
Generating Hints for Programming Problems Using
Intermediate Output

Barry Peddycord III
North Carolina State

University
890 Oval Drive

Raleigh, NC, 27695
bwpeddyc@ncsu.edu

Andrew Hicks
North Carolina State

University
890 Oval Drive

Raleigh, NC, 27695
aghicks3@ncsu.edu

Tiffany Barnes
North Carolina State

University
890 Oval Drive

Raleigh, NC, 27695
tmbarnes@ncsu.edu

ABSTRACT
In this work, we compare two representations of student
interactions within the context of a simple programming
game. We refer to these representations as Worldstates and
Codestates. Worldstates, which are representations of the
output of the program, are generalizations of Codestates,
snapshots of the source code taken when the program is run.
Our goal is to incorporate intelligent data-driven feedback
into a system, such as generating hints to guide students
through problems. Using Worldstates simplifies this task by
making it easier to compare student approaches, even for
previously unseen problems, without requiring expert anal-
ysis. In the context of the educational programming game,
BOTS, we find that worldstates require less prior data to
generate hints in a majority of cases, without sacrificing
quality or interpretability.

Keywords
Hint Generation, Programming Tutor, Educational Game

1. INTRODUCTION
One key benefit of Intelligent Tutoring Systems over other
computer-aided instruction is the ability to provide intelli-
gent adaptive feedback. A popular way of providing this
feedback is through the generation of hints. Hints can help
students who are stuggling by suggesting a next step or pro-
viding a clue about what the next step might be. While some
of the earliest work in this area focuses on building models
of the learner [7], recent work shows that quality hints can
be generated in certain domains using data-driven methods,
informed by the type and frequency of actions taken by stu-
dents in the system [1].

Programming has been a domain of interest for tutoring sys-
tems as far back as the Lisp Tutor [3]. There has been recent
interest in trying to apply hint generation techniques such as
Stamper and Barnes’ Hint Factory [9] to programming lan-

guages [6, 8], but this still remains an open problem given
the complexity associated with learning programming lan-
guages. One of the challenges associated with handling pro-
gramming tutors comes from the diversity of possible pro-
grams that a student can write.

2. PROBLEM STATEMENT
Our work is an effort to add techniques from Intelligent Tu-
toring Systems to an educational game called BOTS. BOTS
is an educational programming game designed to teach mid-
dle school students the principles of programming, and also
allows students to create their own puzzles for other stu-
dents to solve. Due to the rapid creation of new puzzles, it
is necessary that hints can be generated with relatively little
data, since expert authoring is infeasible.

Like Rivers, our work is based on Hint Factory, but rather
than attempting to analyze the student source code, our
work looks entirely at the output of the programs. We
hypthesize that using the output of programs for hint gen-
eration allows us to deal with the challenge of source code
diversity and generate more hints with less data than using
source code alone, without diminishing the quality of hints.

Though the hints have not yet been integrated into the
game, this work shows that our technique is promising and
could feasibly be integrated into the game for future studies.

3. PRIOR WORK
One popular technique for automatic hint generation that
has enjoyed success is Stamper and Barnes’ Hint Factory
[9]. Hint Factory can be applied in any context where stu-
dent interactions with a tutor can be defined as a graph of
transitions between states [2]. In the Deep Thought proposi-
tional logic tutor, students are asked to solve logic proofs by
deriving a conclusion from a set of premises [1]. Each time a
student applies a logical rule, a snapshot of the current state
of the proof is recorded in a graph called the interaction net-
work as a node, with an edge following the states along the
path they follow to get to their proof. At any point during
the proof, a student can ask for a hint, and Hint Factory
selects the edge from the state they are currently in that
takes them closest to the solution.

The iList Linked List tutor is another example where a Hint
Factory-based approach to generating feedback has been
successful [4]. In Fossati’s work on the iList Linked List

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 92

tutor, the developers used a graph representation of the pro-
gram’s state as the input to their system. In order to give
hints for semantically equivalent states, rather than for only
precisely identical states, the developers searched for iso-
morphisms between the program state and the previously
observed states. This is a non-trivial comparison, and re-
quires significant knowledge of the domain in order to assess
the best match when multiple such relations exist.

Rivers et al also use Hint Factory to generate hints specif-
ically for programming tutors. Due to the complexity of
programming problems, a simple snapshot of the code will
not suffice [8]. There are many varied approaches that can
be taken to programming problems, and if a direct com-
parison is being used, it is rare that a student will inde-
pendently have a precisely identical solution to another stu-
dent. Therefore, some way of reducing the size of the state
space is needed. During a programming problem, each time
a student saves his or her work, their code is put through
a process of canonicalization to normalize the naming con-
ventions, whitespace, and other surface-level programming
variations that differ widely across students. When two pro-
grams have the same canonical form, they are considered
the same state in the interaction network. In both cases,
the generation of a hint comes from selecting the appropri-
ate edge and then articulating to the student some way of
getting from their current state to the state connecting by
that edge.

In Jin’s work on programming tutors [6] a similar approach
is taken. Rather than using canonical forms generated us-
ing abstract syntax trees, the authors generate ”Linkage
Graphs” which define the relationships between variables
in the program, then condense those graphs by removing
intermediate variables, creating abstract variables that rep-
resent multiple approaches. To take a very simple exam-
ple, if the goal is to multiply A by B and somehow output
the result, a programmer may write A = A * B or C = A *

B. After building the CLG, these approaches would be the
same. If the condensed linkage graphs (CLGs) derived from
two different programs are isomorphic to eachother, then
those programs are said to be similar. Additional analy-
sis is then needed to identify which concepts the abstracted
variables in the CLGs represent; in this case, k-means clus-
tering was used to find the most similar abstracted variable,
then choosing the most common naming convention for that
variable.

We propose that another way of canonicalizing student code
is to use the intermediate output of programs. In a study
of 30,000 student source code submissions to an assignment
in the Stanford Massive Open Online Course on Machine
Learning, it was found that there were only 200 unique out-
puts to the instructor test cases [5]. In the Machine Learning
class, there was only one correct output, but despite there
being an infinite number of ways to get the problem wrong,
Huang et al observed a long tail effect where most students
who got the exercises wrong had the same kinds of errors.

4. CONTEXT
4.1 BOTS
BOTS is an educational programming game that teaches
the basic concepts of programming through block-moving

puzzles. Each problem in BOTS, called a “puzzle”, contains
buttons, boxes, and a robot. The goal for the player is to
write a program for the robot, using it to move boxes so that
all of the buttons are held down. The BOTS programming
language is quite simple, having elementary robot motion
commands (”forward”, ”turn”, ”pickup/ putdown”) and basic
programming constructs (loops, functions, variables). Most
programs are fairly small, and students who solve puzzles
using the fewest number of blocks overall (fewer ”lines of
code”) are shown on the leaderboard.

One important element of BOTS is that there is a built-in
level editor for students to develop their own puzzles. There
is a tutorial sequence that contains puzzles only authored
by the developers of the system, but students are also free
to attempt peer-authored puzzles which may only be played
by a few students. Due to the constant addition of new
puzzles, expert generation of hints is infeasible, and due to
the limited number of times levels will be played, it must be
possible to generate hints with very little data.

Start Goal

Robot
Block
Button
Covered

Legend

Figure 1: An example of the interaction network of
a BOTS puzzle solved two ways by two students.
One student (empty arrow) wrote four programs to
arrive at the solution, and the other (filled arrow)
only wrote two.

(empty)

Forward
Forward
Forward
Turn Right

Forward
Forward
Turn Right
Pick Up
Turn Left

Forward
Forward
Turn Right
Pick Up
Turn Left
Turn Left
Put Down

For 2:
 Forward

For 2:
 Forward
Turn Right
Pick Up
For 2:
 Turn Left
Put Down

Figure 2: This figure shows the same two students
with the same solutions. Notice how in this example,
these two paths that get to the same goal have no
overlapping states - including the goal state.

We use a data structure called an interaction network to
represent the student interactions with the game [2]. An in-
teraction network is a graph where the nodes represent the
states that a student is in, and the edges represent transi-
tions between states. In this research, we compare the ef-
fects of using two different types of states in the interaction
network, which we refer to as codestates and worldstates.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 93

Codestates are snapshots of the source code of a student’s
program, ignoring user generated elements like function and
variable names. Worldstates, inspired by Jin and Rivers,
use the configuration of the entities in the puzzle as the def-
inition of the state. In other words, codestates represent
student source code while worldstates represent the output
of student source code. In both cases, student interactions
can be encoded as an interaction network, which enables
the application of techniques like Hint Factory. Figures 1
and 2 demonstrate how the interaction networks differ be-
tween codestates and worldstates.

4.2 Hint Generation
When generating a hint, the goal is to help a student who
is currently in one state transition to another state that is
closer to the goal, without necessarily giving them the an-
swer. In this work, rather than attempting to identify these
states a priori using expert knowledge, we instead use the
solutions from other students to estimate the distance to a
solution. It is a fair assumption that students who solve
the same problem will use similar approaches to solve it [1].
This assumption implies that there will be a small number
of states that many students visit when they solve a prob-
lem. If several students take the same path from one state to
another, it is a candidate for a hint. Hint Factory formalizes
this process with an algorithm.

“Generating” a hint is a two-part problem. First, we must
devise a hint policy to select one of the edges from the user’s
current state in the interaction network. Then, we must
articulate the resultant state into a student-readable hint.
For example, if we applied hint factory to Figure 1 when the
student is in the start state, the edge selected would be the
one going down to the bottom-most worldstate. The ”hint”
might be articulated to the student as “write a program
that moves the robot north by two spaces”. An example is
provided in Figure 3

Figure 3: A mock-up of how a high-level hint might
be presented in BOTS. The green “hologram” of
the robot indicates the next worldstate the player
should attempt to recreate.

In order to give a student a relevant hint, another student

must have reached the solution from the same state that the
one requesting a hint is currently in. If no other student
has ever been in that state before, we can not generate an
exact hint. Using source code to determine the state is chal-
lenging, since students can write the same program in many
different ways, which makes the number of states across all
students highly sparse, reducing the chance that a match
(and by extension, a hint) will be available. Previous work
attempts to find ways to canonicalize student program [8],
but even then the variability is still very high. Using world-
states, however, serves to“canonicalize” student submissions
without having to do complicated source code analysis.

When it comes to the articulation of hints, we can use what-
ever information is available in the interaction network to
provide a hint to the student. Using codestates, a diff be-
tween the source code of the current state and the hint state
can be used. For worldstates, an animation of the path of
the robot can be played to show what the hint state’s con-
figuration would look like. In tutoring systems like Deep
Thought, hints are given at multiple levels, with the first
hint being very high-level, and the last essentially spelling
out the answer to the student (a “bottom-out” hint) [1]. In
BOTS, we can progressively reveal more information as nec-
essary - hints about the worldstate help a student see how
to solve the puzzle without telling them exactly how to code
it. If a student is having trouble with the code itself, then
lower-level hints might suggest which kinds of operations to
use or show them snippets of code that other students used
to solve the puzzle.

It is important to note that while worldstates are a gener-
alization, we do not necessarily lose any information when
using them for hint generation. BOTS programs are deter-
ministic, and there is no situation where the same code in
the same puzzle produces a different output. Therefore, us-
ing worldstates not only allows us to articulate high-level
hints, it also provides a fallback when a student’s source
code snapshot is not yet in the interaction network.

5. METHODS
5.1 Data set
The data for this study comes from the 16-level tutorial
sequence of BOTS. These levels are divided into three cate-
gories: demos, tutorials, and challenges. Demos are puzzles
where the solution is pre-coded for the student. Tutorials
are puzzles where instructions are provided to solve the puz-
zle, but the students build the program themselves. Finally,
challenges require the student to solve a puzzle without any
assistance. Challenge levels are interspersed throughout the
tutorial sequence, and students must complete the tutorial
puzzles in order - they can not skip puzzles.

For the purposes of this evaluation, we exclude demos from
our results, and run our analysis on the remaining 8 tuto-
rials and 5 challenges. The data comes from a total of 125
students, coming from technology-related camps for mid-
dle school students as well as an introductory CS course
for non-majors. Not all students complete the entire tuto-
rial sequence, as only 34 of the students attempted to solve
the final challenge in the sequence. A total of 2917 unique
code submissions are collected over the 13 puzzles, though
it is important to note that the number of submissions spike

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 94

when students are presented with the first challenge puzzle.
This information is summarized for each puzzle in Table 1.

Table 1: A breakdown of the tutorial puzzles in
BOTS, listed in the order that students have to com-
plete them. Hint states are states that are an ances-
tor of a goal state in the interaction network, and
are the states from which hints can be generated.

Codestates Worldstatates
Name #Students Hint All Hint All
Tutorial 1 125 89 162 22 25
Tutorial 2 118 36 50 12 14
Tutorial 3 117 130 210 22 24
Tutorial 4 114 137 225 33 41
Tutorial 5 109 75 106 25 29
Challenge 1 107 348 560 143 191
Challenge 2 98 201 431 86 133
Tutorial 6 90 107 143 33 36
Challenge 3 89 192 278 28 30
Challenge 4 86 137 208 40 45
Tutorial 7 76 206 383 43 57
Tutorial 8 68 112 134 29 30
Challenge 5 34 17 27 13 17

In order to demonstrate the effectiveness of using world-
states to generate hints, we apply a technique similar to the
one used to evaluate the “cold start” problem used in Barnes
and Stamper’s work with Deep Thought [1]. The cold start
problem is an attempt to model the situation when a new
problem is used in a tutor with no historical data from which
to draw hints. The evaluation method described in Barnes
and Stamper’s previous work uses existing data to simulate
the process of students using the tutor, and provides an es-
timate as to how much data is necessary before hints can
be generated reliably. As such, it is an appropriate method
for determining how much earlier - if at all - worldstates
generate hints as opposed to codestates.

We break the student data for each puzzle into a training
and a validation set, and iteratively train the Hint Factory
by adding one student at a time. We chart how the number
of hints available to the students in the validation set grows
as a function of how much data is in the interaction network,
and average the results over 1000 folds to avoid ordering
effects. The specific algorithm is as follows:

Step 1 Let the Validation set = 10 random students, and
the training set = the n-10 remaining students

Step 2 Randomly select a single student attempt from the
training set

Step 3 Add states from the student to the interaction net-
work and recalculate the Hint Factory MDP

Step 4 Determine the number of hints that can be gener-
ated for the validation set

Step 5 While the training set is not empty, repeat from
step 2

Step 6 Repeat from step 1 for 1000 folds and average the
results

This approach simulates the a cohort of students asking for
hints at the same states as a function of how much data is
already in the system, and provides a rough estimate as to
how many students need to solve a puzzle before hints can
be generated reliably. However, this approach is still highly
vulnerable to ordering effects, so to verify a hypothesis that
n students are sufficient to generate hints reliably, we do
cross validation with training sets of n students to further
establish confidence in the hint generation.

6. RESULTS
6.1 State-space reduction
At a glance, Table 1 shows how using worldstates as op-
posed to codestates reduces the state space in the interac-
tion network. Challenge 1, for example, has 560 unique code
submissions across the 107 students who attempted the puz-
zle. These 560 code submissions can be generalized to 191
unique outputs.

We see a significant reduction in the number of states con-
taining only a single student. Intuitively, students who get
correct answers will overlap more in terms of their solutions,
while the infinite numbers of ways to get things wrong will
result in several code submissions that only a single student
will ever encounter. In the Table 2, we look at the number
of frequency-one states that students encounter for challenge
puzzles 1 through 4.

When using worldstates, in all three cases, more than half of
the states in the interaction network are only observed one
time. In particular, Challenge 3 is particularly interesting,
considering that out of 278 unique code submissions from
89 students, only 8 of the 30 worldstates are observed more
than once. The sheer degree of overlap demonstrates that
worldstates in particular meet the assumptions necessary to
apply hint factory.

Table 2: This table highlights the number of code
and worldstates that are only ever visited one time
over the course of a problem solution.

Codestates Worldstatates
Name #Students All Freq1 All Freq1
Challenge 1 107 560 146 191 112
Challenge 2 98 431 127 133 84
Challenge 3 89 278 91 30 22
Challenge 4 86 208 65 45 36

6.2 Cold Start
The graphs in Figure 4 show the result of the cold start eval-
uation for all 13 of the non-demo puzzles. Looking at the two
graphs side-by-side, the worldstates have more area under
the curves, demonstrating the ability to generate hints ear-
lier than codestates. The effect is particularly pronounced
when looking at the challenge puzzles (represented with the
solid blue line). In tutorials, code snippets are given to
the students, so there is more uniformity in the code being
written. When the guidance is taken away, the code be-
comes more variable, and this is where the worldstates show
a demonstrable improvement.

It is important to note that because of the way worldstates
are defined, the ability to generate more hints is trivially

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 95

guaranteed. The contribution is the scale at which the new
hints are generated. For the same amount of student data
in the interaction network, the percentage of hints available
is anywhere from two to four times larger when using world-
states than codestates.

Figure 5 summarizes these results by averaging the hints
available for the first four challenge puzzles. Challenge puz-
zles are chosen as they represent a puzzle being solved with-
out any prompts on how to solve it, and would be the envi-
ronment where these automatically generated hints are de-
ployed in practice. Challenge 5 was only attempted by 34
students, so it was left out of the average.

1 13 25 37 49 61 73 85 97 109

0

0.2

0.4

0.6

0.8

1

Codestates

of students

%
 o

f h
in

ts
 a

va
i la

b
le

1 13 25 37 49 61 73 85 97 109

0

0.2

0.4

0.6

0.8

1

Worldstates

of students

%
 o

f h
in

ts
 a

va
i la

b
le

Figure 4: These graphs show the overall perfor-
mance of hint generation for codestates and world-
states. The solid blue lines are the challenge puzzles,
and the dotted light-green lines are the tutorial puz-
zles.

6.3 Validation
Table 3: This table shows the percentage of hints
available using worldstates when 30 students worth
of data are in the interaction network.

Name Average Median Min Max
Challenge 1 0.67 0.66 0.48 0.81
Challenge 2 0.67 0.66 0.44 0.84
Challenge 3 0.94 0.93 0.83 0.99
Challenge 4 0.88 0.87 0.69 0.96

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Averages over Challenges 1-4

of students

%
 o

f h
in

ts
 a

va
i la

b
le

Figure 5: This graph summarizes Figure 4 by aver-
aging the results of the analysis over the first four
challenge puzzles. For these challenge levels (where
students do not have guidance from the system) we
are able to consistently generate hints with less ata
when using world states rather than code states.

Figure 5, suggests that 30 students of data should be able to
generate hints using worldstates about 80% of the time. To
validate this hypothesis, we do cross-validation with training
sets of 30 students and validate on the remaining students
for challenge puzzles one through four, once again, because
they are an appropriate model for how hints would be de-
ployed in practice. We find the average, median, maximum,
and minimum of the results over another 1000 trials, and
summarize them in Table 3. We find that for challenges
1 and 2, hint generation is below the 80% mark, but for
challenges 3 and 4, it is well over.

7. DISCUSSION
Our results indicate that when using worldstates we are
able to generate hints using less data than when using code
states. The reduction in the state space and the number
of hints available after only a few dozen students solve the
puzzle is highly encouraging. We only test our results on
instructor-authored puzzles for this study, but these results
potentially make hint generation for user-generated levels
feasible as well.

While on average, the number of hints available using world-
states is very high, it is interesting to look at numbers on
a per level basis. For example, in the summary in Table 3,
there are less hints available after 30 students have been
through the puzzle than the second two, which are presum-
ably harder. This could be an averaging effect due to the
more advanced students remaining in the more advanced
levels, but there are some structural differences to the lev-
els that may also have an effect. Figures 6 and 7 show the
puzzles for Challenges 1 and 4.

Challenge 1 is a much smaller puzzle, but can be solved
many different ways. Any of the blocks can be put on any
of the buttons, and the robot can also hold down a but-
ton, meaning that there are several goal states, especially
considering that the superflous block can be located any-
where. Challenge 4 is substantially more difficult, but has

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 96

much less variation in how it can be completed. In this puz-
zle, the student has to place blocks so that the robot can
scale the tower, and because of the way the tower is shaped,
there are not nearly as many different ways to approach the

Figure 6: A screenshot of challenge 1. There are
more blocks than necessary to press all the buttons,
since the robot can press a button too.

Figure 7: A screenshot of challenge 4. The puzzle is
more complex, yet has a more linear solution.

problem as there are in Challenge 1.

The results for the earlier stages are more interesting for
interpreting these results, because it shows how well world-
states manage the variability even in the wake of open-ended
problems. While we emphasize the ability for worldstates to
generate hints, it is important to note that codestates still
have utility. A hint can be generated from any of the data in
an interaction network, and using a world-based state repre-
sentation does not restrict us from comparing other collected
data. When enough data is collected for the codestates to
match, more specific, low-level hints can be generated as
well, meaning that more data does not just mean more hints,
but also more detailed hints that can be applied at the source
code level.

8. CONCLUSIONS AND FUTURE WORK
In this work, we describe our how we added intelligent tu-
toring system techniques to an educational game. Rather
than using knowledge engineering, we instead use the ap-
proach used in Deep Thought, a logic tutor built around
Hint Factory, where we provide hints to students by draw-
ing from what worked for other students [1]. In order to deal
with the fact that student code submissions can be highly
diverse, with many different inputs resulting in the same
output, we use the output of the student code to represent a
student’s position in the problem solving process. In doing
so, we generate hints much more quickly than if we had only
analyzed the source code alone.

In future work, we will identify the ability to generate hints
on student-authored puzzles and test the effectiveness of
these hints implemented in actual gameplay. We predict
that by including hints, we can improve the completion
rate of the tutorial and - if our results transfer to student-
authored puzzles - improve performance on puzzles gener-
ated by other students. We will also explore how well these
techniques transfer to contexts beyond our programming
game.

9. ACKNOWLEDGEMENTS
Thanks to the additional developers who have worked on this
project or helped with our outreach activities so far includ-
ing Aaron Quidley, Veronica Catete, Trevor Brennan, Irena
Rindos, Vincent Bugica, Victoria Cooper, Dustin Culler,
Shaun Pickford, Antoine Campbell, and Javier Olaya. This
material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant
No. 0900860 and Grant No. 1252376.

10. REFERENCES
[1] T. Barnes and J. C. Stamper. Automatic hint

generation for logic proof tutoring using historical data.
Educational Technology & Society, 13(1):3–12, 2010.

[2] M. Eagle, M. Johnson, and T. Barnes. Interaction
networks: Generating high level hints based on network
community clusterings. In EDM, pages 164–167, 2012.

[3] R. G. Farrell, J. R. Anderson, and B. J. Reiser. An
interactive computer-based tutor for lisp. In AAAI,
pages 106–109, 1984.

[4] D. Fossati, B. Di Eugenio, S. Ohlsson, C. W. Brown,
L. Chen, and D. G. Cosejo. I learn from you, you learn

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 97

from me: How to make ilist learn from students. In
AIED, pages 491–498, 2009.

[5] J. Huang, C. Piech, A. Nguyen, and L. Guibas.
Syntactic and functional variability of a million code
submissions in a machine learning mooc. In AIED 2013
Workshops Proceedings Volume, page 25, 2013.

[6] W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W.
Johnson, and L. Lehmann. Program representation for
automatic hint generation for a data-driven novice
programming tutor. In Intelligent Tutoring Systems,
pages 304–309. Springer, 2012.

[7] B. J. Reiser, J. R. Anderson, and R. G. Farrell.
Dynamic student modelling in an intelligent tutor for

lisp programming. In IJCAI, pages 8–14, 1985.

[8] K. Rivers and K. R. Koedinger. Automatic generation
of programming feedback: A data-driven approach. In
The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), page 50, 2013.

[9] J. Stamper, T. Barnes, L. Lehmann, and M. Croy. The
hint factory: Automatic generation of contextualized
help for existing computer aided instruction. In
Proceedings of the 9th International Conference on
Intelligent Tutoring Systems Young Researchers Track,
pages 71–78, 2008.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 98

	12-edm2014_submission_70

