
Comparison of Algorithms for
Automatically Building Example-Tracing Tutor Models

Rohit Kumar Matthew E. Roy R. Bruce Roberts John I. Makhoul
Raytheon BBN Technologies

Cambridge, MA, USA

{ rkumar, mroy, broberts, makhoul } @ bbn.com

ABSTRACT

In our recent work, we have proposed that multiple behavior

demonstrations can be automatically combined to generate an

Example-Tracing Tutor model. In this paper, we compare four

algorithms for this problem using a number of different metrics

for two different datasets, one of which is publicly available. Our

experiments show that these four algorithms are complementary

to each other in terms of their performance along the different

metrics. These findings make a case for incorporating multiple

algorithms for building behavior graphs into authoring tools for

Intelligent Tutoring Systems (ITS) that use behavior graphs.

Keywords

Tutor Models, Example-Tracing Tutors, Behavior Graphs,

Authoring, Automation, Algorithms, Metrics

1. INTRODUCTION

Conventionally, Example-Tracing Tutors [1] are developed in

three stages by trained domain experts: (1) User Interface

development, (2) Behavior demonstration, (3) Generalization and

annotation of the behavior graph. Recently, we proposed [2] that

the effort involved in Stage 3 of this process can be significantly

reduced by using algorithms that can automatically create a

generalized behavior graph from multiple demonstrations.

Automation of tutor model development has been explored in

different contexts using completely automated methods as well as

augmentation of authoring tools. Barnes and Stamper [3]

proposed a method that uses existing student solutions to generate

hint messages for the Logic Proof tutor. Recently, Eagle et al. [4]

have used clustering of interaction network states as an approach

to the same problem. In the context of knowledge-tracing and

example-tracing tutors, McLaren et al. [5] proposed the use of

activity logs from novice users to bootstrap tutor model

development. They developed software tools that integrate access

to novice activity logs with tutor authoring tools.

In the next section, we briefly outline four algorithms for

automatically generating behaviors graphs. In Section 3, we will

present experiments using two datasets, to compare these

algorithms along a number of metrics that measure desirable

characteristics of tutor models.

2. ALGORITHMS

2.1 Behavior Graphs and Demonstrations

Behavior graphs are directed graphs. The nodes in a graph

correspond to valid solution states. Non-terminal nodes represent

partial solutions. Edges in the graph represent events, some of

which are correct and lead to the next state while others are

incorrect and lead back to the same state. Edges are annotated

with the conditions that an event must meet to traverse the edge.

Behavior graphs may also include unordered groups. As the name

suggests, states within an unordered group may be traversed in

any order. Constituents of the behavior graph (i.e. nodes, edges,

groups) may be associated with a number of annotations based on

the educational application.

On the other hand, behavior demonstrations are captured as a

sequence of user interface (UI) events. Each event is represented

as a 2-tuple ei = (ui, di) that includes an identifier ui of the UI

element and data di associated with the event. Note that each

behavior demonstration implicitly represents a behavior graph

where the nodes in the graph correspond to the state of completion

of each event in the demonstration. Such a behavior graph does

not generalize to learner behaviors beyond those that are exactly

identical to the demonstration. Automatic Behavior Graph

Generation (ABGG) algorithms utilize multiple demonstrations of

solutions of a problem to generate a behavior graph that can serve

as a tutor model for the problem.

2.2 Algorithm 1: Interaction Network

The baseline algorithm used in our work combines the individual

behavior graph corresponding to available demonstrations by

merging identical nodes and edges in a sequential order. When a

non-identical edge is found, a new branch is created in the graph.

The resulting behavior graph is an interaction network which has

been used in prior work [4] [6]. All paths in the behavior graph

generated by this algorithm are assumed to be correct paths i.e.

this algorithm is incapable distinguishing between correct and

incorrect actions by the learner. While the behavior graph

generated by this algorithm is more general than any individual

demonstration used to create the graph, no unseen paths are

generated. Furthermore, the number of nodes and edges created

by this algorithm is fairly large, which makes the annotation of

such graphs difficult for problems with many UI elements.

2.3 Algorithm 2: Heuristic Alignment1

Our next algorithm, shown in Table 1, utilizes two characteristics

of behavior demonstrations. First, if two or more events in a

demonstration have the same element identifier ui, the latter event

likely corresponds to a correction of the data value input in the

former events. Second, if we assume that there is one and only

one correct solution sequence through the UI elements, we can

transform the problem of generalizing behavior demonstrations to

that of finding the optimal sequence of states through the UI

elements.

This research was funded by the US Office of Naval Research

(ONR) contract N00014-12-C-0535.

Proceedings of the 7th International Conference on Educational Data Mining 217

Table 1. Algorithm 2 (Heuristic Alignment)

Stage 1. Compute Retracted Demonstrations

 For each demonstration D

 For each retracted event e = (u, d)

1. etarget = last event in D s.t. etargetu = eu

2. Add ed to etarget.dwrong

3. Remove e from D

Stage 2. Find Sequence of States

 For each unique identifier u

1. pu = set of positional indices of events s.t. identifier = u

2. modeu = mode(pu)

 Sequence states (su) corresponding to each element

identifier (u) in increasing order of their modeu

Stage 3. Generate Edges

 For each state su*

1. Generate correct edge for each unique d for events s.t.

identifier = u*

2. Generate wrong edge for each unique entry in dwrong for

events s.t. identifier = u*

Stage 4. Identify Unordered Groups

 For each pair of adjacent states (su1,su2)

1. if |∩(pu1,pu2)| > √ , group su1, su2

2.4 Algorithm 3: Center Star Alignment

Note that Stage 2 of the previous algorithm is, in effect, aligning

the multiple demonstrations. The Center Star Algorithm can be

used to perform this alignment. Algorithm 3 uses the Center-Star

Alignment between the retracted demonstrations. Similar to

algorithm 2, a new state is generated for each position in the

aligned demonstrations. However, since we obtain the alignment

using the Center Star algorithm, the second assumption made by

algorithm 2 is not necessary, which can lead to multiple states

with the same element identifiers. This allows algorithm 3 to

generate alternate paths.

2.5 Algorithm 4: Combining Multiple Paths

Algorithm 4 considers ABGG as the process of finding multiple

paths in a directed graph. A first order transition matrix obtained

from the demonstrations represents a directed graph. Specifically,

the longest (non-repeating) path in this directed graph is the most

likely path through the UI elements based on the demonstrations.

While the problem of finding longest paths in general graphs is

known to be NP-hard, in our approach, we employ an exponential

time longest path finding algorithm within bounds of the number

of UI elements and uses a transformed transition matrix to find

multiple shortest paths. The transform changes the weight of each

valid edge of the directed graph to row normalized inverse. We

merge all the paths found to we construct a behavior graph similar

to the process of constructing an interaction network. The

algorithm uses Stage 1 and Stage 4 of algorithm 1.

2.6 Discussion

As mentioned earlier, incremental addition of demonstrations to

generate interaction networks does not identify incorrect input

data values. Using the assumption about retracted events, the

other three algorithms are able to identify incorrect inputs.

Johnson et al. [6] used a similar assumption in their work on

reducing the visual complexity of interaction networks. We notice

that the algorithms 2 and 3 are complementary in terms of their

ability to find alternate paths and unordered groups. Algorithm 4

on the other hand offers both of these abilities. In the next section,

we will discuss the performance of all of these algorithms in terms

of quantitative metrics

None of the algorithms discussed in this paper are capable of

discovering data values beyond those seen in the training

demonstrations. This type of generative ability is particularly

useful for learning tasks, such as language learning, where a large

number of different inputs may be expected from the learners. In

our ongoing work, we want explore the use of grammar induction

techniques to learn regular expressions from correct and incorrect

data values for each state.

3. EVALUATION

3.1 Datasets

We use two collections of behavior demonstrations/traces to

evaluate the performance of the four algorithms described earlier.

The first dataset (referred to as the BBN dataset) comprises of five

physics problems. Nine subjects spent upto one hour each to

create demonstrations of the five problems. All nine subjects were

able to complete demonstrations of three problems. Six subjects

completed the fourth problem and only four completed the fifth

problem. Additionally, we used three Assistments datasets

accessed via DataShop [7] to form our second collection of

behavior demonstrations. This publicly shared large dataset

comprises a total of 683197 traces and 1905672 events for 3140

problems. We filtered these datasets to use only problems that had

six or more traces and had at least two UI elements.

3.2 Metrics

Metrics used in our evaluation are discussed in detail in our prior

publication [2]. These metrics are categorized by the desirable

characteristics of automatically generated behavior graphs they

measure.

 Readability/Maintainability: The conciseness of a graph can

be measured using the number of nodes and edges in the graph.

Compression ratio measures the rate at which an algorithm is

able to reduce demonstration events into behavior states (i.e.

nodes) by finding similarities between events.

 Completeness: We use the rate of unseen events in held out

demonstrations as a metric to measure the completeness of our

automatically generated behavior graphs.

 Accuracy: Edge accuracy measures the percentage of Correct &

Incorrect edges that were accurately classified by the algorithm.

Error rate is a frequency weighted combination of edge accuracy

that measures the fraction of learner events that will be

inaccurately classified by the automatically generated behavior

graph.

 Robustness: Branching factor is the average number of data

values available at each UI element. A large branching factor

indicates the capability to process a large variety of learner

inputs at each state. Also, the number of unordered groups and

the size of unordered groups are indicative of flexibility a graph

affords to learners to explore the solution paths of a problem.

3.3 Experimental Design

We use two different experimental designs for the two datasets.

Since the BBN dataset is comprised of a small number of

demonstrations per problem, we use all available demonstrations

for training and report only the metrics that can be derived from

the graphs and the training demonstrations. Since a large number

of traces are available for the problems in the Assistments dataset,

Proceedings of the 7th International Conference on Educational Data Mining 218

we use a three-fold cross validation design to split the available

traces into three different training and held out sets. Reported

metrics are averaged over each split.

3.4 Results

3.4.1 BBN Dataset

Table 2 shows performance results for the four algorithms on the

two datasets. As expected, the interaction networks comprise of a

large number of nodes and edges that lead them to have

significantly (p<0.01) lower compression ratio. Algorithms 2

(Heuristic Alignment) and 4 (Multiple Paths) are able to achieve

the highest compression consistently for all five problems.

On the accuracy metrics, Algorithm 4 outperforms the other

algorithms on average. However, it is significantly better

(p<0.001) than Algorithm 1 and 3 on the incorrect edge accuracy

metric. Furthermore, the high accuracy for incorrect edges for two

of the three algorithms that use the retracted demonstrations partly

validates the underlying assumption made by these algorithms.

In contrast to the accuracy metrics, alignment based

algorithms (2 and 3) outperform the multiple paths algorithm (4)

on achieving a higher branching factor. The frequency based

pruning underlying the selection of multiple paths in algorithm 4

leads to the elimination of certain novel edges. Based on the

performance of these algorithms on the edge accuracy metrics we

see many of these novel edges are likely to be inaccurate due to

limited evidence for their classification in the training

demonstrations. While the algorithms complement each other,

Algorithm 4 seems to be a potential candidate for optimal tradeoff

between the different metrics.

In terms of metrics based on unordered groups in a graph, we

find that algorithm 4 leads to a larger fraction of nodes (31%) to

be included in unordered groups. Finally, we see that pruning

significantly degrades the performance of Algorithm 4 on

percentage of unseen events i.e. completeness. Since interaction

networks losslessly embed all events observed in the training

demonstration, their performance on this metric is guaranteed to

be flawless. In the next section, we will compare this result to

their performance on held out demonstration sequences.

3.4.2 Assistments Dataset

The performance of the algorithms on the Assistments (Math)

dataset is also shown in Table 2. Largely, the results on this

dataset agree with the results on the BBN dataset. Algorithm 2

(Heuristic Alignment) outperforms all other algorithms on three of

the readability metrics. Unlike the BBN dataset, the average

compression ratio for Algorithm 2 is significantly better than the

other algorithms including Algorithm 4 (Multiple Paths).

Algorithm 4 significantly outperforms the other algorithms

on three of the accuracy metrics. Because of their lossless nature,

Interaction Networks (Algorithm 1) performs the best on

Completeness metrics (% unseen events) as was the case with the

BBN dataset. However, we find evidence of over-fitting of the

algorithms to training data on this metric as indicated by the

approximately 9% higher rate of unseen events for held out

demonstrations for all the algorithms.

While the results on the branching factor metrics of the

Assistments dataset are consistent with the BBN dataset,

Algorithm 2 outperforms Algorithm 4 on the metrics based on the

unordered groups. Because Algorithm 2 identifies unordered

groups that are larger in size than Algorithm 4, the groups found

by the Heuristic Alignment algorithm have a higher coverage of

the generated graphs, especially in the Assistments datasets where

the number of UI elements is relatively small.

Figure 1 further explores the tradeoff between the key

metrics for larger number of traces (i.e., more training data) in

Figure 1a and increasingly complex problems (i.e., more UI

elements) in Figure 1b. Algorithm 1 does not scale well on

readability metrics (Compression Ratio). The algorithms

demonstrate stability in accuracy and completeness performance

with increasing problem or data complexity. Algorithms 3 and 4

can produce a consistently low error rate despite increasing

complexity. The rate of unseen events reduces by over 60%

(relative) for a 10-fold increase in training data. This is also

Table 2. Averaged metrics for the graphs generated for the problems in the BBN & Assistments (Math) dataset
*indicates significant (p < 0.05) difference with other algorithms for the same dataset

Metrics ▼

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

BBN Math BBN Math BBN Math BBN Math

#Nodes 144.8 79.1* 32.4 5.4 37.0 6.0 32.4 6.6

#Correct Edges 160.4 147.9* 70.0 12.8 97.0 18.3 71.4 17.5

#Incorrect Edges 17.2 24.2* 19.8 33.4* 5.0 19.5*

Compression Ratio 1.8 6.7* 7.3 77.3* 6.3 66.8* 7.3 60.2*

% Accurate Correct Edges 76.7 39.1* 77.0 42.2 66.2 42.6 82.8 44.1*

% Accurate Incorrect Edges 99.5 99.9* 99.5 97.5* 100.0 99.5*

Training Error Rate 15.5 51.3* 7.6 25.2* 13.0 17.7 7.6 17.4

Heldout Error Rate 42.7* 23.4* 16.0 15.6

% Training Unseen Events 0.0 0.0 0.0 10.5* 4.4 2.2* 8.1 6.7*

% Heldout Unseen Events 10.1* 19.0* 11.5* 13.8*

Branching Factor 1.2 2.2* 3.1 11.1* 3.4 12.6* 2.7 8.5*

#Groups 1.6 0.5* 2.6 0.02*

Avg. Group Size 3.3 1.8* 2.8 0.04

% Group Coverage 17.7 30.6* 31.3 0.5

Proceedings of the 7th International Conference on Educational Data Mining 219

evidenced in the BBN dataset if we compare problems 1, 2 and 6

which have more data than problems 10 and 15. Finally, as is

often the case with data-driven approaches, model robustness is

dramatically improved with the use of more data.

4. CONCLUSIONS

In this paper, we have presented four algorithms for automatically

building example-tracing tutor models using multiple solution

demonstrations that may be crowd-sourced or collected from a

sample of users in an online ITS. The transfer of this effort from

the ITS developers to a low cost (potentially no cost) workforce

affords scale to the ITS development process.

Foremost, we must note that due to the inaccuracies in the

automatically generated behavior graphs, they need manual

inspection and further annotation before they can be

operationalized. In our work on creating a general purpose

learning platform focused on STEM domains, we are integrating

these algorithms into our suite of authoring tools to allow ITS

developers to use these algorithms in their workflow. Second, we

notice that the algorithms have complementary performance on

the different desirable characteristics of the automatically

generated behavior graphs. Based on Table 2, we would choose

Algorithm 2 for its Readability metrics, Algorithm 4 for

Accuracy, Algorithm 1 for Completeness and Algorithm 3 for the

key Robustness metric. All of these algorithms should be made

available to the ITS developers through the authoring tools. We

think that Algorithm 2 may be used as the default choice.

 Looking ahead, the pursuit of automation of example tracing

tutor modeling has a number of challenges of interest. The

complementary nature of these algorithms suggests the potential

for combining them to obtain better behavior graphs. Extension of

the techniques presented in this paper to automatically update

existing behavior graphs, which may have been manually

authored, using traces from actual learners can help in

maintenance and online improvement of the tutor models.

5. REFERENCES

[1] Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger. K. R.

2009. A New Paradigm for Intelligent Tutoring Systems:

Example-Tracing Tutors. Int. J. Artif. Intell. Ed. 19, 2 (April

2009), 105-154.

[2] Kumar, R., Roy, M.E, Roberts, R.B., and Makhoul, J.I. 2014.

Towards Automatically Building Tutor Models Using

Multiple Behavior Demonstrations. 12th Intl. Conf. on

Intelligent Tutoring Systems (ITS 2014), Honolulu, HI.

[3] Barnes, T., and Stamper, J. 2008. Toward Automatic Hint

Generation for Logic Proof Tutoring Using Historical

Student Data. 9th International Conference on Intelligent

Tutoring Systems (ITS 2008). Montreal, Canada.

[4] Eagle, M., Johnson, J., and Barnes, T., 2012. Interaction

Networks: Generating High Level Hints Based on Network

Community Clusterings, 5th International Conference on

Educational Data Mining (EDM 2012). Chania, Greece.

[5] McLaren, B.M., Koedinger, K.R., Schneider, M., Harrer, A.,

and Bollen, L. 2004. Bootstrapping Novice Data: Semi-

Automated Tutor Authoring Using Student Log Files.

Workshop on Analyzing Student-Tutor Interaction Logs to

Improve Educational Outcomes, 7th International Conference

on Intelligent Tutoring Systems (ITS 2004). Alagoas, Brazil.

[6] Johnson, M., Eagle, M., Stamper, J., and Barnes, T. 2013. An

Algorithm for Reducing the Complexity of Interaction

Networks, 6thInternational Conference on Educational Data

Mining (EDM 2013). Memphis, TN.

[7] Koedinger, K.R., Baker, R.S.J.d., Cunningham, K.,

Skogsholm, A., Leber, B., and Stamper, J. 2010. A Data

Repository for the EDM community: The PSLC DataShop.

In Handbook of Educational Data Mining. Romero, C.,

Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (Eds.). Boca

Raton, FL: CRC Press

Figure 1b. Algorithm performance for different number of UI elements in a problem

Figure 1a. Algorithm performance for different number of training traces

Proceedings of the 7th International Conference on Educational Data Mining 220

	EDMshortfinal
	7-edm2014_submission_21

