: We use the rate of unseen events in held out 

demonstrations as a metric to measure the completeness of our 

automatically generated behavior graphs. 

 Accuracy: Edge accuracy measures the percentage of Correct & 

Incorrect edges that were accurately classified by the algorithm. 

Error rate is a frequency weighted combination of edge accuracy 

that measures the fraction of learner events that will be 

inaccurately classified by the automatically generated behavior 

graph.  

 Robustness: Branching factor is the average number of data 

values available at each UI element. A large branching factor 

indicates the capability to process a large variety of learner 

inputs at each state. Also, the number of unordered groups and 

the size of unordered groups are indicative of flexibility a graph 

affords to learners to explore the solution paths of a problem. 

3.3 Experimental Design 

We use two different experimental designs for the two datasets. 

Since the BBN dataset is comprised of a small number of 

demonstrations per problem, we use all available demonstrations 

for training and report only the metrics that can be derived from 

the graphs and the training demonstrations. Since a large number 

of traces are available for the problems in the Assistments dataset, 
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we use a three-fold cross validation design to split the available 

traces into three different training and held out sets. Reported 

metrics are averaged over each split. 

3.4 Results 

3.4.1 BBN Dataset 

Table 2 shows performance results for the four algorithms on the 

two datasets. As expected, the interaction networks comprise of a 

large number of nodes and edges that lead them to have 

significantly (p<0.01) lower compression ratio. Algorithms 2 

(Heuristic Alignment) and 4 (Multiple Paths) are able to achieve 

the highest compression consistently for all five problems. 

On the accuracy metrics, Algorithm 4 outperforms the other 

algorithms on average. However, it is significantly better 

(p<0.001) than Algorithm 1 and 3 on the incorrect edge accuracy 

metric. Furthermore, the high accuracy for incorrect edges for two 

of the three algorithms that use the retracted demonstrations partly 

validates the underlying assumption made by these algorithms. 

In contrast to the accuracy metrics, alignment based 

algorithms (2 and 3) outperform the multiple paths algorithm (4) 

on achieving a higher branching factor. The frequency based 

pruning underlying the selection of multiple paths in algorithm 4 

leads to the elimination of certain novel edges. Based on the 

performance of these algorithms on the edge accuracy metrics we 

see many of these novel edges are likely to be inaccurate due to 

limited evidence for their classification in the training 

demonstrations. While the algorithms complement each other, 

Algorithm 4 seems to be a potential candidate for optimal tradeoff 

between the different metrics. 

In terms of metrics based on unordered groups in a graph, we 

find that algorithm 4 leads to a larger fraction of nodes (31%) to 

be included in unordered groups. Finally, we see that pruning 

significantly degrades the performance of Algorithm 4 on 

percentage of unseen events i.e. completeness. Since interaction 

networks losslessly embed all events observed in the training 

demonstration, their performance on this metric is guaranteed to 

be flawless. In the next section, we will compare this result to 

their performance on held out demonstration sequences.  

3.4.2 Assistments Dataset 

The performance of the algorithms on the Assistments (Math) 

dataset is also shown in Table 2. Largely, the results on this 

dataset agree with the results on the BBN dataset. Algorithm 2 

(Heuristic Alignment) outperforms all other algorithms on three of 

the readability metrics. Unlike the BBN dataset, the average 

compression ratio for Algorithm 2 is significantly better than the 

other algorithms including Algorithm 4 (Multiple Paths). 

Algorithm 4 significantly outperforms the other algorithms 

on three of the accuracy metrics. Because of their lossless nature, 

Interaction Networks (Algorithm 1) performs the best on 

Completeness metrics (% unseen events) as was the case with the 

BBN dataset. However, we find evidence of over-fitting of the 

algorithms to training data on this metric as indicated by the 

approximately 9% higher rate of unseen events for held out 

demonstrations for all the algorithms.  

While the results on the branching factor metrics of the 

Assistments dataset are consistent with the BBN dataset, 

Algorithm 2 outperforms Algorithm 4 on the metrics based on the 

unordered groups. Because Algorithm 2 identifies unordered 

groups that are larger in size than Algorithm 4, the groups found 

by the Heuristic Alignment algorithm have a higher coverage of 

the generated graphs, especially in the Assistments datasets where 

the number of UI elements is relatively small. 

Figure 1 further explores the tradeoff between the key 

metrics for larger number of traces (i.e., more training data) in 

Figure 1a and increasingly complex problems (i.e., more UI 

elements) in Figure 1b. Algorithm 1 does not scale well on 

readability metrics (Compression Ratio). The algorithms 

demonstrate stability in accuracy and completeness performance 

with increasing problem or data complexity. Algorithms 3 and 4 

can produce a consistently low error rate despite increasing 

complexity. The rate of unseen events reduces by over 60% 

(relative) for a 10-fold increase in training data. This is also 

Table 2. Averaged metrics for the graphs generated for the problems in the BBN & Assistments (Math) dataset 
*indicates significant (p < 0.05) difference with other algorithms for the same dataset 

 

Metrics ▼ 

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

BBN Math BBN Math BBN Math BBN Math 

#Nodes 144.8 79.1* 32.4 5.4 37.0 6.0 32.4 6.6 

#Correct Edges 160.4 147.9* 70.0 12.8 97.0 18.3 71.4 17.5 

#Incorrect Edges   17.2 24.2* 19.8 33.4* 5.0 19.5* 

Compression Ratio 1.8 6.7* 7.3 77.3* 6.3 66.8* 7.3 60.2* 

% Accurate Correct Edges 76.7 39.1* 77.0 42.2 66.2 42.6 82.8 44.1* 

% Accurate Incorrect Edges   99.5 99.9* 99.5 97.5* 100.0 99.5* 

Training Error Rate 15.5 51.3* 7.6 25.2* 13.0 17.7 7.6 17.4 

Heldout Error Rate  42.7*  23.4*  16.0  15.6 

% Training Unseen Events 0.0 0.0 0.0 10.5* 4.4 2.2* 8.1 6.7* 

% Heldout Unseen Events  10.1*  19.0*  11.5*  13.8* 

Branching Factor 1.2 2.2* 3.1 11.1* 3.4 12.6* 2.7 8.5* 

#Groups   1.6 0.5*   2.6 0.02* 

Avg. Group Size   3.3 1.8*   2.8 0.04 

% Group Coverage   17.7 30.6*   31.3 0.5 
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evidenced in the BBN dataset if we compare problems 1, 2 and 6 

which have more data than problems 10 and 15. Finally, as is 

often the case with data-driven approaches, model robustness is 

dramatically improved with the use of more data. 

4. CONCLUSIONS 

In this paper, we have presented four algorithms for automatically 

building example-tracing tutor models using multiple solution 

demonstrations that may be crowd-sourced or collected from a 

sample of users in an online ITS. The transfer of this effort from 

the ITS developers to a low cost (potentially no cost) workforce 

affords scale to the ITS development process. 

Foremost, we must note that due to the inaccuracies in the 

automatically generated behavior graphs, they need manual 

inspection and further annotation before they can be 

operationalized. In our work on creating a general purpose 

learning platform focused on STEM domains, we are integrating 

these algorithms into our suite of authoring tools to allow ITS 

developers to use these algorithms in their workflow. Second, we 

notice that the algorithms have complementary performance on 

the different desirable characteristics of the automatically 

generated behavior graphs. Based on Table 2, we would choose 

Algorithm 2 for its Readability metrics, Algorithm 4 for 

Accuracy, Algorithm 1 for Completeness and Algorithm 3 for the 

key Robustness metric. All of these algorithms should be made 

available to the ITS developers through the authoring tools. We 

think that Algorithm 2 may be used as the default choice. 

 Looking ahead, the pursuit of automation of example tracing 

tutor modeling has a number of challenges of interest. The 

complementary nature of these algorithms suggests the potential 

for combining them to obtain better behavior graphs. Extension of 

the techniques presented in this paper to automatically update 

existing behavior graphs, which may have been manually 

authored, using traces from actual learners can help in 

maintenance and online improvement of the tutor models. 
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Figure 1b. Algorithm performance for different number of UI elements in a problem 

Figure 1a. Algorithm performance for different number of training traces 
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